JPS615446A - Erasable optical recording and reproducing device - Google Patents

Erasable optical recording and reproducing device

Info

Publication number
JPS615446A
JPS615446A JP59125905A JP12590584A JPS615446A JP S615446 A JPS615446 A JP S615446A JP 59125905 A JP59125905 A JP 59125905A JP 12590584 A JP12590584 A JP 12590584A JP S615446 A JPS615446 A JP S615446A
Authority
JP
Japan
Prior art keywords
light
optical beam
light spot
optical recording
spot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59125905A
Other languages
Japanese (ja)
Inventor
Takashi Ishida
隆 石田
Shunji Ohara
俊次 大原
Tomio Yoshida
吉田 富夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59125905A priority Critical patent/JPS615446A/en
Publication of JPS615446A publication Critical patent/JPS615446A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0055Erasing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1398Means for shaping the cross-section of the beam, e.g. into circular or elliptical cross-section

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)

Abstract

PURPOSE:To average the intensity distribution inside a light spot for erasion and to eliminate a local intensity fluctuation, by providing a diffracting means which diffracts the output light of a laser array which is a light source for erasion in the direction, in which the light spot scans a recording medium. CONSTITUTION:An optical beam (l) outputted from a semiconductor laser 101 for recording and reproducing which produces light having a wavelength lambda1 is transformed into an almost parallel optical beam by a condenser lens 102 and passed through an optical beam synthesizer 105 and beam splitter 106. After passing through the beam splitter 106, the optical beam is reflected by a reflecting mirror 107 and forms an almost circular light spot L on the guide track 51 of an optical recording disk after passing through a diaphragm lens 108. Another optical beam (m) outputted from a laser array 103 for erasion which produces light having a wavelength lambda2 is transformed into an almost parallel optical beam having an oval cross section by a condenser lens 104 and reflected by the synthesizer 105 after passing through a diffraction element 118. After reflection, the optical beam forms an oval light spot M, the direction of whose major axis coincides with the longitudinal direction of a groove 51, on the groove 51. The element 118 gives a diffracting effect to the beam (m) in the direction of groove 51 and the intensity fluctuation inside the light spot M for erasion can be eliminated.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光学的記録再生装置に係るものである。さら
に具体的には、レーザ等の光をレンズ等を用いて直径1
μm程度の微小光ビームに絞り、光記録媒体に照射し、
高密度に信号を記録再生し、かつ、一旦記録した信号を
レーザ光等の照射により消去することによって繰り返し
信号を記録再生できる消去可能な光学的記録再生装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an optical recording/reproducing device. More specifically, light from a laser or the like is irradiated with a diameter of 1 mm using a lens or the like.
Focusing the light beam into a minute light beam of about μm, irradiating it onto the optical recording medium,
The present invention relates to an erasable optical recording and reproducing device that can record and reproduce signals at high density and repeatedly record and reproduce signals by erasing the once recorded signals by irradiating with laser light or the like.

従来例の構成とその問題点 この光学的記録再生装置は、記録一度が高く、1ビット
当りのメモリコストを安くできる点、高速でアクセスで
きる点、光学ヘッドと光記録媒体が非接触で安定な記録
再生を行なえる点で、今後の情報化社会に新しい記憶メ
ディアを提供するものとして注目されている。
Conventional configuration and problems This optical recording/reproducing device has the advantages of high recording rate, low memory cost per bit, high-speed access, and stable contact between the optical head and the optical recording medium. Because it can perform recording and playback, it is attracting attention as a new storage medium for the future information society.

消去可能な光学的記録再生方式として、レーザ光等の熱
エネルギーを用いて、光記録媒体の非晶質状態と結晶状
態の間の転移による光学的濃度の可逆的変化を起こさせ
る方式が提案されている。
As an erasable optical recording and reproducing method, a method has been proposed in which thermal energy such as laser light is used to cause a reversible change in optical density by transition between an amorphous state and a crystalline state of an optical recording medium. ing.

すなわち、反射率が小さく透過率の大きい非晶質状態の
光記録媒体の温度を融点近くまで上げた後徐冷すると、
反射率が大きく透過率の小さい結晶〜態に転移し、逆に
、結晶状態の光記録媒体の温kを融点近くまで上げた後
急冷すると非晶質状態に転移する現象を利用するもので
ある。その転移条件を得るだめの具体的方法を第1図に
示す。第1図aは矢印の方向に相対的に進む光記録媒体
上にレーザ光等によって形成される略円形の微小光スポ
ットLを示す。この光スポットLの光強度を短時間だけ
強めて光記録媒体の局部を昇温すると、該局部での温度
上昇はすみやかに周囲へ拡散し、昇温急冷条件が得られ
、光記録媒体は非晶質状態に転移する。一方第1図すに
示すように、矢印の方向に進む光記録媒体上に長楕円形
の光スポットMを形成し、この光スポラ)Mの強度を連
続的に、あるいは間欠的に強くすると光記録媒体の昇温
部はaの場合よりはるかにゆっくり冷却することになり
、昇温徐冷条件が得られ、光記録媒体、は結晶状態に転
移する。
In other words, when the temperature of an amorphous optical recording medium with low reflectance and high transmittance is raised to near its melting point and then slowly cooled,
It utilizes the phenomenon that an optical recording medium in a crystalline state transitions to a crystalline state with high reflectance and low transmittance, and conversely, when the temperature of a crystalline optical recording medium is raised to near its melting point and then rapidly cooled, it transforms into an amorphous state. . A specific method for obtaining the transition conditions is shown in FIG. FIG. 1a shows a substantially circular minute optical spot L formed by a laser beam or the like on an optical recording medium that moves relatively in the direction of the arrow. When the light intensity of this light spot L is strengthened for a short period of time to raise the temperature of a local part of the optical recording medium, the temperature increase in the local part quickly diffuses to the surroundings, and a rapid heating and cooling condition is obtained, and the optical recording medium becomes non-stick. Transition to crystalline state. On the other hand, as shown in FIG. The heated portion of the recording medium is cooled much more slowly than in case a, temperature raising and slow cooling conditions are obtained, and the optical recording medium transforms into a crystalline state.

上記の原理にもとすく、消去可能な光学的記録再生装置
の1つの例として、第2図に示すように例えば、光記録
ディスク上の案内溝(ここでは、案内トラック、情報ト
ラックを含めて案内溝という)に、2ケの光ビームを配
置する方法が提案されている(特願昭59−52607
号)0第2図で、61は、光記録ディスク上に設けられ
る公知の、光記録材料を塗布した案内溝を示し、矢印A
は、光記録媒体が照射光スポット、M、  Lに対して
相対的に動く方向を示し、Xは、光記録媒体上の1つの
点を示す。点X上に記録されていた信号は長円形スポツ
)Mで昇温徐冷条件を与えられ、信号は消去され、引き
続いて光スポツl−Lで昇温急冷条件を与えられ、信号
の記録が行なわれる。
Based on the above principle, as an example of an erasable optical recording/reproducing device, for example, as shown in FIG. A method has been proposed in which two light beams are arranged in a guide groove (Japanese Patent Application No. 59-52607).
No.)0 In Fig. 2, 61 indicates a known guide groove coated with an optical recording material provided on an optical recording disk, and arrow A
indicates the direction in which the optical recording medium moves relative to the irradiated light spots, M, L, and X indicates one point on the optical recording medium. The signal recorded on point It is done.

このようにして、記録、消去が行なわれる。この方法の
特徴は非常にシンプルな構成で実時間に記録消去ができ
ることにある。ここで消去の際の記録材料の結晶状態へ
の転移を確実にして完全な消去を行なうだめには、融点
以上に昇温した後の徐冷時間を長くとる必要がある。す
なわち、スポットMの溝方向の長さを長くする必要があ
る。そのだめの1つの方法として、従来はレーザアレイ
を消去用光源に用いて、各発光点の並び方向を、溝方向
に一致させるように配置してスポットMの長さを長くす
ることが提案されている。その様子を模式的に第3図に
示す。レーザアレイ31から出       l。
Recording and erasing are performed in this manner. The feature of this method is that it has a very simple configuration and can erase records in real time. In order to ensure the transition of the recording material to a crystalline state during erasing and to perform complete erasing, it is necessary to allow a long slow cooling time after the temperature is raised above the melting point. That is, it is necessary to increase the length of the spot M in the groove direction. As one way to avoid this, conventionally it has been proposed to use a laser array as an erasing light source and arrange the light emitting points so that the direction in which they are lined up coincides with the direction of the groove, thereby increasing the length of the spot M. ing. The situation is schematically shown in FIG. Output l from laser array 31.

だ光が集光レンズ32.絞9レンズ33て絞られ案内溝
61上にスポットMを形成する。レーザアレイ31は、
発光点A、  B、  CのスポットM内での像A’、
B’、C’が案内溝61に沿って並ぶように配置される
。このようにして、スポットMの長径は単一発光点のレ
ーザを用いるよりも大きくなる。しかしながら、レーザ
アレイの場合、各発光点を独立に駆動するとと、また発
熱量を押えて寿命を伸ばすことを考慮すると各発光点の
間隔がある程度必要である。従ってその間隔が大きいと
、スポットMの強度分布のプロフィルへは、第4図の様
になる。点線は各発光点単独での強度分布であり、全体
の強度分布は実線で表わしである。この場合、75,1
.B1間、B’、C’間において局部的な強度変動が生
じ、この変動はレーザアレイの各発光点の間隔が大きい
ほど著しくなる。
The light is focused by the condensing lens 32. A spot M is formed on the guide groove 61 by the aperture 9 lens 33. The laser array 31 is
Image A' of light-emitting points A, B, and C within spot M,
B' and C' are arranged so as to line up along the guide groove 61. In this way, the long axis of the spot M becomes larger than when using a laser with a single light emitting point. However, in the case of a laser array, if each light emitting point is driven independently, and in consideration of suppressing the amount of heat generated and extending the life, a certain distance between each light emitting point is required. Therefore, if the interval is large, the intensity distribution profile of the spot M will become as shown in FIG. The dotted line represents the intensity distribution of each light emitting point alone, and the overall intensity distribution is represented by the solid line. In this case, 75,1
.. Local intensity fluctuations occur between B1 and between B' and C', and this fluctuation becomes more significant as the distance between the light emitting points of the laser array increases.

従って消去時において、A ′、B z間、33 /、
C/間では記録媒体の徐冷条件が保たれず、急冷あるい
は急冷に近い状態となり、結晶状態への転移がおこらず
、消去できない場合が考えられる。
Therefore, at the time of erasing, between A' and Bz, 33/,
Between C and C, the slow cooling condition of the recording medium is not maintained, and the recording medium becomes rapidly cooled or almost rapidly cooled, and the transition to the crystalline state does not occur, and erasing may not be possible.

発明の目的 本発明は、レーザアレイによる消去用スポット内の強度
分布を平均化して、局部的な強度変動を無くすることを
目的とする。
OBJECTS OF THE INVENTION It is an object of the present invention to average the intensity distribution within an erasing spot by a laser array to eliminate local intensity fluctuations.

発明の構成 本発明は、回折素子等を用いて、レーザアレイの各発光
点からの光をスポット内に分散させることにより、スポ
ット内の強度分布を平均化して、局部的な強度変化を無
くした消去可能な光学的記録再生装置である。
Structure of the Invention The present invention uses a diffraction element or the like to disperse light from each light emitting point of a laser array into a spot, thereby averaging the intensity distribution within the spot and eliminating local intensity changes. It is an erasable optical recording and reproducing device.

実施例の説明 本発明の具体的実施例を図面にしだがって以下に説明す
る。
DESCRIPTION OF EMBODIMENTS Specific embodiments of the present invention will be described below with reference to the drawings.

第5図は、本発明が実施される光学的記録再生装置の一
実施例を示す。図で101は波長λ1の光を発生する記
録再生用半導体レーザを示し、その出力光ビームを4で
示す。102は集光レンズを示し、拡がりを有する半導
体レーザの出力光を集光して略平行な光ビームとする。
FIG. 5 shows an embodiment of an optical recording/reproducing apparatus in which the present invention is implemented. In the figure, reference numeral 101 indicates a recording/reproducing semiconductor laser that generates light of wavelength λ1, and reference numeral 4 indicates its output light beam. Reference numeral 102 denotes a condensing lens, which condenses the output light of the semiconductor laser having a spread into a substantially parallel light beam.

105は波長λ1の光を透過し、後述の波長λ2の光を
反射する光ビーム合成器、106はビームスプリッタ、
107は反射ミラーを示す。半導体レーザ1o1の光ビ
ームlはこれらの光学素子を通って絞りレンズ108に
入射する。絞りレンズ108は入射する光ビームlを絞
って、光記録ディスク−にの案内トラック51上に略円
形の光スポットLを作る。109は絞りレンズ108を
駆動するアクチュエータを示し、ディスクの面ぶれに対
応して、絞りレンズを光軸方向に駆動して公知のフォー
カス制御を行なう。まだこのアクチュエータは、ディス
クの径方向に絞りレンズ108を駆動して公知のトラッ
キング制御を行なう。
105 is a light beam combiner that transmits light with wavelength λ1 and reflects light with wavelength λ2, which will be described later; 106 is a beam splitter;
Reference numeral 107 indicates a reflecting mirror. The light beam l of the semiconductor laser 1o1 passes through these optical elements and enters the aperture lens 108. The aperture lens 108 narrows down the incident light beam L to form a substantially circular light spot L on the guide track 51 on the optical recording disk. Reference numeral 109 denotes an actuator for driving the aperture lens 108, which drives the aperture lens in the optical axis direction in response to surface wobbling of the disk to perform known focus control. This actuator still performs known tracking control by driving the aperture lens 108 in the radial direction of the disk.

第5図で、103は波長λ2の光ビームmを発生するレ
ーザアレイであり、104はその集光レンズを示す。集
光レンズ104はレーザアレイ103の出力光ビームm
を断面が楕円形の略平行光に変換する。この光ビームm
は、ビーム合成器105で反射されて光ビームlとほぼ
同じ光路を通り絞りレンズ108に入射し、光スポット
Lと同じ溝61上に第3図、第4図で示すように、楕円
形でかつその長径方向が溝51の長手方向と一致する光
スポツ)Mが形成される。
In FIG. 5, 103 is a laser array that generates a light beam m of wavelength λ2, and 104 is a condenser lens thereof. The condensing lens 104 collects the output light beam m of the laser array 103.
is converted into approximately parallel light with an elliptical cross section. This light beam m
is reflected by the beam combiner 105 and enters the aperture lens 108 through almost the same optical path as the light beam L, and an elliptical shape is formed on the same groove 61 as the light spot L, as shown in FIGS. 3 and 4. A light spot (M) whose major axis direction coincides with the longitudinal direction of the groove 51 is formed.

第5図で光記録ディスクで反射された光は絞りレンズ1
08.ミラー107を通ってビームスプリッタ106に
入射し、光路を変更されてフィルタ板111に入射する
。ここでは波長λ1の光C1)のみが透過し、波長λ2
の光(m)は透過しないフィルター板を示す。112は
単レンズで反射光ビームlを絞りビームに変換する。1
13は反射ミラーを示し、単レンズ112による絞り光
の約半分を遮りかつ反射して光検出器115の方へ導び
く役割をする。
In Figure 5, the light reflected by the optical recording disk is the aperture lens 1.
08. The light passes through the mirror 107 and enters the beam splitter 106, the optical path of which is changed, and the light enters the filter plate 111. Here, only the light C1) with wavelength λ1 is transmitted, and the wavelength λ2
indicates a filter plate through which the light (m) is not transmitted. A single lens 112 converts the reflected light beam l into an aperture beam. 1
Reference numeral 13 denotes a reflecting mirror, which serves to block and reflect about half of the light focused by the single lens 112 and guide it toward the photodetector 115.

114はフォーカス誤差信号を検出するだめの二分割の
フォトダイオードを示し、単レンズ112のフォーカス
点に配置され、分割された光41の移動に対応して従来
公知のフォーカス誤差信号を検出する。
Reference numeral 114 denotes a two-split photodiode for detecting a focus error signal, which is placed at the focus point of the single lens 112 and detects a conventionally known focus error signal in response to movement of the split light 41.

115はトラッキング誤差信号を検出するための二分割
フォトダイオードであり、ミラー113による反射光β
2により従来公知のトラッキング       (誤差
信号を検出する。                 
   1光記録デイスク上の案内溝51に記録された信
号は光検出器114または115より再生される。
115 is a two-split photodiode for detecting a tracking error signal, and the reflected light β by the mirror 113 is
2, the conventional tracking (error signal is detected).
The signal recorded in the guide groove 51 on the optical recording disk is reproduced by a photodetector 114 or 115.

117はレーザアレイ103を駆動するレーザ駆動回路
117はレーザ101を駆動するレーザ駆動回路である
。118は本発明で用いる、光スポットMの光強度分布
を制御する回折素子である。
A laser drive circuit 117 that drives the laser array 103 is a laser drive circuit that drives the laser 101 . 118 is a diffraction element used in the present invention to control the light intensity distribution of the light spot M.

回折素子118は入射する光ビームmに対して主にディ
スク上の案内溝51の方向(主として一次元方向のみ)
に回折効果を与える回折素子であり、前記案内溝上にお
けるレーザアレイ各発光源のつくる消去光スポットの強
度分布を変更させる目的に使用される。この回折素子の
機能、構成について具体的に以下に説明する。
The diffraction element 118 is directed mainly in the direction of the guide groove 51 on the disk (mainly only in one-dimensional direction) with respect to the incident light beam m.
This is a diffraction element that gives a diffraction effect to the guide groove, and is used for the purpose of changing the intensity distribution of the erasing light spot created by each light emitting source of the laser array on the guide groove. The function and configuration of this diffraction element will be specifically explained below.

第6図aに第6図における回折素子118と絞りレンズ
1o8、および光記録ディスク上の案内溝61との関係
を示す。矢印Aは溝51の進行方向を示す。
FIG. 6a shows the relationship between the diffraction element 118 in FIG. 6, the aperture lens 1o8, and the guide groove 61 on the optical recording disk. Arrow A indicates the direction in which the groove 51 moves.

この図で回折素子118に入射する略平行光(m)は第
6図すの1に示すような強度分布をしており、Xl、x
2.x3はその極大の位置を示す。すなわちxl、x2
.X3はレーザアレイの各発光点の中心に対応している
。回折素子118への入射角はxl。
In this figure, the substantially parallel light (m) incident on the diffraction element 118 has an intensity distribution as shown in Figure 6, diagram 1, and Xl, x
2. x3 indicates the position of its maximum. i.e. xl, x2
.. X3 corresponds to the center of each light emitting point of the laser array. The angle of incidence on the diffraction element 118 is xl.

x2.X3でわずかに異なるので、各0次光の絞りレン
ズ上への到達点X1. X2 、 Xsは多少能れて存
在する。従来は回折素子118が無いため、と00次光
のみであり、そのため、第4図の様なスポット内強度分
布となってし捷う。そこで、各±1次光が絞りレンズ上
で点X1 、 X2 、 X3の間を埋めるように、か
つ、各回折光の強度が同じになるように回折素子118
を構成する0(第6図a)その時の消去スポット内の強
度分布を第7図aに示す。破線は各回折光単独での強度
分布、実線はスポyトM全体の強度分布を示す。この場
合消去光スポットM内での局部的な強度変動は無くなり
記録媒体上の点Xが消去光スポy’−Mの下を通過する
際、途中で徐冷条件が乱されることはなくなり、結晶状
態への転移が完全になり完全な消去が可能である。
x2. Since there is a slight difference in X3, the arrival point of each 0th order light on the aperture lens is different from X1. X2 and Xs exist to some extent. Conventionally, since there is no diffraction element 118, there is only 00th order light, resulting in an intra-spot intensity distribution as shown in FIG. Therefore, the diffraction element 118 is arranged so that each of the ±1st-order lights fills the space between points X1, X2, and X3 on the aperture lens, and the intensity of each diffracted light is the same.
The intensity distribution within the erased spot at that time is shown in FIG. 7a. The broken line shows the intensity distribution of each diffracted light alone, and the solid line shows the intensity distribution of the whole eyedropper M. In this case, there will be no local intensity fluctuations within the erasing light spot M, and when the point X on the recording medium passes under the erasing light spot y'-M, the slow cooling conditions will not be disturbed on the way. The transition to the crystalline state is complete and complete erasure is possible.

また、回折素子118に入射する略平行光mの強度分布
を、レーザアレイの1発光点強度を大きくすることによ
り第6図すの2になる様構成したとすると、光スポット
M内での強度分布は第7図すとなる。破線は各回折光単
独での強度分布、実線はスポットM全体の強度分布を示
す。このスポットMを点Xが通過する場合、点Xの温度
が融点以上に昇温するまでの時間が短くなるので、第7
図aの時より、徐冷時間が長くなると共に、徐冷状態も
乱されないので、より完全な結晶状態への転移が起こり
、完全な消去が可能である。
Furthermore, if the intensity distribution of the substantially parallel light m incident on the diffraction element 118 is configured to become 2 in Figure 6 by increasing the intensity of one light emitting point of the laser array, the intensity within the light spot M is The distribution is shown in Figure 7. The broken line shows the intensity distribution of each diffracted light alone, and the solid line shows the intensity distribution of the entire spot M. When point X passes through this spot M, the time required for the temperature of point X to rise above the melting point becomes shorter, so
Since the annealing time is longer than in Figure a and the annealing state is not disturbed, a transition to a more perfect crystalline state occurs and complete erasure is possible.

このように、回折素子を用いることにより、レーザアレ
イの各発光点間隔が大きくとも、消去光スポット内の強
度分布を平均化して、局部的な強度変動を無くすること
ができる。
In this way, by using the diffraction element, even if the distance between the light emitting points of the laser array is large, the intensity distribution within the erasing light spot can be averaged and local intensity fluctuations can be eliminated.

回折素子118の具体的な例として、例えば透明ガラス
上に濃度を有するストライプを有し、そのストライプの
幅及び間隔を変化させたものや、透明ガラス上に溝を設
け、その溝の幅及びピッチを変化させたもの等が考えら
れる。
Specific examples of the diffraction element 118 include, for example, one that has stripes with a density on a transparent glass and the width and interval of the stripes are changed, and one that has grooves on a transparent glass and the width and pitch of the grooves. Possible examples include changes in the .

発明の効果 以上述べた様に、本発明により、レーザアレイを用いた
場合、その発光点間隔にかかわらず、常に消去光スポッ
ト内の強度分布を平均化して局部的な強度変動を無くす
ることができ、その結果、徐冷状態を安定に保つことが
可能となり、完全な消去が行なわれる。
Effects of the Invention As described above, according to the present invention, when a laser array is used, it is possible to always average the intensity distribution within the erasing light spot and eliminate local intensity fluctuations, regardless of the distance between the light emitting points. As a result, it becomes possible to maintain a stable slow cooling state, and complete erasure is achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明で用いる消去可能な光記録方法の説明図
、第2図は光記録薄膜上での光スポットの配置と光記録
薄膜の動く方向を示す図、第3図は従来のレーザアレイ
を用いたスポット形成方法を示す図、第4図は従来の消
去スポットの強度分布を示す図、第6図は本発明の消去
可能な光学的記録再生装置の一衷施例を示す構成図、第
6図は同実施例における回折素子の説明図、第7図は本
発明による光記録薄膜上での消去スポットの強度分布を
示す特性図である。 L・・・・・・記録光スポット、M・・・・・・消去光
スポット、31.103・・・・・・レーザアレイ、1
o1・・・・・・記録再生用レーザ、118・・・・・
・回折素子01′代理人の氏名 弁理士 中 尾 敏 
男 ほか1名第1図 C′b) 第4図 A’  B’  (/’ 第5図 第6図 (幻
Fig. 1 is an explanatory diagram of the erasable optical recording method used in the present invention, Fig. 2 is a diagram showing the arrangement of the light spot on the optical recording thin film and the direction of movement of the optical recording thin film, and Fig. 3 is a diagram showing the conventional laser recording method. A diagram showing a spot forming method using an array, FIG. 4 is a diagram showing the intensity distribution of a conventional erasing spot, and FIG. 6 is a configuration diagram showing an example of the erasable optical recording/reproducing device of the present invention. , FIG. 6 is an explanatory diagram of the diffraction element in the same example, and FIG. 7 is a characteristic diagram showing the intensity distribution of the erase spot on the optical recording thin film according to the present invention. L... Recording light spot, M... Erasing light spot, 31.103... Laser array, 1
o1... Laser for recording and reproduction, 118...
・Name of agent for diffraction element 01' Patent attorney Satoshi Nakao
Figure 1 C'b) Figure 4 A'B'(/' Figure 5 Figure 6 (Illusion)

Claims (1)

【特許請求の範囲】[Claims]  消去用光源としてのレーザアレイと、前記レーザアレ
イの出力光を記録媒体上で光スポットが走査する方向に
回折する回折手段とを有し、前記レーザアレイにより形
成される光スポット内の強度分布を平均化して、局部的
な強度変動がないように構成したことを特徴とする消去
可能な光学的記録再生装置。
It has a laser array as an erasing light source and a diffraction means for diffracting the output light of the laser array in a direction in which a light spot scans on a recording medium, and the intensity distribution within the light spot formed by the laser array is 1. An erasable optical recording and reproducing device characterized in that it is configured to average and eliminate local intensity fluctuations.
JP59125905A 1984-06-19 1984-06-19 Erasable optical recording and reproducing device Pending JPS615446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59125905A JPS615446A (en) 1984-06-19 1984-06-19 Erasable optical recording and reproducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59125905A JPS615446A (en) 1984-06-19 1984-06-19 Erasable optical recording and reproducing device

Publications (1)

Publication Number Publication Date
JPS615446A true JPS615446A (en) 1986-01-11

Family

ID=14921809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59125905A Pending JPS615446A (en) 1984-06-19 1984-06-19 Erasable optical recording and reproducing device

Country Status (1)

Country Link
JP (1) JPS615446A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0509007A1 (en) * 1990-01-02 1992-10-21 Tandy Corporation System and method for erasing light-responsive optical disks

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53148410A (en) * 1977-05-31 1978-12-25 Nippon Telegr & Teleph Corp <Ntt> Erasing method of information contents having been recorded recording media

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53148410A (en) * 1977-05-31 1978-12-25 Nippon Telegr & Teleph Corp <Ntt> Erasing method of information contents having been recorded recording media

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0509007A1 (en) * 1990-01-02 1992-10-21 Tandy Corporation System and method for erasing light-responsive optical disks

Similar Documents

Publication Publication Date Title
US4566088A (en) Optical and reversible recording and reproducing apparatus
US5369631A (en) Recording/reproducing apparatus for optical tape
JPS6049977B2 (en) optical disk device
JPH0777025B2 (en) Optical recording / reproducing device
CA2079620A1 (en) Holographic elements for an optical recording system
US4679184A (en) Optical recording and reproducing apparatus having erasing beam spot with asymmetrical intensity distribution
CA2108766C (en) Phase-change type optical disk device and optical head to be used therein
JPH0816987B2 (en) Optical recording / reproducing device
JPS615446A (en) Erasable optical recording and reproducing device
JPS5920168B2 (en) optical recording/playback device
JPH02177131A (en) Method and device for erasing/recording of optical recording medium
JPS5971143A (en) Optical recorder and reproducer
JPS60263351A (en) Erasable optical recording and reproducing device
JPS618739A (en) Erasable optical recording and reproducing device
JPS60197935A (en) Erasable optical recording and reproducing device
JPH02302932A (en) Optical recording and reproducing system
JPS59172167A (en) Reversible optical recorder and reproducing device
JPS61287055A (en) Optical recording and reproducing device
JPS61928A (en) Optical reversible recording and reproducing device
JPS59144049A (en) Optical recording and reproducing system
JPS60256924A (en) Optical reversible recording and reproducing device
JPS6113454A (en) Optical recording and reproducing device
KR100604027B1 (en) Writing/Reading apparatus and method for phase change disk
JPS60247840A (en) Optical disk erasing device
JPS61184739A (en) Optical pickup device for multispot