JPS6154584B2 - - Google Patents

Info

Publication number
JPS6154584B2
JPS6154584B2 JP58089743A JP8974383A JPS6154584B2 JP S6154584 B2 JPS6154584 B2 JP S6154584B2 JP 58089743 A JP58089743 A JP 58089743A JP 8974383 A JP8974383 A JP 8974383A JP S6154584 B2 JPS6154584 B2 JP S6154584B2
Authority
JP
Japan
Prior art keywords
coating
tube
film
copper alloy
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58089743A
Other languages
Japanese (ja)
Other versions
JPS59214640A (en
Inventor
Koji Nagata
Tetsuo Atsumi
Akio Ogiso
Minoru Mizuno
Hirotaka Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP8974383A priority Critical patent/JPS59214640A/en
Publication of JPS59214640A publication Critical patent/JPS59214640A/en
Publication of JPS6154584B2 publication Critical patent/JPS6154584B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は熱交換器用内面防食塗装皮膜付き銅合
金管に係り、特に熱交換器の管板に装着される、
内面に塗膜密着性に優れた防食塗装皮膜を設けた
銅合金管に関するものである。 従来より、火力発電所や化学工場、或いは船舶
等の復水器や、その他の各種熱交換器には、伝熱
管として、黄銅にアルミニウム、砒素、その他珪
素等を添加した、所謂特殊黄銅管や、銅、ニツケ
ル、鉄よりなる、所謂キユプロニツケル管の如き
銅合金管が、広く使用されているが、それら熱交
換器においては、冷却水として海水或いは河海水
を使用する関係上、それら伝熱管の内面には、
種々の腐食が発生する。そして、このような腐食
が生じると、伝熱管内面には腐食生成物を含む付
着物が付き、熱交換器の熱貫流率を低下させるの
である。 このため、かかる銅合金管を伝熱管として使用
するために、その内面を防食するための各種の手
法が提案されているが、その中でも本発明者らが
特公昭56−45079号公報、特開昭56−166271号公
報等に明らかにしたように、所定の防食塗膜を所
定の厚さで管内面に形成させる手法は、防食性や
作業性等の点において他の手法に比べて優れてお
り、今日、すでに実用化に至つている。 而して、このような管内面に防食塗膜を形成し
た伝熱管にあつては、かかる伝熱管内を冷却流体
が流通せしめられるところから、該伝熱管内面に
対する塗膜の密着性が問題となり、この密着性が
悪い場合には、折角有効な防食塗膜を形成せしめ
ても、その耐久性に欠ける問題を生じることは明
らかなところであり、加えてかかる伝熱管にあつ
ては、その管端部における防食の為に電気防食装
置が取り付けられることとなるが、そのような電
気防食環境下においても、塗膜が剥離しないよう
にする必要がある。 一般に、伸銅品のメツキ下地処理或いは鉄系材
料の塗装下地処理としては、化成皮膜処理或いは
類似の化学薬品処理やサンドプラスト処理等があ
り、そのような下地処理が銅合金管に対しても適
用されなくはないが、前者の化成皮膜処理或いは
類似の化学薬品処理を採用する場合にあつては、
処理液の調製、処理条件の設定等の面倒な作業を
要し、また作業管理コストもかかることに加え
て、その廃液処理のコストも高く、経済性の上に
おいても問題があつたのである。他方、後者のサ
ンドブラスト処理は、対象面が丸管内面であるた
め、極めて作業し易く、コストアツプをそれ程も
たらすものではないが、ブラスト面に残存する微
紛末除去のための洗浄が必要な上、塗装下地とし
て必ずしも満足するものを与えているとは言えな
いのである。 ここにおいて、本発明は、かかる事情を背景に
して為されたものであつて、その目的とするとこ
ろは、塗膜密着性に優れた内面防食塗装皮膜付き
銅合金管(伝熱管)を提供することにあり、また
他の目的は、電気防食下においても優れた塗膜密
着性を発揮し得る、製品の容易な且つ経済的な、
内面防食塗装皮膜付き伝熱管を提供することにあ
る。 そして、かかる目的を達成するために、本発明
にあつては、熱交換器に取り付けられ、管内に冷
却流体が流通せしめられる熱交換器としての長尺
の内面防食塗装皮膜付き銅合金管において、その
内面に、焼鈍により形成した酸化皮膜を下地とし
て、その上に所定の樹脂塗料にて防食塗装皮膜を
形成するようにしたのである。 このように、本発明に従う内面防食塗装皮膜付
き銅合金管は、焼鈍(酸化)皮膜の上に防食塗膜
が形成されて成るものであり、そしてそのような
焼鈍皮膜の存在により、塗膜の密着性が著しく向
上され得たのであつて、電気防食下においても管
表面と焼鈍皮膜との界面にガス等を発生させず、
それ故塗膜の膨れや剥離等の発生を効果的に阻止
し得たのである。また、かかる焼鈍皮膜は、塗料
とのなじみ性が良好であつて、それ故また焼鈍皮
膜と塗膜との間の密着性も優れているのである。
そして、このような焼鈍皮膜を銅合金管内面に形
成するには、通常の焼鈍操作で良いため、この塗
装下地処理は、工業的に且つ生産性良く、また面
倒な作業を要することなく、経済的に為し得るの
である。 ここにおいて、かかる本発明に用いられる銅合
金管材料としては、従来から伝熱管として用いら
れている管材料が何れも対象とされるものである
が、特に本発明にあつてはアルミニウム黄銅管、
例えばJIS−H−3300 C−6870,6871,6872等の
アルミニウム黄銅材料や、JIS−H−3300 C−
7060,7150等のキユプロニツケル材料から成る管
が好適に用いられるのである。そして、このよう
な銅合金管は、例えば内径が10〜40mm程度、特に
15〜25mm程度、長さが4〜40m、特に5〜25m程
度の長尺細管として用いられることとなるのであ
る。 そして、このような小口径、長尺の銅合金管に
は、その管内面に所定の防食塗膜が形成されるに
先立つて焼鈍処理が施され、以てかかる管内面に
所定の焼鈍皮膜が形成されるのである。この焼鈍
皮膜は、主として酸化銅から成る酸化皮膜であ
り、焼鈍条件により各種の膜厚の酸化皮膜が形成
されることとなるが、特に本発明にあつては、そ
の膜厚が6000Åを越えないようにすることが望ま
しく、なかでもその膜厚が10〜3000Å程度である
場合には、酸洗浄された表面よりも優れた性能を
有することが認められている。さらに、その膜厚
が10Åよりも小さい場合や、3000Åよりも大きい
場合でも、サンドブラスト面よりも良好であるこ
とが認められている。 また、このような焼鈍処理は、一般に銅合金材
料に対して採用されている通常の条件下において
行なわれ得るものであり、例えば焼鈍温度として
は400〜700℃程度、また焼鈍時間としては10〜60
分程度が採用されるものであり、さらに焼鈍雰囲
気としても、公知の各種の雰囲気が採用され得る
が、なかでもアルゴン、窒素等の不活性ガス雰囲
気や酸素を僅かに(ppmのオーダー)含む還元
性ガス雰囲気、例えば窒素、炭酸ガスを主成分と
して、一酸化炭素と水素を含み、且つ僅かの酸素
を含むガス、所謂DXガス等が好適に用いられ得
る。なお、この焼鈍操作に供される銅合金管は、
冷間抽伸して得られた管を単に脱脂処理したもの
の他、それをさらにサンドブラスト処理したも
の、更にはその他の処理が施されたものであつて
も何等差支えない。 そして、このように所定の銅合金管の内面に所
定厚さで形成された焼鈍酸化皮膜の上には、従来
と同様に、所定の防食塗膜を形成し得る樹脂塗料
が均一に薄く、例えば10〜30μ程度の膜厚におい
てスプレー塗装等の塗装手段によつて塗装され、
目的とする塗装皮膜が形成されることとなるので
ある。この樹脂塗料としては、一般に常乾型(常
温乾燥型)の塗料が好適に用いられ、またそのよ
うな塗料においては、皮膜形成要素としてアルキ
ツド樹脂、ビニール樹脂(塩化ビニール系、酢酸
ビニール系等)、ポリウレタン樹脂、エポキシ樹
脂及びアクリル樹脂(アクリル酸エステル系等)
から成る有機重合体樹脂(変成物をも含む)の一
種または二種以上が用いられ、かかる有機重合体
樹脂がそれに対する適当な溶剤(例えばアルコー
ル系、エステル系、エーテル系、ケトン系、脂肪
族或いは芳香族炭化水素系等)に溶解されて、常
温乾燥型の皮膜形成性の液状組成物(塗料)に調
製されるのである。なお、かかる塗料の調製に際
して、鉛丹、酸化鉄等の顔料や他の皮膜形成補助
成分も必要に応じて添加されることとなるが、特
に酸化鉄成分の配合は、更に水酸化鉄皮膜により
熱交換管内面の防食が期待され得るところから望
ましいものである。なお、かかる塗料は、一般に
当該樹脂系の合成樹脂塗料(またはワニス若しく
はプライマー)として市販されているものが好適
に利用されることとなる。 このようにして、所定の銅合金管の内面に焼鈍
酸化皮膜を形成し、さらにその上に防食塗膜を形
成せしめて成るものは、伝熱管として、従来と同
様な手法によつて熱交換器の管板に対して装着せ
しめられて用いられることとなるが、そのような
銅合金管の内面に形成された防食塗膜は、前述の
ように焼鈍酸化皮膜の存在により、管内面に対し
て極めて優れた塗膜密着性を示すのであり、特に
電気防食下においても管内面との間でガスを生じ
ることなく、従つてそのようなガスによる膨れや
剥離等の問題を惹起することがないのであり、そ
こに本発明の大きな特徴を見出すことが出来るの
である。また、このように防食塗膜の形成に際し
て、塗装下地処理として、単に通常行われる焼鈍
処理を銅合金管に対して施すだけで良いため、そ
の下地処理が極めて簡単に行ない得るのであり、
何等の面倒な処理乃至は操作も必要でなく、生産
性良く、また経済的に有利に実施され得るもので
ある。 次に、本発明のいくつかの実施例を示して、本
発明をさらに具体的に明らかにするが、本発明
が、それらの実施例の記載によつて何等の制約を
も受けるものでないことは、言うまでもないとこ
ろである。 実施例 1 アルミニウム黄銅材料(JIS−H−3300C−
6871)を用いて、常法に従つて、高周波溶解し、
次いで熱間圧延、焼鈍、酸洗浄を行ない、さらに
冷間圧延した後、アセトン脱脂処理することによ
り、板厚が1mmの銅合金試料板を得た。次いで、
この試料板を、それぞれ第1表に示す各種の焼鈍
雰囲気下において、650℃の温度で30分間の焼鈍
処理を施し、それぞれ幅10mm、長さ50mmの試片を
採取した。なお、試料No.6〜13において焼鈍雰囲
気として用いたDXガスは、12%のCO2と残部が
N2とから成る混合ガスを主体とし、これに第1
表に示される如きCO+H2の所定量及びO2の微量
を含むものである。 次いで、この得られた各種の試片に対して、第
1表に示される如き表面調整を行なつた後、或い
は表面調整を行なうことなく、常乾型の市販のア
ルキツド樹脂系錆止め塗料〔神東塗料(株)製クロム
コートR〕を、膜厚が20μとなるように、ドブ付
け手法にて塗装せしめた。なお、表面調整は、エ
メリペーパー#120研磨によるエメリペーパー仕
上げ、2%無水クロム酸及び0.1%硫酸浴による
化成皮膜処理、または3%の塩酸を含む液による
酸洗浄にて行なつた。 かくして得られた各種の塗装試片に関して、そ
の塗装直後の塗膜密着性について、また80℃の温
度の温水に72時間浸漬した後のもの、さらに常温
の人工海水を3ケ月間通水した後のものの塗膜の
密着性について、それぞれ評価した。 さらに、それぞれの試片について、電気防食
下、2m/秒で人工海水を10日間通水せしめ、そ
の防食電位を−500〜−750mV(カロメル電極基
準)と変えて通水テストを行なつたものについて
も、その塗膜密着性をそれぞれ評価した。 なお、塗膜密着性については、所謂クロスカツ
タテープテストにより評価した。なお、このクロ
スカツトテープテストとは、それぞれの試片の表
面に約10mmの長さでX字をナイフにて刻み、そし
てその上に粘着テープを張り付けた後、これを勢
いよく剥がすことにより、該粘着テープによる塗
膜の剥離の有無並びにその程度で評価する手法で
ある。 その評価結果を第2表に示す。なお、第2表に
は、それぞれの試片の塗装前の水濡れ性について
の評価結果も、水濡れ性角度として併せて示され
ている。 これら第1表及び第2表の結果から明らかなよ
うに、焼鈍皮膜の上に塗膜が形成された試片の塗
膜密着性は、何れもエメリペーパ仕上げや酸洗に
よる塗膜下地処理に比べて優れた塗膜密着性を示
しており、また焼鈍処理の条件によつては化成皮
膜処理を上回る性能を示しているのである。この
ように、焼鈍により変質した表面(酸化銅の形
成)が塗装下地として有効であり、それが化成皮
膜に変わり得ること、そして少なくともペーパ研
磨(サンドブラスト)、酸洗よりも優れたもので
あることを示しているのである。 また、焼鈍皮膜を形成せしめたものは水濡れ性
においても優れており、塗料とのなじみ性が良い
ことも明らかである。 塗膜評価記号 〇:剥離、膨れ無し △:点状剥離有り ×:面状剥離有り
The present invention relates to a copper alloy tube with an inner surface anti-corrosion coating for a heat exchanger, and in particular to a tube sheet of a heat exchanger.
This invention relates to a copper alloy tube with an anti-corrosion coating coated on the inner surface with excellent coating adhesion. Traditionally, so-called special brass tubes, which are made by adding aluminum, arsenic, silicon, etc. to brass, have been used as heat transfer tubes for condensers and other various heat exchangers in thermal power plants, chemical factories, ships, etc. Copper alloy tubes such as so-called Cypronickel tubes, which are made of copper, nickel, and iron, are widely used, but because these heat exchangers use seawater or river seawater as cooling water, the heat exchanger tubes are On the inside,
Various types of corrosion occur. When such corrosion occurs, deposits containing corrosion products adhere to the inner surfaces of the heat exchanger tubes, reducing the heat transfer coefficient of the heat exchanger. For this reason, in order to use such copper alloy tubes as heat transfer tubes, various methods have been proposed to prevent corrosion on the inner surface of the tubes. As disclosed in Publication No. 56-166271, etc., the method of forming a predetermined anti-corrosion coating film on the inner surface of a pipe with a predetermined thickness is superior to other methods in terms of corrosion resistance and workability. It has already been put into practical use today. In such a heat exchanger tube with an anticorrosive coating formed on the inner surface of the tube, the adhesion of the coating to the inner surface of the heat exchanger tube becomes a problem because a cooling fluid is allowed to flow through the tube. If this adhesion is poor, it is clear that even if an effective anticorrosive coating is formed, it will lack durability. A cathodic protection device will be installed to prevent corrosion in the parts, but it is necessary to prevent the paint film from peeling even under such a cathodic protection environment. In general, as a base treatment for plating copper products or a base treatment for painting iron-based materials, chemical conversion coating treatment, similar chemical treatment, sandplast treatment, etc. are used, and such base treatment also applies to copper alloy pipes. However, if the former chemical conversion coating treatment or similar chemical treatment is adopted,
In addition to requiring troublesome work such as preparing the treatment liquid and setting treatment conditions, and incurring work management costs, the cost of treating the waste liquid was also high, which posed a problem from an economic point of view. On the other hand, the latter sandblasting process is extremely easy to work with and does not increase costs much because the target surface is the inner surface of the round tube, but it requires cleaning to remove fine powder remaining on the blasted surface. It cannot be said that it provides a satisfactory base for painting. The present invention has been made against this background, and its purpose is to provide a copper alloy tube (heat exchanger tube) with an inner anticorrosive coating film that has excellent coating adhesion. In particular, another objective is to develop a product that is easy and economical and can exhibit excellent coating adhesion even under cathodic protection.
An object of the present invention is to provide a heat exchanger tube with an inner surface anticorrosive coating film. In order to achieve this object, the present invention provides a long copper alloy tube with an inner surface anti-corrosion coating as a heat exchanger, which is attached to a heat exchanger and allows cooling fluid to flow inside the tube. On the inner surface, an oxide film formed by annealing is used as a base, and an anticorrosion coating film is formed on the base using a predetermined resin paint. As described above, the copper alloy tube with the inner surface anti-corrosion coating according to the present invention has an anti-corrosion coating formed on the annealing (oxidation) coating, and the presence of such an annealing coating makes it possible to reduce the corrosion of the coating. The adhesion was significantly improved, and no gas was generated at the interface between the tube surface and the annealed film even under cathodic protection.
Therefore, it was possible to effectively prevent the occurrence of blistering, peeling, etc. of the coating film. Furthermore, such an annealed film has good compatibility with paint, and therefore also has excellent adhesion between the annealed film and the paint film.
In order to form such an annealed film on the inner surface of a copper alloy tube, a normal annealing operation is sufficient, so this coating surface treatment is industrially efficient, has good productivity, and does not require any troublesome work, making it economical. It can be achieved. Here, as the copper alloy tube material used in the present invention, all tube materials conventionally used as heat transfer tubes are applicable, but in particular, in the present invention, aluminum brass tubes, aluminum brass tubes,
For example, aluminum brass materials such as JIS-H-3300 C-6870, 6871, 6872, JIS-H-3300 C-
Tubes made of Cypronickel materials such as 7060 and 7150 are preferably used. And such copper alloy pipes have an inner diameter of about 10 to 40 mm, especially
It is used as a long thin tube with a length of about 15 to 25 mm and a length of 4 to 40 m, especially about 5 to 25 m. Such small-diameter, long copper alloy tubes are annealed before a predetermined anticorrosive coating is formed on the inner surface of the tube. It is formed. This annealed film is an oxide film mainly composed of copper oxide, and oxide films with various thicknesses are formed depending on the annealing conditions, but in particular in the present invention, the film thickness does not exceed 6000 Å. It is desirable that the film has a thickness of about 10 to 3000 Å, and it is recognized that it has better performance than an acid-washed surface. Furthermore, it has been found that even when the film thickness is less than 10 Å or greater than 3000 Å, it is better than a sandblasted surface. Further, such annealing treatment can be carried out under normal conditions generally adopted for copper alloy materials, for example, the annealing temperature is about 400 to 700°C, and the annealing time is about 10 to 700°C. 60
Furthermore, various known atmospheres can be used as the annealing atmosphere, including an inert gas atmosphere such as argon or nitrogen, and a reducing atmosphere containing a small amount of oxygen (on the order of ppm). A gas atmosphere such as a so-called DX gas, which is a gas containing nitrogen and carbon dioxide as main components, carbon monoxide and hydrogen, and a small amount of oxygen, can be suitably used. The copper alloy tube subjected to this annealing operation is
In addition to simply degreasing the pipe obtained by cold drawing, it may also be subjected to sandblasting or other treatments. Then, on top of the annealing oxide film formed to a predetermined thickness on the inner surface of a predetermined copper alloy tube, as in the past, a resin paint capable of forming a predetermined anticorrosive coating is applied in a uniformly thin layer, for example. It is coated with a coating method such as spray painting at a film thickness of about 10 to 30μ,
The desired coating film will be formed. As this resin paint, an air-drying type (room-temperature drying type) paint is generally suitably used, and in such a paint, an alkyd resin, a vinyl resin (vinyl chloride type, vinyl acetate type, etc.) is used as a film forming element. , polyurethane resin, epoxy resin and acrylic resin (acrylic acid ester type, etc.)
One or more organic polymer resins (including modified products) consisting of Alternatively, it is dissolved in an aromatic hydrocarbon (or aromatic hydrocarbon, etc.) to prepare a film-forming liquid composition (paint) that dries at room temperature. In addition, when preparing such paints, pigments such as red lead and iron oxide, and other film-forming auxiliary components are added as necessary, but in particular, the blending of iron oxide components is such that the iron hydroxide film This is desirable because it can be expected to prevent corrosion on the inner surface of the heat exchange tube. In addition, as such a paint, one that is generally commercially available as a synthetic resin paint (or varnish or primer) of the resin type is suitably used. In this way, a copper alloy tube with an annealing oxide film formed on its inner surface and an anticorrosive coating formed thereon can be used as a heat exchanger tube by the same method as before. The anti-corrosion coating formed on the inner surface of such copper alloy tubes has an annealing oxide film that causes damage to the inner surface of the tube. It exhibits extremely excellent coating adhesion, and does not generate gas between it and the inner surface of the pipe, even under cathodic protection, and therefore does not cause problems such as blistering or peeling due to such gas. This is where the major feature of the present invention can be found. In addition, when forming the anticorrosion coating film, it is sufficient to simply apply a commonly used annealing treatment to the copper alloy pipe as a base treatment for painting, so the base treatment can be performed extremely easily.
It does not require any troublesome processing or operations, and can be carried out with good productivity and economically. Next, some examples of the present invention will be shown to clarify the present invention more specifically, but it should be understood that the present invention is not limited in any way by the description of these examples. , it goes without saying. Example 1 Aluminum brass material (JIS-H-3300C-
6871) according to the conventional method,
Next, hot rolling, annealing, and acid cleaning were performed, and after further cold rolling, acetone degreasing treatment was performed to obtain a copper alloy sample plate having a thickness of 1 mm. Then,
These sample plates were annealed at a temperature of 650° C. for 30 minutes in various annealing atmospheres shown in Table 1, and specimens each having a width of 10 mm and a length of 50 mm were taken. Note that the DX gas used as the annealing atmosphere in samples No. 6 to 13 was 12% CO 2 and the remainder
Mainly a mixed gas consisting of N2 , and a first
It contains a predetermined amount of CO + H 2 and a trace amount of O 2 as shown in the table. Next, the various test pieces obtained were subjected to surface conditioning as shown in Table 1, or without any surface conditioning, using an air-drying commercially available alkyd resin-based rust-inhibiting paint. Chrome Coat R, manufactured by Toyo Yoyo Co., Ltd., was applied using the dob coating method to a film thickness of 20 μm. The surface was adjusted by Emery paper finishing using Emery paper #120 polishing, chemical conversion coating treatment using a 2% chromic anhydride and 0.1% sulfuric acid bath, or acid cleaning using a solution containing 3% hydrochloric acid. Regarding the various painted specimens obtained in this way, we examined the adhesion of the paint film immediately after painting, after immersing it in warm water at a temperature of 80°C for 72 hours, and after passing it through artificial seawater at room temperature for 3 months. The adhesion of each coating film was evaluated. Furthermore, each sample was subjected to a water flow test by passing artificial seawater at 2 m/sec for 10 days under cathodic protection, and changing the corrosion protection potential from -500 to -750 mV (calomel electrode standard). The coating film adhesion was also evaluated for each. The adhesion of the coating film was evaluated by the so-called cross-cut tape test. In addition, this cross-cut tape test is to cut an X shape with a length of about 10 mm on the surface of each specimen with a knife, apply adhesive tape on top of it, and then peel it off vigorously. This method evaluates the presence or absence of peeling of the coating film due to the adhesive tape and the degree of peeling. The evaluation results are shown in Table 2. Note that Table 2 also shows the evaluation results for the water wettability of each sample before painting as the water wettability angle. As is clear from the results in Tables 1 and 2, the adhesion of the paint film of the specimens with the paint film formed on the annealed film is better than that of the paint film base treatment using emery paper finishing or pickling. It shows excellent coating film adhesion, and depending on the annealing treatment conditions, it can even outperform chemical conversion coating treatment. Thus, the surface altered by annealing (formation of copper oxide) is effective as a paint base and can be transformed into a chemical coating, and is at least better than paper polishing (sandblasting) or pickling. It shows that. It is also clear that those on which an annealed film is formed have excellent water wettability and have good compatibility with paints. Paint film evaluation symbol 〇: No peeling or blistering △: Spot peeling ×: Planar peeling

【表】【table】

【表】 実施例 2 実施例1で得られたアルミニウム黄銅材料から
成る冷間圧延材をアルカリ脱脂洗浄し、さらにア
セトン脱脂して、幅30mm、長さ100mm、厚さ1mm
の試料を得た。この試料を下記第3表及び第4表
に示される焼鈍条件下に焼鈍炉にて焼鈍処理を施
し、得られた焼鈍試料について、カソード還元法
によつてそれぞれの膜厚を求めた。なお、焼鈍後
の試料は、膜厚測定及び塗装までの室温保管中の
表面酸化(所謂変色)を避けるために、低湿度の
恒温槽(26℃)に保管された。 また、これら各種の焼鈍試料に対して、実施例
1と同様にして20μの防食塗膜を形成し、それら
塗装試料について、−400〜−800mV(カロメル
電極基準)にて2m/秒で循環される海水中にて
10日間、電気防食下(50mVピツチで電位を変え
る)に晒した後、クロスカツトテープテストにて
それら塗装試料についての塗膜剥離状況を観察し
た。 それぞれの結果を、第3表及び第4表に併せて
示した。 第3表及び第4表の結果から明らかなように、
何れの焼鈍試料とも、サンドブラスト処理試料よ
り優れており、また酸洗試料に対しても、焼鈍酸
化皮膜の厚みも関係するが、その酸化皮膜の厚み
が10〜1500Åのものにあつては、酸洗試料よりも
優れた塗膜密着性を示すことが明らかとなつた。
[Table] Example 2 A cold-rolled material made of the aluminum brass material obtained in Example 1 was degreased and cleaned with alkali, and further degreased with acetone to obtain a product with a width of 30 mm, a length of 100 mm, and a thickness of 1 mm.
samples were obtained. This sample was annealed in an annealing furnace under the annealing conditions shown in Tables 3 and 4 below, and the film thickness of each of the obtained annealed samples was determined by a cathodic reduction method. The annealed samples were stored in a low-humidity thermostat (26°C) to avoid surface oxidation (so-called discoloration) during storage at room temperature until film thickness measurement and painting. In addition, a 20μ anti-corrosion coating was formed on these various annealed samples in the same manner as in Example 1, and the coated samples were circulated at -400 to -800mV (calomel electrode reference) at 2m/sec. in seawater
After being exposed to cathodic protection (potential changed in 50 mV pitch) for 10 days, the coating peeling status of the painted samples was observed using a cross-cut tape test. The respective results are also shown in Tables 3 and 4. As is clear from the results in Tables 3 and 4,
Both annealed samples are superior to sandblasted samples, and for pickled samples, the thickness of the annealed oxide film is also related, but if the oxide film has a thickness of 10 to 1500 Å, the acid It became clear that the coating film adhesion was superior to that of the washed sample.

【表】【table】

【表】【table】

【表】 実施例 3 外径25.4mm、肉厚1.25mm、長さ15000mmのアル
ミニウム黄銅材料(JIS−H−3300 C−6871)か
ら成る抽伸管(試料No.1,2,4,5)及び10%
キユプロニツケル材料(JIS−H−3300 C−
7060)から成る抽伸管(試料No.3及び6)を、そ
れぞれトリクレンにて脱脂した後、還元性ガス:
DXガス(O2;1000ppm)中において、650℃×
15分間の焼鈍処理をそれぞれ行なつた。なお、試
料No.2の抽伸管については、脱脂後、粒径200μ
のアルミナにより30秒間のブラスト処理を行な
い、そして上記条件下の焼鈍処理を施した。かく
して得られた焼鈍試料の焼鈍酸化皮膜の厚さをカ
ソード還元法で測定したところ、150Åであつ
た。また、かくして得られた試料管のうち、試料
No.4及び6のものについては、サンドブラスト処
理を施して焼鈍による酸化皮膜を除去し、さらに
試料No.5のものについては塩酸による酸洗処理を
施した。 次いで、この得られた試料No.1〜6の試料管に
ついて、常乾型の市販のアルキツド樹脂系錆止め
塗料〔中国塗料(株)製LZIプライマー〕、若しくは
エポキシ樹脂系塗料〔神東塗料(株)製ネオゴーゼ
200〕を、膜厚が20μとなるように、スプレー塗
装手法により全長塗装を行ない、内面防食塗装管
をそれぞれ得た。 かくして得られた各種の内面防食塗装管を、そ
れぞれ人工海水通水装置にセツトし、その管端部
を−700mV(カロメル電極基準)にて電気防食
しつつ、3ケ月間連続通水試験を施した後、その
試験後の塗装管について、その内面の塗膜の密着
性をクロスカツトテープテスト法により評価し、
その結果を下記第5表に示した。
[Table] Example 3 Drawing tubes (sample Nos. 1, 2, 4, 5) made of aluminum brass material (JIS-H-3300 C-6871) with an outer diameter of 25.4 mm, a wall thickness of 1.25 mm, and a length of 15000 mm. Ten%
Cypronickel material (JIS-H-3300 C-
After degreasing the drawing tubes (sample Nos. 3 and 6) consisting of 7060) with trichlene, reducing gas:
650℃× in DX gas (O 2 ; 1000ppm)
Each was annealed for 15 minutes. In addition, regarding the drawing tube of sample No. 2, after degreasing, the particle size was 200μ.
Alumina blasting treatment was performed for 30 seconds, followed by annealing treatment under the above conditions. The thickness of the annealed oxide film of the annealed sample thus obtained was measured by a cathodic reduction method and was found to be 150 Å. In addition, among the sample tubes obtained in this way,
Samples Nos. 4 and 6 were subjected to sandblasting to remove the oxide film caused by annealing, and sample No. 5 was pickled with hydrochloric acid. Next, the obtained sample tubes of Sample Nos. 1 to 6 were coated with an air-drying commercially available alkyd resin-based rust preventive paint [LZI Primer manufactured by Chugoku Toyo Co., Ltd.] or an epoxy resin-based paint [Shinto Paint Co., Ltd.]. ) neogose
200] was coated on the entire length using a spray coating method so that the film thickness was 20 μm, thereby obtaining internally anti-corrosion coated pipes. The various types of internally anti-corrosion coated tubes obtained in this way were each set in an artificial seawater flow device, and a three-month continuous water flow test was conducted while the tube ends were electrolytically protected at -700 mV (calomel electrode standard). After that, the adhesion of the paint film on the inner surface of the painted pipe after the test was evaluated using the cross-cut tape test method.
The results are shown in Table 5 below.

【表】【table】

【表】 かかる第5表の結果から明らかなように、本発
明に従う試料No.1〜3のものにあつては、管端部
の電気防食に対して何れも優れた塗膜密着性を示
すのに対して、サンドブラスト或いは酸洗処理し
た塗装下地を採用した試料No.4〜6のものにあつ
ては、電気防食により塗膜の密着性が損なわれ、
クロスカツトテープテストの結果、剥離し易くな
つていることが理解されるのである。
[Table] As is clear from the results in Table 5, Samples Nos. 1 to 3 according to the present invention all exhibit excellent coating film adhesion to the cathodic protection of the tube ends. On the other hand, for samples Nos. 4 to 6, which used sandblasted or pickled paint bases, the adhesion of the paint film was impaired due to cathodic protection.
As a result of the cross-cut tape test, it was found that it was easier to peel off.

Claims (1)

【特許請求の範囲】 1 熱交換器に取り付けられ、管内に冷却流体が
流通せしめられる、熱交換器としての長尺の内面
防食塗装皮膜付き銅合金管にして、焼鈍により形
成した酸化皮膜を下地として、その上に所定の樹
脂塗料にて形成された防食塗装皮膜を有してなる
熱交換器用内面防食塗装皮膜付き銅合金管。 2 前記酸化皮膜が、6000Åを越えない厚さで形
成されている特許請求の範囲第1項に記載の銅合
金管。 3 前記酸化皮膜が、酸素を僅かに含む還元性ガ
ス雰囲気下若しくは不活性ガス雰囲気下における
焼鈍操作によつて形成されたものである特許請求
の範囲第1項または第2項に記載の銅合金管。
[Scope of Claims] 1. A long copper alloy tube with an anti-corrosion coating on the inner surface as a heat exchanger, which is attached to a heat exchanger and allows a cooling fluid to flow inside the tube, and an oxide film formed by annealing is provided as a base layer. A copper alloy tube with an inner surface anticorrosive coating for a heat exchanger, which has an anticorrosive coating coated thereon with a predetermined resin coating. 2. The copper alloy tube according to claim 1, wherein the oxide film is formed with a thickness not exceeding 6000 Å. 3. The copper alloy according to claim 1 or 2, wherein the oxide film is formed by an annealing operation in a reducing gas atmosphere containing a slight amount of oxygen or in an inert gas atmosphere. tube.
JP8974383A 1983-05-20 1983-05-20 Copper alloy pipe with inner-surface corrosion protective coating film for heat exchanger Granted JPS59214640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8974383A JPS59214640A (en) 1983-05-20 1983-05-20 Copper alloy pipe with inner-surface corrosion protective coating film for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8974383A JPS59214640A (en) 1983-05-20 1983-05-20 Copper alloy pipe with inner-surface corrosion protective coating film for heat exchanger

Publications (2)

Publication Number Publication Date
JPS59214640A JPS59214640A (en) 1984-12-04
JPS6154584B2 true JPS6154584B2 (en) 1986-11-22

Family

ID=13979235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8974383A Granted JPS59214640A (en) 1983-05-20 1983-05-20 Copper alloy pipe with inner-surface corrosion protective coating film for heat exchanger

Country Status (1)

Country Link
JP (1) JPS59214640A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5510010A (en) * 1994-03-01 1996-04-23 Carrier Corporation Copper article with protective coating
CN102294579B (en) * 2011-08-29 2013-01-23 西部钛业有限责任公司 Method for manufacturing thin-wall and ultra-long nickel-copper alloy pipes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55107783A (en) * 1979-02-07 1980-08-19 Liege Usines Cuivre Zinc Anticorrosive copper phosphite or copper phosphite alloy pipe for sanitary work and production thereof
JPS5645079A (en) * 1979-09-10 1981-04-24 Thomson Csf High cuttoffffrequency electriccfielddeffect transistor
JPS56142856A (en) * 1980-03-29 1981-11-07 Kobe Steel Ltd Manufacture of copper or copper alloy product
JPS56166271A (en) * 1980-05-23 1981-12-21 Sumitomo Light Metal Ind Ltd Coating composition for preventing corrosion of inner surface on heat transmitting tube in heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55107783A (en) * 1979-02-07 1980-08-19 Liege Usines Cuivre Zinc Anticorrosive copper phosphite or copper phosphite alloy pipe for sanitary work and production thereof
JPS5645079A (en) * 1979-09-10 1981-04-24 Thomson Csf High cuttoffffrequency electriccfielddeffect transistor
JPS56142856A (en) * 1980-03-29 1981-11-07 Kobe Steel Ltd Manufacture of copper or copper alloy product
JPS56166271A (en) * 1980-05-23 1981-12-21 Sumitomo Light Metal Ind Ltd Coating composition for preventing corrosion of inner surface on heat transmitting tube in heat exchanger

Also Published As

Publication number Publication date
JPS59214640A (en) 1984-12-04

Similar Documents

Publication Publication Date Title
US3053691A (en) Protective coating
JPS62273272A (en) Rustproof coating composition
JP4510196B2 (en) Method for producing aqueous resin composition for anticorrosive coating agent
US3849176A (en) Surface-treated steel plates high in anticorrosiveness
US3895969A (en) Composition and process for inhibiting corrosion of non-ferrous metal surfaced articles and providing surface for synthetic resin coating compositions
GB2080340A (en) Molten zinc bath for hot dip galvanizing steel sheet
JPS6154584B2 (en)
US4057424A (en) Zinc-based alloy for coating steel
JPH1060233A (en) Water-based rustproofing agent, rustproofing method and rustproofed metallic material
JPH01234475A (en) Copper alloy tube having corrosionproof and inside surface-coated coating film for heat exchanger
US3677797A (en) Method of forming corrosion resistant films on steel plates
US4681814A (en) Corrosion inhibited metal
US3703418A (en) Method of preventing rust on steel surface
EP4225971A1 (en) A process for coating onto galvanized surfaces
CN113699475A (en) Hot-dip galvanizing method for steel
WO2005056883A1 (en) Electroplated coating of zinc alloy with excellent corrosion resistance and plated metal material having same
JP2001131443A (en) Rust-preventive coating material, rust-preventive coating method and steel stock provided with rust- preventive treatment
JPH0438958B2 (en)
JPH0938569A (en) Zinc-resin type surface treated steel sheet with excellent scratch resistance and corrosion resistance
JPS5817833B2 (en) Surface treatment method for weathering steel
JPS59228979A (en) Production of heat exchanging tube provided internally with corrosion-preventive painting
JPS607706B2 (en) Manufacturing method of satin-textured austenitic stainless steel material
US3998670A (en) Process for producing steel plate substrates for lacquering
US2478692A (en) Corrosion resistant coating for ferrous products
CA1062098A (en) Melamine-formaldehyde and tannin treatment of metal surfaces