JPS59191622A - Temperature controller - Google Patents

Temperature controller

Info

Publication number
JPS59191622A
JPS59191622A JP6535383A JP6535383A JPS59191622A JP S59191622 A JPS59191622 A JP S59191622A JP 6535383 A JP6535383 A JP 6535383A JP 6535383 A JP6535383 A JP 6535383A JP S59191622 A JPS59191622 A JP S59191622A
Authority
JP
Japan
Prior art keywords
refrigerator
temperature
heater
room
overshoot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6535383A
Other languages
Japanese (ja)
Inventor
Tadashi Mizushima
水嶋 正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6535383A priority Critical patent/JPS59191622A/en
Publication of JPS59191622A publication Critical patent/JPS59191622A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1906Control of temperature characterised by the use of electric means using an analogue comparing device
    • G05D23/1912Control of temperature characterised by the use of electric means using an analogue comparing device whose output amplitude can take more than two discrete values

Abstract

PURPOSE:To eliminate both overshoot and undershoot which are generated by the intermittent operation of a refrigerator and to attain the smooth temperature control, by applying different levels of electric power to be applied to a heater between the start and stop modes of a refrigerator. CONSTITUTION:A thermostatic chamber consists of a prefabricated chamber 1, heaters 3-1-3-3 set in the chamber 1, refrigerators 4 and 5, etc. When the refrigerators 4 and 5 are actuated, the heaters 3-1-3-3 are energized. While the heater 3-2 or 3-3 is energized when the refrigerator 4 or 5 is stopped. As a result, a sudden reverse temperature change is produced to eliminate both overshoot and undershoot which are produced by the intermittent operation of the refrigerator. Thus the smooth temperature control is made possible.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は恒温室もしくは恒温槽の温度制御方式に係シ、
特に温度の上昇及び下降等の開側1方式に関するもので
ある。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a temperature control system for a thermostatic chamber or thermostatic chamber;
In particular, it relates to the open side 1 method such as temperature rise and fall.

〔従来技術〕[Prior art]

恒温室又は恒温槽に於てけ温度一定の状態、即ち、恒温
状態だけでなく、ある温度から別のある温度まで一定の
速度で変化させる機能も要求されることかある。通常の
恒温室又は恒温槽は低熱源、例えば冷凍機と高熱源例え
ば電気加熱器とを備えている。冷凍機はその本質的特性
から二値制御(ON10FF制御)で使用される一方、
電気加熱器は連続制御で使用されるのが一般的である。
In addition to keeping the temperature constant in a thermostatic chamber or thermostatic bath, ie, a constant temperature state, there may also be a need for the ability to change the temperature from one temperature to another at a constant rate. A typical thermostatic chamber or bath is equipped with a low heat source, such as a refrigerator, and a high heat source, such as an electric heater. Refrigerators are used with binary control (ON10FF control) due to their essential characteristics,
Electric heaters are commonly used with continuous control.

ある時点で室(又は槽)に要求される熱量は冷凍機が吸
収する熱量を電気加熱器で必要量埋め合せることによっ
て得られる。電気加熱器の熱量が不足する状態では、冷
凍機の運転を停止させ電気加熱器のみで必要熱量を賄う
The amount of heat required in the chamber (or tank) at a given time is obtained by compensating the amount of heat absorbed by the refrigerator with an electric heater. When the amount of heat from the electric heater is insufficient, the operation of the refrigerator is stopped and the required amount of heat is provided only by the electric heater.

乙 即ち、恒温条件では冷凍機会電気加熱器とを作動させ、
電気加熱器を連続制御することによって一定温度を維持
するが、温度上昇条件ではよシ多量の熱量を必要とする
ので冷凍機を停止し、電気加熱器のみで制御する。
In other words, under constant temperature conditions, the refrigeration machine and electric heater are operated,
A constant temperature is maintained by continuously controlling the electric heater, but as the temperature rises, a much larger amount of heat is required, so the refrigerator is stopped and controlled only by the electric heater.

ところで、恒温条件から温度上昇条件に切り替るとき、
室(楢)のもつ熱的時定数と制御系の時定数とが完全に
は一致し得ないために、室(槽)の実際の温度(実測値
)が設定値より高くなり過ぎる、いわゆるオーバーシュ
ートを生ずることがある。そのま\温度上昇条件を持続
させればオーバーシュートはやがて治るが、恒温条件と
温度上昇条件との区別を実測値と設定値とを比較して判
断しているために、一旦温度上昇条件に入ってもオーバ
ーシュート時点で再iff温条件に戻ってしまい、冷凍
機が作動するために今度はアンダーシュートを生ずる。
By the way, when switching from constant temperature conditions to temperature increase conditions,
Because the thermal time constant of the room (oak) and the time constant of the control system cannot completely match, the actual temperature (actual value) of the room (tank) becomes too high than the set value, so-called overflow. Shoots may occur. If the temperature increase condition is continued as it is, the overshoot will eventually be cured, but since the distinction between constant temperature condition and temperature increase condition is judged by comparing the actual value and the set value, once the temperature increase condition Even if it does, the temperature will return to the IF temperature condition at the point of overshoot, and the refrigerator will operate, causing undershoot.

結局オーバーシュートとアンダーシュートとが交互に繰
返され、円滑な温度制御が困難となる事態がしばしば発
生する。このような現象は温度上昇域だけでなく温糺条
件でも発生する。この現象の根本的原因は恒温室(槽)
と制御系との熱時定数の相異によって生ずるオーバーシ
ュート及びアンダーシュートにある。
As a result, overshoot and undershoot are repeated alternately, and a situation often occurs in which smooth temperature control becomes difficult. Such a phenomenon occurs not only in a temperature rising region but also under warm adhesive conditions. The root cause of this phenomenon is a thermostatic chamber (tank)
This is due to overshoot and undershoot caused by the difference in thermal time constant between the control system and the control system.

〔発明の目的〕[Purpose of the invention]

本発明は上記に鑑みて発明されたもので、温度制御方式
の上記問題点を解消し、設定値に忠実で円滑な室(槽)
温度を実現しうる制御方式を提供することを目的とする
The present invention was invented in view of the above, and solves the above-mentioned problems of temperature control systems, and allows smooth operation of the chamber (tank) that is faithful to the set value.
The purpose is to provide a control method that can realize temperature control.

〔発明の概要〕[Summary of the invention]

上記目的を達成するだめ本発明は、冷凍機の起動時には
加熱器に第一の最大入力電力を与え、冷凍機の停止時に
は、加熱器に上記の第一の入力電力より低い第二の入力
電力を与え、冷凍機の断続で発生するオーバーシュート
及びアンダーシュートに対し、これらを打消すような逆
向の急激な温度変化を故意に発生させる特徴を有する。
In order to achieve the above object, the present invention provides a first maximum input power to the heater when the refrigerator is started, and a second maximum input power to the heater that is lower than the first input power when the refrigerator is stopped. It is characterized by intentionally generating a rapid temperature change in the opposite direction to counteract the overshoot and undershoot that occur due to intermittent operation of the refrigerator.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を第1図に基すき説明する。図は
恒温室を示し、この恒温室はプレハブ室1とその内部に
設置された送風機2、加熱器3、および冷凍機4.5と
それぞれに冷媒配管で接続されている冷却器6.7など
から構成されている。室内の温度はセンサ8によって検
出され、その値が温度調節器9で温度設定器10の出力
設定値と比較される。比較の結果は電力調節器11に与
えられ、電源12から加熱器3に供給される電力量が調
節される。更に、引算回路13は室温番温度設定値との
差を算出し、その結果によって3台の加熱器3a、3b
、3c及び2台の冷凍機4゜5のうち駆動すべき機器を
選択する。第2図は温3− 贋の上昇、恒温・下降の各モードに於る各機器の作動状
況を説明する図である。また、第3図は各モードに対す
る各機器の動作タイミングを示す図である。以下各図を
参照して冷凍機及び加熱器の動作タイミングを詳細に説
明する。
An embodiment of the present invention will be described below with reference to FIG. The figure shows a constant temperature room, which includes a prefabricated room 1, a blower 2, a heater 3, a refrigerator 4.5, and a cooler 6.7, which are connected to each other by refrigerant piping. It consists of The temperature in the room is detected by a sensor 8, and its value is compared with the output setting value of a temperature setting device 10 by a temperature controller 9. The comparison result is given to the power regulator 11, and the amount of power supplied from the power source 12 to the heater 3 is adjusted. Furthermore, the subtraction circuit 13 calculates the difference from the room temperature set value, and based on the result, the three heaters 3a, 3b are
, 3c, and the two refrigerators 4.5 to be driven. FIG. 2 is a diagram illustrating the operating status of each device in each mode of temperature rise and constant temperature/fall. Moreover, FIG. 3 is a diagram showing the operation timing of each device for each mode. The operation timing of the refrigerator and heater will be explained in detail below with reference to each figure.

囚 恒温状態で冷凍機4と加熱器3a及び3bが作動す
る。
The refrigerator 4 and heaters 3a and 3b operate in a constant temperature state.

2つの加熱器に加わる電力は電力調節器11によって制
御され冷凍機4の冷却熱量を平衡している。
The electric power applied to the two heaters is controlled by a power regulator 11 to balance the cooling heat amount of the refrigerator 4.

(ハ)設定値(破線)の増加に伴い加熱器3a及び3b
への電力が増加するが、二つの加熱器3a、3bでは冷
凍機4の冷却熱量を埋め合せることができず、設定値と
室温(実線)との差が次第に大きくなシ時刻1.で△1
゛1を越えると冷凍@4が停止する。この時発生するオ
ーバーシュートは再度恒温状態に戻pうる大きさく1点
鎖線)になるが、同時に加熱器3bを停止することによ
ジオ−バーシュートは実線のように小さな値におさまる
(c) As the set value (broken line) increases, heaters 3a and 3b
However, the two heaters 3a and 3b cannot compensate for the cooling heat amount of the refrigerator 4, and the difference between the set value and the room temperature (solid line) gradually increases at time 1. △1
If it exceeds ゛1, freezing @4 will stop. The overshoot that occurs at this time becomes large enough to return to a constant temperature state (dotted chain line), but at the same time, by stopping the heater 3b, the geo-overshoot is reduced to a small value as shown by the solid line.

0 温度上昇条件から恒温条件に移行する場合−4= (時刻”2)は逆に冷凍機4が作動すると同時に加熱器
3bを通電して過剰なアンダーシュートを阻止する。
0 When transitioning from a temperature increase condition to a constant temperature condition -4= (time "2"), conversely, the refrigerator 4 operates and the heater 3b is energized to prevent excessive undershoot.

0 温度下降条件では設定値と室温との差が一△T2と
なった時点t3で冷凍機4に加えて5も作動し、同時に
加熱器3Cも通電されるので、アンダーシュートは図の
一点鎖線から実線のように小さくなる。
0 Under the temperature drop condition, at the time t3 when the difference between the set value and the room temperature becomes 1△T2, in addition to the refrigerator 4, 5 is activated, and at the same time, the heater 3C is also energized, so the undershoot is as shown by the dashed line in the diagram. becomes smaller as shown by the solid line.

要するに、本発明は冷凍機の0N−OF’Fによって生
ずるアンダーシュート及びオーバーシュートを、同時に
第2.第3の加熱器をON、OFFさせることによシ解
消する。
In short, the present invention simultaneously eliminates the undershoot and overshoot caused by ON-OF'F of the refrigerator. This can be resolved by turning the third heater on and off.

恒温室及び恒温槽に於て問題となっていたオーバーシュ
ート、アンダーシュートの不安定動作を解消でき、ひい
ては設定値に忠実で円滑な室(槽)温を実現できる。
The unstable operation of overshoot and undershoot, which has been a problem in thermostatic chambers and thermostatic chambers, can be resolved, and the room (tank) temperature can be maintained smoothly and faithfully to the set value.

尚、本発明では、その実施例に於て専ら冷凍機二台の特
殊な場合を説明したが、本発明はこの構成に限定される
ものでなく、各種の変形が可能である。
In the present invention, although the special case of two refrigerators has been explained in the embodiment, the present invention is not limited to this configuration, and various modifications are possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す恒温室の構成図、第2図
は恒温室の動作モードと各機器の作動状況を説明する図
、第3図は恒温室の構成各機器の動作タイミングを示す
図である。 1・・・プレハブ室  2・・・送風機  3・・・加
熱器4・・・第1の冷凍機  b・・・第2の冷凍機 
 6・・・第1の冷却器  7・・・第2の冷却器  
8・・・センサ  9・・・温度調節器  10・・・
温度設定器11・・・電力調節器  12・・・電源 
 13・・・引算回路 =7一
Figure 1 is a block diagram of a constant temperature room showing an embodiment of the present invention, Figure 2 is a diagram explaining the operating mode of the constant temperature room and the operating status of each device, and Figure 3 is the operation timing of each device in the constant temperature room. FIG. 1... Prefab room 2... Blower 3... Heater 4... First refrigerator b... Second refrigerator
6...First cooler 7...Second cooler
8...Sensor 9...Temperature controller 10...
Temperature setting device 11... Power controller 12... Power supply
13...Subtraction circuit = 71

Claims (1)

【特許請求の範囲】[Claims] 加熱器と、冷凍機に附属する冷却器を室(槽)内に備え
、冷凍機は二値制御運転を行ない、加熱器は連続制御運
転を行ない、室(槽)内を所望の温度に保持する恒温室
(槽)において、冷凍機の起動時には加熱器に第一の最
大入力電力を付与し、冷凍機の停止時には、加熱器に上
記第一の入力電力より低い第二の入力電力を与えること
を特徴とする恒温室(槽)の温度制御装置。
A heater and a cooler attached to the refrigerator are installed in the room (tank), the refrigerator performs binary control operation, and the heater performs continuous control operation to maintain the room (tank) at the desired temperature. In a constant temperature room (tank) where the refrigerator is started, the first maximum input power is given to the heater, and when the refrigerator is stopped, the second input power, which is lower than the first input power, is given to the heater. A temperature control device for a thermostatic chamber (tank) characterized by the following.
JP6535383A 1983-04-15 1983-04-15 Temperature controller Pending JPS59191622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6535383A JPS59191622A (en) 1983-04-15 1983-04-15 Temperature controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6535383A JPS59191622A (en) 1983-04-15 1983-04-15 Temperature controller

Publications (1)

Publication Number Publication Date
JPS59191622A true JPS59191622A (en) 1984-10-30

Family

ID=13284501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6535383A Pending JPS59191622A (en) 1983-04-15 1983-04-15 Temperature controller

Country Status (1)

Country Link
JP (1) JPS59191622A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6094920A (en) * 1998-01-09 2000-08-01 Nec Corporation Circuit and method for controlling temperature without using CPU and software
US10527737B2 (en) 2015-12-01 2020-01-07 Kabushiki Kaisha Toshiba Dose calculation device, dose calculation method, and measurement device with dose calculation function

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6094920A (en) * 1998-01-09 2000-08-01 Nec Corporation Circuit and method for controlling temperature without using CPU and software
US10527737B2 (en) 2015-12-01 2020-01-07 Kabushiki Kaisha Toshiba Dose calculation device, dose calculation method, and measurement device with dose calculation function

Similar Documents

Publication Publication Date Title
US5255530A (en) System of two zone refrigerator temperature control
KR960001664A (en) Operation control method of air conditioner
US7100387B2 (en) Method for controlling a multiple cooling compartment refrigerator, and refrigerator using such method
US5765636A (en) Air circulation controller with short-cycle prevention capability
US4911358A (en) Temperature recovery system for an electronic programmable thermostat
JPS61290504A (en) Timepiece thermostat
JPH08314545A (en) Temperature control method in chamber of food storehouse
JPH07167504A (en) Preheat controlling method for three-phase motor driven compressor
JPS59191622A (en) Temperature controller
JP2624171B2 (en) Air conditioner operation control method
JP2002140119A (en) Work temperature controller
JPH0535336B2 (en)
JPH0596185A (en) Method for controlling refrigerating machine of thermostatic and humidistatic bath
JPH0646121B2 (en) Absorption chiller / heater control method
JP2003114725A (en) Temperature regulator, and heat treatment device
JPH0133713B2 (en)
KR20020077960A (en) Temperature control method for kimchi refrigerator
JPS63187704A (en) Ice and snow removal control system
JPS59149782A (en) Load reducing device for motor
JPH0399176A (en) Cooling device
JPH0610845A (en) Variable speed water feeder
KR100320350B1 (en) Apparatus for automatic controlling operating mode of multi-stage and method thereof
JPS6152541A (en) Thermo-hygrostatic controlling device
JPS58211218A (en) Temperature control device
JP2000055399A (en) Combustion control method for hot water boiler