JPS6154512A - Temperature controller - Google Patents

Temperature controller

Info

Publication number
JPS6154512A
JPS6154512A JP59175218A JP17521884A JPS6154512A JP S6154512 A JPS6154512 A JP S6154512A JP 59175218 A JP59175218 A JP 59175218A JP 17521884 A JP17521884 A JP 17521884A JP S6154512 A JPS6154512 A JP S6154512A
Authority
JP
Japan
Prior art keywords
temperature
heater
supplied
heaters
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59175218A
Other languages
Japanese (ja)
Inventor
Yuji Adegawa
阿出川 勇治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Copal Corp
Original Assignee
Nidec Copal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Copal Corp filed Critical Nidec Copal Corp
Priority to JP59175218A priority Critical patent/JPS6154512A/en
Publication of JPS6154512A publication Critical patent/JPS6154512A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1906Control of temperature characterised by the use of electric means using an analogue comparing device
    • G05D23/1912Control of temperature characterised by the use of electric means using an analogue comparing device whose output amplitude can take more than two discrete values

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)
  • Control Of Temperature (AREA)

Abstract

PURPOSE:To attain the control of temperatures with high accuracy by providing plural heaters and controlling indepenently the electric power which is supplied to each heater in response to the difference between the temperature of a body to be controlled and the set temperature to be maintained. CONSTITUTION:A set temperature input device 13 and a memory 14 are connected to a central controller 12. The memory 14 stores previously the difference between a set temperature T0 and the set temperature T0 which should be maintained for developing solution and the temperature T detected by a temperature detector 2 respectively together with the relation of electric power among heaters H1-Hn. The temperature of the developing solution, i.e., a body to be controlled is detected and supplied to the controller 12. The controller 12 calculates the difference between temperatues T and T0. Then the electric power value to be supplied to each heater is obtained according to the relation between the difference of temperatures stored in the memory 14 and the electric power to be supplied to the ach heater. Then the prescribed electric power is supplied to heaters H1-Hn respectively via a drive circuit 15.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、温度制御装置、特に、被制御物体の温度を高
精度で制御できる温度制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a temperature control device, and particularly to a temperature control device that can control the temperature of a controlled object with high precision.

(従来の技術) 恒温槽や写真現像タンクのように常時−1定の温度に維
持すべき装置においては、厳格な温度制御が要求される
。温度制御を行なうには、被制御物体の温度を検出しな
がら、ヒータから熱エネルギーを供給して常時一定の温
度範囲に維持するように制御するが、加熱源であるヒー
タは所定の熱容量を有しているため、周囲に所定の熱量
を供給する応答時間に遅れが生じ、被制御物体の温度を
狭い温度範囲に維持しにくい問題点がある。
(Prior Art) Strict temperature control is required in devices such as constant temperature baths and photographic developing tanks that must maintain a constant temperature of -1 at all times. To perform temperature control, the temperature of the controlled object is detected and thermal energy is supplied from the heater to maintain the temperature within a constant range.The heater, which is the heating source, has a predetermined heat capacity. As a result, there is a delay in the response time for supplying a predetermined amount of heat to the surrounding area, and there is a problem in that it is difficult to maintain the temperature of the controlled object within a narrow temperature range.

従来から広く実用化されている温度制御装置としてオン
オフ型温度制御装置がある。このオンオフ型温度制御装
置は、維持すべき設定温度を中心として上限温度T、と
下限温度T2とを設定し、被制御物体が上限温度T、に
達したときヒータをオフし、下限温度T2に達したとき
ヒータをオンして100χの電力をヒータに供給して被
制御物体を所定の温度範囲に維持するように構成する。
There is an on-off type temperature control device as a temperature control device that has been widely put into practical use. This on-off type temperature control device sets an upper limit temperature T and a lower limit temperature T2 around the set temperature to be maintained, turns off the heater when the controlled object reaches the upper limit temperature T, and returns the temperature to the lower limit temperature T2. When the temperature is reached, the heater is turned on and a power of 100x is supplied to the heater to maintain the controlled object within a predetermined temperature range.

このオンオフ型温度制御装置は、制御回路を比較的簡単
な構成とすることができる利点があるが、ヒータの立上
がり及び立下がりの時間的な遅れによりオーバーシュー
ト量が太き(、被制御物体の実際の温度変動範囲が設定
温度範囲より広くなる欠点がある。
This on-off type temperature control device has the advantage of having a relatively simple control circuit configuration, but the amount of overshoot is large due to the time delay in the rise and fall of the heater. There is a drawback that the actual temperature fluctuation range is wider than the set temperature range.

(発明が解決しようとする問題点) 第1図Aは従来のオンオフ型温度制御装置を用いて制御
したときの被制御物体の実際の温度を示し、第1図Bは
このときにヒータに供給した電力を表わしている。第1
図から理解できるように、上限温度T、に達したときヒ
ータをオフしたのでは、ヒータをオフした後にもヒータ
がらの余熱が周囲に伝達し実際の温度が上限温度T、を
越えてしまい、下限温度T2に達してがらヒータをオン
したのではヒータの立ち上がりレスポンスに遅れが生じ
、実際の温度が下限温度T2より低くなってしまう。こ
のため、高精度の温度検出器を用い、て上限温度T、と
下限温度T2との温度差をできるだけ小さく設定しても
立ち上がり時及び立ち下がり時のオーバーシュートによ
り被制御物体を狭い温度範囲に維持し得ない欠点がある
。特に大容量のヒータを用いる場合ではオーバーシュー
ト量が大きく狭い温度範囲に維持しにくい欠点がある。
(Problems to be Solved by the Invention) Figure 1A shows the actual temperature of the controlled object when controlled using a conventional on-off type temperature control device, and Figure 1B shows the temperature supplied to the heater at this time. represents the electric power generated. 1st
As can be understood from the figure, if the heater is turned off when the upper limit temperature T is reached, residual heat from the heater will be transferred to the surroundings even after the heater is turned off, causing the actual temperature to exceed the upper limit temperature T. If the heater is turned on while the lower limit temperature T2 is reached, there will be a delay in the startup response of the heater, and the actual temperature will become lower than the lower limit temperature T2. For this reason, even if a high-precision temperature detector is used and the temperature difference between the upper limit temperature T and lower limit temperature T2 is set as small as possible, overshoot at rise and fall causes the controlled object to be kept within a narrow temperature range. There are drawbacks that cannot be maintained. Particularly when using a large-capacity heater, there is a drawback that the amount of overshoot is large and it is difficult to maintain the temperature within a narrow temperature range.

従って、写真現像タンクのように高精度の温度制御が要
求される装置においてはオンオフ型温度制御装置では精
度の点において限界があり、より高精度に制御できる温
度制御装置の開発が強く要請されている。
Therefore, in equipment that requires highly accurate temperature control, such as photographic developing tanks, on-off type temperature control devices have limits in terms of accuracy, and there is a strong demand for the development of temperature control devices that can control with even higher precision. There is.

(問題点を解決するための手段) 本発明は高精度に温度制御できる温度制御装置を提供す
るものであり、被制御物体の温度を検出する温度検出器
と、維持すべき温度を入力する設定温度入力手段と、複
数個のヒータとを具え、前記温度検出器で検出した検出
温度と設定温度との温度差に応じて前記複数のヒータに
供給する電ツノを各別に制御することを特徴とするもの
である。
(Means for Solving the Problems) The present invention provides a temperature control device that can control temperature with high precision, and includes a temperature detector that detects the temperature of a controlled object and a setting that inputs the temperature to be maintained. It is characterized by comprising a temperature input means and a plurality of heaters, and controlling the electric horns supplied to the plurality of heaters individually according to the temperature difference between the detected temperature detected by the temperature detector and a set temperature. It is something to do.

(作 用) 本発明は、複数個のヒータを用いて、被制御物体の温度
と維持すべき設定温度との温度差に応じて各ヒータに供
給する電力を各別に制御し、被制御物体の温度変動の巾
をできるだけ小さく争て高精度の温度制御を行なうもの
である。すなわち、複数のヒータの各々をオンオフ制御
したり、各々のヒータに供給する電力を制御したり、こ
れらの制御を併合して行なうことにより設定温度近傍に
おける温度勾配を暖やかにすることができ、したがって
オーバーシュートやアンダーシュートを極力抑えること
ができる。
(Function) The present invention uses a plurality of heaters to individually control the power supplied to each heater according to the temperature difference between the temperature of the controlled object and the set temperature to be maintained. Highly accurate temperature control is performed by minimizing the range of temperature fluctuations. In other words, it is possible to warm up the temperature gradient near the set temperature by controlling each of multiple heaters on and off, controlling the power supplied to each heater, or combining these controls. , Therefore, overshoot and undershoot can be suppressed as much as possible.

(実施例) 第2図は本発明による温度制御装置を用いた写真現像タ
ンクの一例の構成を示す線図的断面図である。タンク1
の内部にはn個のヒータH+、Hz・・・Hlと温度検
出器2を設けると共に、タンク1の外部には現像液3を
循環させるための循環路4及びポンプ5と、現像液3を
強制的に冷却するための冷却水用の給入口6及び排出ロ
アとを設ける。
(Example) FIG. 2 is a diagrammatic sectional view showing the structure of an example of a photographic developing tank using the temperature control device according to the present invention. tank 1
n heaters H+, Hz...Hl and a temperature detector 2 are provided inside the tank 1, and a circulation path 4 and a pump 5 for circulating the developer 3 are provided outside the tank 1, and a pump 5 for circulating the developer 3. A cooling water inlet 6 and a discharge lower are provided for forced cooling.

冷却水の給排は現像液3が異常に高温になった場合にの
み行なうものとする。現像液3はポンプ5によりタンク
1内を循環し、温度検出器2によりその温度が検出され
なからヒータI(+、Hz・・・H,%により均一に加
熱され常時一定の温度に維持される。
The cooling water is supplied and discharged only when the developer 3 becomes abnormally high in temperature. The developer 3 is circulated in the tank 1 by the pump 5, and when its temperature is not detected by the temperature detector 2, it is uniformly heated by the heater I (+, Hz...H, % and kept at a constant temperature at all times. Ru.

第3図は本発明による温度制御装置の一例の構成を示す
ブロック図である。タンク1内に配設した温度検出器2
をセンサ増巾器10に接続し、検出した現像液3の温度
信号を増巾し、A/Dコンバータ11を経て中央制御装
置(C,P、υ、)12に人力する。
FIG. 3 is a block diagram showing the configuration of an example of a temperature control device according to the present invention. Temperature detector 2 installed inside tank 1
is connected to a sensor amplification device 10 to amplify the detected temperature signal of the developer 3 and manually input it to the central control device (C, P, υ,) 12 via the A/D converter 11.

この中央制御装置12には設定温度入力装置13及びメ
モリ14を接続し、現像液3の維持すべき設定温度T(
1及び温度検出器2で検出した温度Tと設定温度T0と
の温度差と各ヒータH+、Hz・・・Hlに供給すべき
電力との関係をメモリ14に予め入力してお(。また、
中央制御装置12には各ヒータH1゜H2・・・H7に
所定の電力を供給するための駆動回路15を接続し、こ
の駆動回路15には電力供給用電源(図示せず)及び各
ヒータHr、Hz・・・H7を接続する。この駆動回路
15は中央制御装置12からの指令に暴き各ヒータにそ
れぞれ独立して所定の電力を供給するように各ヒータを
駆動する。被制御物体である現像液3の温度が検出され
中央制御装置12に入力すると、中央制御装置12では
検出温度Tキ設定温度T0との温度差を算出し、メモリ
14に記憶した温度差と各ヒータに供給すべき電力との
関係に基いて各ヒータH1,H2・・・H,、に供給す
べき電力の値を求め駆動回路15に出ツノする。
A set temperature input device 13 and a memory 14 are connected to this central control device 12, and a set temperature T(
The relationship between the temperature difference between the temperature T detected by the temperature detector 1 and the temperature detector 2 and the set temperature T0 and the power to be supplied to each heater H+, Hz...Hl is input in advance into the memory 14 (.
A drive circuit 15 for supplying predetermined power to each of the heaters H1, H2, . , Hz...Connect H7. This drive circuit 15 drives each heater in response to a command from the central controller 12 so as to supply a predetermined power to each heater independently. When the temperature of the developer 3, which is the object to be controlled, is detected and input to the central controller 12, the central controller 12 calculates the temperature difference between the detected temperature T and the set temperature T0, and calculates the temperature difference stored in the memory 14 and each temperature difference. Based on the relationship with the power to be supplied to the heaters, the value of the power to be supplied to each heater H1, H2, .

駆動回路15では中央制御装置12からの指令に基き各
ヒータH,,H,・・・H,、にそれぞれ独立して所定
の電力を供給する。駆動回路15におけるヒータ駆動方
法としては、次の方法が考えられる(1)  1Mt度
差(’r−To)に応じて各ヒータH1゜H2・・・H
アを個別にオンオフして総供給電力を制御する。このヒ
ータ駆動方法を表1に例示する。
The drive circuit 15 independently supplies predetermined power to each heater H, , H, . . . , based on a command from the central controller 12 . As a heater driving method in the drive circuit 15, the following method can be considered (1) Each heater H1°H2...H according to the 1Mt degree difference ('r-To)
control the total power supply by turning the power on and off individually. This heater driving method is illustrated in Table 1.

間を変えてデユーティtl制御を行ない、各ヒータに供
給する電力を個別に変化させて総供給電力を制御する。
The duty tl control is performed by changing the interval, and the power supplied to each heater is individually changed to control the total power supply.

(3)上記(1)と(2)を併用する。すなわち、一部
のヒータをオンオフ制御し、残りのヒータに供給する電
力を自在に変えて総供給電力を制御する。
(3) Use (1) and (2) above together. That is, some of the heaters are controlled on and off, and the power supplied to the remaining heaters is freely changed to control the total power supply.

次に本発明による温度制御装置を用いて温度制御した場
合の温度変化量ついて説明する。
Next, the amount of temperature change when temperature is controlled using the temperature control device according to the present invention will be explained.

第4図Aは時間に対する温度変化を模式的に示し、同図
8は総電力供給量の変化を模式的に示す。
FIG. 4A schematically shows the temperature change with respect to time, and FIG. 8 schematically shows the change in the total power supply amount.

本例では設定温度T0の高温側及び低温側にそれぞれ2
段階の温度差−”rr   ”2r  ”2+  tl
を設定するものとし、表2に示すようにしてヒータドラ
イブを行なうものとする。
In this example, there are two on the high temperature side and low temperature side of the set temperature T0.
Temperature difference between stages - ”rr ”2r ”2+ tl
It is assumed that the heater drive is performed as shown in Table 2.

表2 第4図から理解で尭るように、定格に対して100χの
電力を供給しているときは被制御物体の温度が急激に高
(なり、4.<t<t、の制御温度範囲内に達すると供
給電力が徐々に減少するため徐々にゆるやかな温度上昇
に移行する。そして、制御温度の高温側の限界温度To
+t2に達したときはヒータが有する熱エネルギーが小
さくなっているからオーバーシュート量が極めて小さく
なる。温度が70+t、を越えて全てのヒータがオフし
た瞬時は急激な温度降下を呈するが、その直後から電力
が供給されるため、温度が降下するにつれてゆるやかな
降下に移行する。そして、制御温度範囲の最下限値To
 −tIに達したときには大きな熱エネルギーが供給さ
れている状態にあるため短時間に下降から上昇に移行し
、オーバーシュート量が極めて小さくなる。また、温度
変化もゆるやかに変化し、変動範囲もオンオフ型制御に
比べ極めて小さくなる。
Table 2 As can be seen from Figure 4, when a power of 100χ is supplied to the rated value, the temperature of the controlled object suddenly increases (4.<t<t, control temperature range When the temperature reaches the limit temperature To of the high temperature side of the control temperature, the supply power gradually decreases and the temperature gradually increases.
When +t2 is reached, the amount of overshoot becomes extremely small because the thermal energy possessed by the heater is small. At the moment when the temperature exceeds 70+t and all the heaters are turned off, there is a sudden temperature drop, but since power is supplied immediately after that, the temperature drops gradually as the temperature drops. Then, the lowest limit value To of the control temperature range
When -tI is reached, a large amount of thermal energy is being supplied, so the transition from falling to rising occurs in a short time, and the amount of overshoot becomes extremely small. Furthermore, the temperature changes slowly, and the range of variation is extremely small compared to on-off type control.

従って、制御範囲を細く区分し、それぞれの温度区分内
において各ヒータに適切な電力を供給するように構成す
れば、制御温度範囲内において被制御物体の温度変化量
を極めて低減することができ、高精度の温度制御を行な
うことができる。
Therefore, by dividing the control range into narrow sections and configuring to supply appropriate power to each heater within each temperature category, it is possible to extremely reduce the amount of temperature change of the controlled object within the control temperature range. Highly accurate temperature control can be performed.

次に、特に高精度の温度制御が要求される写真現像用タ
ンクの温調装置として具体的に用いる場合の設定条件に
ついて説明する。
Next, the setting conditions when specifically used as a temperature control device for a photographic developing tank, which particularly requires highly accurate temperature control, will be explained.

第5図はヒータの配置位置を示す斜視図である。FIG. 5 is a perspective view showing the arrangement position of the heater.

本例では、定格750−の3個のヒータH+、Hz及び
H3を〒真現像タンク内に図示の如くそれぞれ均等の位
置に取り付は循環する現像液を均一に加熱する。
In this example, three heaters H+, Hz, and H3 with a rating of 750- are installed at equal positions in the developing tank as shown in the figure to uniformly heat the circulating developer.

第6図は制御回路の構成を示すブロフク図である。中央
制御装置20には現像タンク内に設けた温度検出器(図
示せず)を接vtすると共に、設定温度入力装置21及
びメモリ22を接続し表3に示す温度差と供給電力との
関係を入力しておく。また、中央制御装置20にはデー
タバスラインを介してI10ボート23を接続し、I1
0ボート23には3個のバッファ24.25及び26を
介して3個ソリソドステニトリレー27.28及び29
を接続する。各ソリフドステ−トリレー27〜29の各
入力側の■端子を5■の駆動用電源にそれぞれ接続し、
各e端子を各バッファ24〜26の出力端子に接続する
。また、各ソリッドステートリレー27〜29の出力側
の一方の各端子をヒータ用電源である交流100v電源
の一方の端子にそれぞれ接続し、他方の各端子をヒータ
H,,H。
FIG. 6 is a block diagram showing the configuration of the control circuit. A temperature detector (not shown) provided in the developing tank is connected to the central control device 20, and a set temperature input device 21 and a memory 22 are also connected to the central control device 20 to calculate the relationship between the temperature difference and the supplied power shown in Table 3. Enter it. Further, an I10 port 23 is connected to the central control unit 20 via a data bus line,
0 boat 23 has three buffers 24, 25 and 26 connected to three solitary relays 27, 28 and 29.
Connect. Connect the ■terminals on the input side of each solid state relay 27 to 29 to the driving power supply of 5■, respectively.
Each e terminal is connected to the output terminal of each buffer 24-26. Further, one terminal on the output side of each of the solid state relays 27 to 29 is connected to one terminal of a 100 V AC power source, which is a power source for the heater, and the other terminals are connected to the heaters H, , H.

及びH3にそれぞれ接続し、各ヒータH3〜H3の他端
をそれぞれ交流100v電源の他方の端子に接続する。
and H3, and the other ends of the heaters H3 to H3 are respectively connected to the other terminal of the AC 100V power supply.

各ヒータH1〜H3への電力供給制御は、各ソリッドリ
レー27〜29の単位時間当りの開閉時間を制御して行
なう。
The power supply to each heater H1 to H3 is controlled by controlling the opening/closing time of each solid relay 27 to 29 per unit time.

表   3 表3に温度検出器で検出した現像タンク内の現像液温度
とヒータへの供給電力との関係を示す。
Table 3 Table 3 shows the relationship between the developer temperature in the developer tank detected by the temperature detector and the power supplied to the heater.

本例では、現像液の維持すべき温度を32.80’Cに
定め、高温側及び低温側にそれぞれ0.02℃の間隔で
6段階の温度範囲を設定して表3に示すように各ヒータ
II、H及び11に電力を供給する。
In this example, the temperature to be maintained for the developer is set at 32.80'C, and six temperature ranges are set at intervals of 0.02°C on the high and low temperatures, respectively, as shown in Table 3. Power is supplied to heaters II, H and 11.

このように条件設定を行ない温度制御した結果、32.
80 ±0.03の範囲で制御することができる。
As a result of setting the conditions and controlling the temperature in this way, 32.
80 Can be controlled within a range of ±0.03.

一方、同一条件でオンオフ型温度制御した場合32.8
0±0.30の温度範囲で制御された。
On the other hand, when on-off type temperature control is performed under the same conditions, 32.8
The temperature was controlled within a temperature range of 0±0.30.

従って、本発明による温度制御装置を用いれば、従来の
オンオフ型温度制御装置に比べ、1 /10の温度範囲
で温度制御することができる。
Therefore, if the temperature control device according to the present invention is used, it is possible to control the temperature in a temperature range that is 1/10 that of the conventional on-off type temperature control device.

このように、複数個のヒータを設は各別に適切な電力を
供給するように構成すれば、ヒータからの伝達効率が高
まり、高精度に温度制御することができる。
In this way, by configuring a plurality of heaters to supply appropriate power to each individual heater, the transmission efficiency from the heaters increases and temperature control can be performed with high precision.

(発明の効果) 以上説明したように本発明によれば、ヒータの立ち上が
り及び立ち下がり時のオーバーシュート量を極めて低減
できると共に、被制御物体の温度が極めてゆるやかに変
化するから、微小な温度範囲に亘り高精度に温度制御す
ることができる。
(Effects of the Invention) As explained above, according to the present invention, it is possible to extremely reduce the amount of overshoot at the rise and fall of the heater, and since the temperature of the controlled object changes extremely gradually, the temperature range is small. The temperature can be controlled with high precision over the entire range.

また、温度変化の時間的変化に基き設定温度を維持する
ように必要な適切な熱エネルギー量を求め、この熱エネ
ルギー量と匹敵する電力を中心にして温度差と供給電力
の関係を定めれば、より精度の高い温度制御を行なうこ
とができる。
In addition, if the appropriate amount of thermal energy necessary to maintain the set temperature is determined based on the temporal change in temperature, and the relationship between the temperature difference and the supplied power is determined based on the electric power comparable to this amount of thermal energy, , more accurate temperature control can be performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図Aはオンオフ型温度制御装置を用いて温度制御を
行なったときの被制御物体の温度変化を示すグラフ、 第1図Bは同じくヒータ供給電力の変化を示すグラフ、 第2図は本発明による温度制御装置を用いた写真現像用
タンクの一例の構成を示す線図的断面図、第3図は本発
明による温度制御装置の一例の構成を示すブロック図、 第4図Aは本発明による温度制御装置を用いて温度制御
したときの温度変化を模式的に表わすグラフ、 同図Bは供給電力の変化を示すグラフ、第5図は本発明
による温度制御装置を写真現像用タンクの温調器として
具体的に用いたときのヒータの配置を示す斜視図、 第6図は制御回路の具体例を示すブロック図である。 1・・・現像タンク   2・・・温度検出器3・・・
現像液     4・・・循環路5・・・ポンプ   
  6・・・冷却水給入ロア・・・排出口     H
r、Hz・・・lHI’l・・・ヒータ10・・・セン
サ増巾器  11・・・A/D変換器12.20・・・
中央制御装置 13.21・・・設定温度人力装置 14.22・・・メモリ   23・・・I10ボート
24 、25 、26・・・バッファ 27.28.29・・・ソリッドステートリレー第2図 L(硯像オ乏タンク) 第1図 時間− 第3図
Figure 1A is a graph showing the temperature change of the controlled object when temperature control is performed using an on-off type temperature control device, Figure 1B is a graph showing the change in heater power supply, and Figure 2 is a graph showing the temperature control of the controlled object using an on-off type temperature control device. A diagrammatic sectional view showing the configuration of an example of a photographic developing tank using the temperature control device according to the invention, FIG. 3 is a block diagram showing the configuration of an example of the temperature control device according to the invention, and FIG. 4A is the invention Figure 5 is a graph schematically showing temperature changes when temperature is controlled using a temperature control device according to the present invention. Figure B is a graph showing changes in supplied power. FIG. 6 is a perspective view showing the arrangement of the heater when specifically used as a regulator; FIG. 6 is a block diagram showing a specific example of the control circuit. 1...Developing tank 2...Temperature detector 3...
Developer 4...Circulation path 5...Pump
6... Cooling water supply lower... Outlet H
r, Hz...lHI'l...Heater 10...Sensor amplifier 11...A/D converter 12.20...
Central controller 13.21...Set temperature manual device 14.22...Memory 23...I10 boats 24, 25, 26...Buffer 27.28.29...Solid state relay Fig. 2L (Inkstone image omitted tank) Figure 1 Time - Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1、被制御物体の温度を検出する温度検出器と、維持す
べき温度を入力する設定温度入力手段と、複数個のヒー
タとを具え、前記温度検出器で検出した検出温度と設定
温度との温度差に応じて前記複数のヒータに供給する電
力を各別に制御することを特徴とする温度制御装置。
1. A temperature detector that detects the temperature of a controlled object, a set temperature input means that inputs the temperature to be maintained, and a plurality of heaters, and a temperature detector that detects the temperature detected by the temperature detector and a set temperature. A temperature control device that controls power supplied to each of the plurality of heaters according to a temperature difference.
JP59175218A 1984-08-24 1984-08-24 Temperature controller Pending JPS6154512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59175218A JPS6154512A (en) 1984-08-24 1984-08-24 Temperature controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59175218A JPS6154512A (en) 1984-08-24 1984-08-24 Temperature controller

Publications (1)

Publication Number Publication Date
JPS6154512A true JPS6154512A (en) 1986-03-18

Family

ID=15992351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59175218A Pending JPS6154512A (en) 1984-08-24 1984-08-24 Temperature controller

Country Status (1)

Country Link
JP (1) JPS6154512A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05173652A (en) * 1991-12-26 1993-07-13 Canon Inc Heater device for fixing unit and its temperature controller
US5406052A (en) * 1989-02-28 1995-04-11 Mitsubishi Denki Kabushiki Kaisha Pulsed arc welding equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5406052A (en) * 1989-02-28 1995-04-11 Mitsubishi Denki Kabushiki Kaisha Pulsed arc welding equipment
JPH05173652A (en) * 1991-12-26 1993-07-13 Canon Inc Heater device for fixing unit and its temperature controller

Similar Documents

Publication Publication Date Title
US3360032A (en) Temperature controlling system
US5332884A (en) Dynamic temperature control for use with a heating and/or cooling system including at least one temperature sensor
EP1006601B1 (en) Fuel cell system with improved startability
RU2678888C2 (en) Control method for heating and/or cooling system with at least one loading circuit, as well as distribution device for heating and/or cooling system
SE442907B (en) HEATING SYSTEM THAT CONTROLS TEMPERATURE WITH SHUNT VALVE AND CIRCULATORY PUMP
US5349167A (en) Induction heating apparatus with PWM multiple zone heating control
US4817706A (en) Liquid cooling type uniform magnetic field coil
KR20220012301A (en) Temperature control system and temperature control method
CN114023993A (en) Fuel cell thermal management system
JPS6154512A (en) Temperature controller
JP7339135B2 (en) temperature control system
JP2000353830A (en) Method and device for driving peltier element
JPS61213437A (en) Control method for water heater
KR102592393B1 (en) Method for controlling the network of an underwater vehicle and an underwater vehicle designed for such control
JP4527647B2 (en) Hot water storage water heater
JPH06323557A (en) Hot-water heating apparatus
CN215496016U (en) Device based on PCB wire winding heating hard disk
JPS5914019A (en) Controller of heater
SU1119724A1 (en) Arrangement for regulating temperature in reactor
RU2656751C1 (en) Device for temperature control of the temperature controlling air of the ascent unit
JPS59191622A (en) Temperature controller
KR970062540A (en) Heating water automatic distributor of boiler
JP2007027391A (en) Semiconductor processor
JPS63190652A (en) Thermostatic apparatus
JPS63277773A (en) Method for regulating temperature of gold plating solution