JPH01187863A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH01187863A
JPH01187863A JP1063888A JP1063888A JPH01187863A JP H01187863 A JPH01187863 A JP H01187863A JP 1063888 A JP1063888 A JP 1063888A JP 1063888 A JP1063888 A JP 1063888A JP H01187863 A JPH01187863 A JP H01187863A
Authority
JP
Japan
Prior art keywords
layer
type
silicon
semiconductor layer
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1063888A
Other languages
Japanese (ja)
Inventor
Yoichi Tamaoki
玉置 洋一
Masanobu Miyao
正信 宮尾
Eiji Takeda
英次 武田
Ryuichi Izawa
井沢 龍一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1063888A priority Critical patent/JPH01187863A/en
Publication of JPH01187863A publication Critical patent/JPH01187863A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To provide a bipolar device having a large current amplification factor and cut-off frequency, a small surface step, and scarce crystal defect by employing a crystalline silicon as a substrate, and providing a second semiconductor layer having narrower forbidden band width than that of the silicon thereon and a third semiconductor layer having wider forbidden band width than that of the silicon further thereon. CONSTITUTION:A P-type base layer 5 and an N<+> type emitter layer 4 are grown by a molecular beam epitaxially growing method on an N<-> type layer formed by a normal epitaxially growing method, thereby forming a hetero junction. A B-doped P-type Si0.8Ge0.2 semiconductor layer is formed on the layer 5, and an Si-doped N<+> type GaAs semiconductor layer is formed on the layer 4. The forbidden band width of the GaAs used for the layer 4 in the band structure of a hetero junction transistor using the N-type Si semiconductor as a collector, the P-type single crystalline SiGe as a base and the N-type GaAs as an emitter is 1.4eV larger than that of the Si, and the energy difference of the valence band of the hetero junction is 0.3eV or more of very large value, its current amplification factor is improved, and high frequency characteristic is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ヘテロ接合を有するシリコンコンバイポーラ
半導体装置に係り、特に電流増幅率および遮断周波数が
大きい半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a silicon combiner semiconductor device having a heterojunction, and particularly to a semiconductor device having a large current amplification factor and cutoff frequency.

〔従来の技術〕[Conventional technology]

従来、バイポーラトランジスタの性能、特に電流増幅率
や遮断周波数の向上は主として微細加工技術の改善で進
められて来たが、限界に近づきつつある。バイボーラン
トランジスタの遮断周波数は、エミッタ・ベース接合部
の時定数、ベース層の走行時間、コレクタ空乏層の走行
時間、ベース・コレクタ接合部の時定数などに依存する
が、微細化された最近のシリコンバイポーラトランジス
タでは、接合部の時定数(特にエミッタ・ベース接合部
)の影響が大きい。この時定数を低減するには、エミッ
タ部の禁制帯幅をベース部より広くして、エミッタ部へ
の注入電流を減少させることが効果的である。そこで、
ヘテロ接合構造を用いる方法が提案されている。
Conventionally, improvements in the performance of bipolar transistors, particularly in current amplification factor and cutoff frequency, have been made primarily through improvements in microfabrication technology, but this is approaching its limits. The cutoff frequency of a biborane transistor depends on the time constant of the emitter-base junction, the transit time of the base layer, the transit time of the collector depletion layer, the time constant of the base-collector junction, etc. In silicon bipolar transistors, the time constant of the junction (especially the emitter-base junction) has a large effect. In order to reduce this time constant, it is effective to make the forbidden band width of the emitter part wider than that of the base part to reduce the current injected into the emitter part. Therefore,
A method using a heterojunction structure has been proposed.

ヘテロ接合構造を用いる方法として、シリコンよりも禁
制帯幅の広い炭化珪素(佐々木他、第17回固体素子コ
ンファレンス予稿集、東京。
As a method using a heterojunction structure, silicon carbide, which has a wider forbidden band width than silicon (Sasaki et al., Proceedings of the 17th Solid State Device Conference, Tokyo), is used.

1985、p、385−388)や非晶質シリコン(た
とえばインターナショナル・ミーティング・デニカル・
ダイジェスト(Internatior+alElec
tron Devices Meet:jng、 Te
chnical Digest)第746頁、1.98
4)を用いた方法が発゛表されている。これらのへテロ
接合素子では、電流増幅率が数十と小さい問題がある。
1985, p. 385-388) and amorphous silicon (e.g. International Meeting Denical
Digest (International+alElec
tron Devices Meet: jng, Te
Chnical Digest) p. 746, 1.98
A method using method 4) has been developed. These heterojunction devices have a problem in that their current amplification factors are as small as several tens of tens of magnitude.

また、ベース部を高濃度にドープし禁制帯幅を縮小した
り、禁制帯幅の小さい5iGe合金半導体をベース層に
用いる方法がある。
Further, there is a method of doping the base portion with a high concentration to reduce the forbidden band width, or using a 5iGe alloy semiconductor having a small forbidden band width for the base layer.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術においては、電流利得が数十であり、シリ
コンバイポーラトランジスタの100以上に比べて小さ
いと言う問題がある。また、集積回路に適用した場合1
表面段差が大きく、応力の集中しやすい形状となる問題
もある。
The above-mentioned conventional technology has a problem in that the current gain is several tens, which is smaller than the 100 or more of a silicon bipolar transistor. Also, when applied to integrated circuits, 1
There is also the problem that the surface level difference is large and the shape tends to concentrate stress.

本発明の目的は、前記従来技術の欠点がなく。The object of the present invention is to avoid the drawbacks of the prior art mentioned above.

電流増幅率および遮断周波数が大きく、さらに表面段差
が小さく結晶欠陥の発生しにくいバイポーラデバイスを
提供することにある。
It is an object of the present invention to provide a bipolar device that has a large current amplification factor and cutoff frequency, has small surface steps, and is less likely to generate crystal defects.

〔問題点を解決するための手段〕[Means for solving problems]

上記第1の問題点は、禁制帯幅の小さいシリコン・ゲル
マニューム合金をベース層に用い、禁制帯幅の広いヒ化
ガリウム等の半導体をエミッタに用いることにより解決
される。また、上記第2の問題点は、素子の表面段差部
を2種類あるいはそれ以上の種類のWi膜を用いて平坦
化することによって解決される。
The first problem can be solved by using a silicon-germanium alloy with a small forbidden band width for the base layer and using a semiconductor such as gallium arsenide with a wide forbidden band width for the emitter. Further, the second problem can be solved by flattening the surface step portion of the element using two or more types of Wi films.

〔作用〕[Effect]

本発明によるヘテロ接合の特徴を第1図および第2図を
用いて説明する。
The characteristics of the heterojunction according to the present invention will be explained using FIGS. 1 and 2.

第2図は、n形Si半尊体とp形単結晶S 、i G 
eとのへテロ接合のバンド構造図である。分子線エピタ
キシャル法で形成したP形Sio、5Geo、2半導体
の禁制帯幅は1.OeVで、ヘテロ接合の価電子帯のエ
ネルギー差(ΔEv)はO,t5eV である。
Figure 2 shows an n-type Si semiconductor and a p-type single crystal S, iG.
It is a band structure diagram of a heterojunction with e. The forbidden band width of the P-type Sio, 5Geo, 2 semiconductor formed by molecular beam epitaxial method is 1. At OeV, the energy difference (ΔEv) of the valence band of the heterojunction is O,t5eV.

このため、正孔のエミツタ層への注入が阻止される。ま
た、第1図は、n形S3半導体をコレクタに、p形m結
品5iGeをベースに、n形GaAsをエミッタに用い
たヘテロ接合トランジスタのバンド構造図である。エミ
ツタ層に用いたG a A sの禁制帯幅は1.4eV
 とSiよりも大きく、ヘテロ接合の価電子帯のエネル
ギー差は0.3eV以上と非常に大きくなる。このため
、第1図の1.青酸にすると第2図の構成よりも更に電
流増幅率が向上し、高周波特性が良くなる。
This prevents holes from being injected into the emitter layer. Further, FIG. 1 is a band structure diagram of a heterojunction transistor using an n-type S3 semiconductor as a collector, a p-type m-type 5iGe as a base, and an n-type GaAs as an emitter. The forbidden band width of Ga As used for the emitter layer is 1.4 eV
is larger than that of Si, and the energy difference between the valence bands of the heterojunction is as large as 0.3 eV or more. For this reason, 1. in Figure 1. When hydrocyanic acid is used, the current amplification factor is further improved than in the configuration shown in FIG. 2, and the high frequency characteristics are improved.

エミッタ用材料としてはGa A sの他に、SiCや
微結晶Si(μC−8i)等のの材料を用いることもも
ちろん可能である。
As the material for the emitter, other than GaAs, it is of course possible to use materials such as SiC and microcrystalline Si (μC-8i).

〔実施例〕〔Example〕

以下、本発明の詳細な説明する6 まず、NPN型高周波トランジスタへの本発明の適用例
につき、第3図を用いて説明する。
The present invention will be explained in detail below.6 First, an example of application of the present invention to an NPN type high frequency transistor will be explained with reference to FIG.

1.2.3はそれぞれエミッタ電極、ベース電極、コレ
クタ電極である。P中外部ベース層およびN+コレクタ
層は公知のイオン打込み法あるいは熱拡散法で作製する
。、p形ベース層5およびN十形エミツタ層4は通常の
エピタキシャル成長法で形成されたN−層の上に、分子
線エピタキシャル成長法を用いて成長し、ヘテロ接合を
形成する。
1.2.3 are an emitter electrode, a base electrode, and a collector electrode, respectively. The P inner and outer base layers and the N+ collector layer are fabricated by a known ion implantation method or thermal diffusion method. , the p-type base layer 5 and the N-type emitter layer 4 are grown by molecular beam epitaxial growth on the N- layer formed by normal epitaxial growth to form a heterojunction.

まず、Bトープのp形Sio、aGeo、x半導体層を
形成し、その上にSiドープのN十形G a A S半
導体層を形成した。ベース電極はエミツタ層4をエツチ
ングしてから、P十形を形成し、その上に形成した。得
られたヘテロ接合トランジスタの電流増幅率は約300
と良好な値を示した。
First, B-tope p-type Sio, aGeo, x semiconductor layers were formed, and a Si-doped N0-type GaAs semiconductor layer was formed thereon. The base electrode was formed by etching the emitter layer 4, forming a P-shape, and then forming the base electrode thereon. The current amplification factor of the obtained heterojunction transistor is approximately 300
showed a good value.

第4図は、集積回路用NPN型トランジスタに本発明を
適用した実施例で、コレクタ電極をウェハ上面から取り
出している点が第3図と異なっている。
FIG. 4 shows an embodiment in which the present invention is applied to an NPN transistor for an integrated circuit, and is different from FIG. 3 in that the collector electrode is taken out from the upper surface of the wafer.

また、第5図は本発明を側壁ベース電極(SiCO8)
型高性能バイポーラトランジスタに適用した実施例であ
る。p形シリコン層板にN十形埋込層を設けに後、分子
線エピタキシャル成長法で、PをドープしたN−形シリ
コン層、BドープのP形Sio、aGeo 、 x層5
を形成した後、能動領域を残してエピタキシャル成長層
をエツチングし、5i02膜6を介して多結晶シリコン
膜7を埋込みBを高濃度にドーピングした後、表面にパ
ッシベーション用(7)SiOz膜8を形成し、さらに
5i3Na膜9 を全面に堆積した。ここで、表面に生
じた凹部を平坦化するためにPSG膜(リンガラス膜)
あるいはBPSG膜(ボロン・リンガラス膜)あるいは
ノン・ドープの5iOzlljfiloを堆積・エツチ
ングした。次に、エミッタの孔開けを行ない、再び分子
線エピタキシャル成長法で、SiをドープしたN十形G
aAs層4を選択的に形成した。そして、コンタクトの
孔開は後、エミッタ電極11ベース電極2.コレクタ電
極3を形成してトランジスタが完成した。作製した集積
回路用トランジスタの電流増幅率は約300で、その遮
断周波数は約25 G Hzと高かった。また、ベース
取出し電極による表面段差を多層膜の埋込みによって平
坦化しているので、電極および配線の形成が容易になり
、配線系の良品率が大幅に向上した。
In addition, FIG. 5 shows the present invention using a sidewall base electrode (SiCO8).
This is an example in which the present invention is applied to a type high-performance bipolar transistor. After providing an N-type buried layer in a p-type silicon layer plate, a P-doped N-type silicon layer, a B-doped P-type Sio, aGeo, and an x layer 5 are formed by molecular beam epitaxial growth.
After forming, the epitaxial growth layer is etched leaving the active region, and a polycrystalline silicon film 7 is buried through the 5i02 film 6. After doping with B at a high concentration, a SiOz film 8 for passivation (7) is formed on the surface. Then, a 5i3Na film 9 was further deposited on the entire surface. Here, a PSG film (phosphorus glass film) is used to flatten the recesses that occur on the surface.
Alternatively, a BPSG film (boron-phosphorous glass film) or non-doped 5iOzlljfilo was deposited and etched. Next, a hole for the emitter is made, and again by molecular beam epitaxial growth, Si-doped N-doped G
The aAs layer 4 was selectively formed. Then, holes for the contacts are formed after forming the emitter electrode 11, the base electrode 2. A collector electrode 3 was formed to complete the transistor. The current amplification factor of the fabricated integrated circuit transistor was about 300, and its cutoff frequency was as high as about 25 GHz. In addition, since the surface level difference caused by the base lead-out electrode is flattened by embedding the multilayer film, the formation of electrodes and wiring becomes easy, and the yield rate of the wiring system is greatly improved.

第6図は、第4図に示した集積回路用トランジスタの表
面平坦化にパッシベーション膜10の埋込みを適用した
実施例である。このように二種類以上の薄膜を用いて素
子表面の平坦化を行なうと。
FIG. 6 shows an embodiment in which embedding of the passivation film 10 is applied to planarize the surface of the integrated circuit transistor shown in FIG. In this way, two or more types of thin films are used to planarize the element surface.

表面の段差低減に加えて、厚いフィールド酸化膜を形成
する必要がなくなって基板に働く応力が小さくなり、結
晶欠陥が発生しにくくなるため、トランジスタの良品率
が大幅に向上する利点がある。
In addition to reducing the level difference on the surface, there is no need to form a thick field oxide film, which reduces the stress acting on the substrate and makes crystal defects less likely to occur, which has the advantage of significantly increasing the yield rate of transistors.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、電流増幅率が高くかつ遮断周波数が高
い集積回路用のトランジスタを製造することができるの
で、バイポーラトランジスタおよびバイポーラ集積回路
の小型化、高性能化および高集積化に効果がある。また
、素子表面の断差が1/2以下となり、結晶欠陥の発生
が減少するのでバイポーラ集積回路の良品率が約1桁向
上した。
According to the present invention, it is possible to manufacture a transistor for integrated circuits with a high current amplification factor and a high cutoff frequency, which is effective in reducing the size, performance, and integration of bipolar transistors and bipolar integrated circuits. . In addition, the deviation on the element surface is reduced to 1/2 or less, and the occurrence of crystal defects is reduced, so the yield rate of bipolar integrated circuits is improved by about one order of magnitude.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の詳細な説明するための図
、第3図乃至第6図は各々本発明の実施例を示す半導体
装置の断面図である。 1・・・エミッタ電極、2・・・ベース電極、3・・・
コレクタ電極、4・・・エミツタ層、5・・・ベース層
、6,8・・・SiO2膜、7・・・多結晶Si膜、9
・・・5iaNa膜、10−P S G膜またはBPS
G膜または5iOz膜。
FIGS. 1 and 2 are diagrams for explaining the present invention in detail, and FIGS. 3 to 6 are cross-sectional views of semiconductor devices showing embodiments of the present invention, respectively. 1... Emitter electrode, 2... Base electrode, 3...
Collector electrode, 4... Emitter layer, 5... Base layer, 6, 8... SiO2 film, 7... Polycrystalline Si film, 9
...5iaNa film, 10-PSG film or BPS
G membrane or 5iOz membrane.

Claims (1)

【特許請求の範囲】 1、ヘテロ接合を有するバイポーラ型デバイスにおいて
、基板に結晶シリコンを用い、その上にシリコンよりも
禁制帯幅の狭い第2の半導体層を有し、さらにその上に
シリコンよりも禁制帯幅の広い第3の半導体層を有する
ことを特徴とする半導体装置。 2、シリコン・ゲルマニウム合金半導体を第2の半導体
層に用い、ヒ化ガリウム(GaAs)、炭化シリコン(
SiC)、微細晶シリコン (μC−Si)のいずれかを第3の半導体層に用いるこ
とを特徴とする特許請求の範囲第1項記載の半導体装置
。 3、表面段差部を2種類以上の材質の薄膜を用いて平坦
化したことを特徴とする特許請求の範囲第1項乃至第2
項記載の半導体装置。
[Claims] 1. In a bipolar device having a heterojunction, a substrate is made of crystalline silicon, a second semiconductor layer having a bandgap narrower than that of silicon is provided on the substrate, and a second semiconductor layer having a forbidden band width narrower than that of silicon is further provided. A semiconductor device comprising a third semiconductor layer having a wide forbidden band width. 2. A silicon-germanium alloy semiconductor is used for the second semiconductor layer, and gallium arsenide (GaAs), silicon carbide (
2. The semiconductor device according to claim 1, wherein either SiC) or microcrystalline silicon (μC-Si) is used for the third semiconductor layer. 3. Claims 1 to 2, characterized in that the surface step portion is flattened using thin films made of two or more types of materials.
1. Semiconductor device described in Section 1.
JP1063888A 1988-01-22 1988-01-22 Semiconductor device Pending JPH01187863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1063888A JPH01187863A (en) 1988-01-22 1988-01-22 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1063888A JPH01187863A (en) 1988-01-22 1988-01-22 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH01187863A true JPH01187863A (en) 1989-07-27

Family

ID=11755752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1063888A Pending JPH01187863A (en) 1988-01-22 1988-01-22 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH01187863A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02283031A (en) * 1989-04-24 1990-11-20 Nec Corp Hetero structure bipolar transistor
US5389803A (en) * 1993-03-29 1995-02-14 International Business Machines Corporation High-gain Si/SiGe MIS heterojunction bipolar transistors

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02283031A (en) * 1989-04-24 1990-11-20 Nec Corp Hetero structure bipolar transistor
US5389803A (en) * 1993-03-29 1995-02-14 International Business Machines Corporation High-gain Si/SiGe MIS heterojunction bipolar transistors

Similar Documents

Publication Publication Date Title
JP3701873B2 (en) Heterojunction Bipolar Transistor Fabrication Method
JP2611640B2 (en) Heterojunction bipolar transistor
US5962879A (en) Super self-aligned bipolar transistor
JPH0353563A (en) Semiconductor device composed of heterojunction bipolar transistor and manufacturing method of the same
EP0206787B1 (en) Heterojunction bipolar transistor and method of manufacturing same
JPH04278545A (en) Semiconductor device and manufacture thereof
JPH05182980A (en) Heterojunction bipolar transistor
JPH06104273A (en) Semiconductor device
US6573539B2 (en) Heterojunction bipolar transistor with silicon-germanium base
JP2001118857A (en) Horizontal bipolar transistor and its manufacturing method
JPH01187863A (en) Semiconductor device
US7019340B2 (en) Bipolar transistor device and method for fabricating the same
JPS63200567A (en) Hetero junction bipolar transistor and manufacture thereof
US11195940B2 (en) High-voltage terahertz strained SiGe/InGaP heterojunction bipolar transistor and preparation method thereof
JPH11251328A (en) Compound semiconductor device
JP2770583B2 (en) Method of manufacturing collector-top heterojunction bipolar transistor
JP3332079B2 (en) Semiconductor device and manufacturing method thereof
JPH05129322A (en) Manufacture of semiconductor device
JPS63287058A (en) Manufacture of hetero-junction bipolar transistor
JPH0744185B2 (en) Semiconductor device and manufacturing method thereof
JPH01296664A (en) Heterojunction type device
JPS62159463A (en) Manufacture of semiconductor device
JPH04372135A (en) Manufacture of heterojunction bipolar transistor
JPH0387033A (en) Heterojunction bipolar transistor
JPH05267321A (en) Bipolar transistor and its manufacture