JPS5920168B2 - optical recording/playback device - Google Patents
optical recording/playback deviceInfo
- Publication number
- JPS5920168B2 JPS5920168B2 JP51002271A JP227176A JPS5920168B2 JP S5920168 B2 JPS5920168 B2 JP S5920168B2 JP 51002271 A JP51002271 A JP 51002271A JP 227176 A JP227176 A JP 227176A JP S5920168 B2 JPS5920168 B2 JP S5920168B2
- Authority
- JP
- Japan
- Prior art keywords
- recording
- semiconductor laser
- objective lens
- erasing
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/12—Heads, e.g. forming of the optical beam spot or modulation of the optical beam
- G11B7/135—Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Recording Or Reproduction (AREA)
- Optical Head (AREA)
Description
【発明の詳細な説明】
本発明はディスク状記録媒体を用いた書き替え可能な光
学式記録再生装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a rewritable optical recording/reproducing device using a disk-shaped recording medium.
従来、ディスク状記録媒体に映像信号、音声信号等の情
報信号を高密度に記録する試みが種々なされてきた。Conventionally, various attempts have been made to record information signals such as video signals and audio signals on disk-shaped recording media at high density.
具体的にはディスク表面にらせん状あるいは同心円状の
トラックを形成し、トラックに沿つて数μm以下の微小
な凹凸が配夕1ルてある。この凹凸の形状の変化を記録
情報に対応させれば、高密度情報記録ができる。情報の
読み出しには、レーザ光のような高エネルギー密度で微
小スポットに収束できる光源を用い、ディスク上のトラ
ックに追随させながら、一定のスポット径のビームを前
記微小記録要素に照射する。記録信号に応じその回折の
度合が異なる記録要素は、反射光あるいは透過光の強度
変化を与え、光電変換素子によつてこれを検出すれば記
録信号の再生が行なわれる。この場合情報の記録は別の
装置、例えば再生ビームよりはるかに強力なレーザビー
ムでフォトレジスト等の材料からなる記録盤に書き込み
が行なわれ、これがマスタ盤となり、音声レコードと同
様な方法により複製が作成される。それ故これら周知の
事例は書き替え不可能な記録媒体であつた。近年、アモ
ルファス物質、即ち結晶のように構造的に長距離規則性
を持たない物質において、注目すべき光学的性質が見い
出され、その内でも光照射によつてアモルファス状態か
ら結晶状態への転移が可逆的であること。Specifically, a spiral or concentric track is formed on the disk surface, and minute irregularities of several μm or less are arranged along the track. High-density information recording can be achieved by making the changes in the shape of the unevenness correspond to recorded information. To read information, a light source such as a laser beam that can be focused on a minute spot with high energy density is used, and a beam with a constant spot diameter is irradiated onto the minute recording element while following the track on the disk. A recording element whose degree of diffraction differs depending on the recorded signal gives a change in the intensity of reflected light or transmitted light, and when this is detected by a photoelectric conversion element, the recorded signal is reproduced. In this case, the information is recorded using another device, such as a laser beam that is much more powerful than the reproduction beam, onto a record disc made of a material such as photoresist.This becomes the master disc, which can be duplicated in the same way as an audio record. Created. Therefore, these well-known examples were non-rewritable recording media. In recent years, remarkable optical properties have been discovered in amorphous materials, that is, materials that do not have long-range regularity in their structure like crystals, and among them, the transition from an amorphous state to a crystalline state by light irradiation has been discovered. Must be reversible.
またアモルファス物質の吸収端付近の光を照射すると、
その吸収端の波長シフトが生じること等がある。前者の
性質を用いれば、スレツシヨルドレベル以上のエネルギ
ーの光を照射した場合、光学的性質(濃度)が変化し、
その変化が可逆的であるから、書き替え可能な高密度光
学的記録材料として利用可能である。更に具体的に述べ
ると、アモルフオス材料を数百λの薄膜にしてデイスク
基材に蒸着する。アモルフアス材料の内で最も一般的な
カルコゲナイドガラス系のものでは、書込しきい値以上
のエネルギーの吸収によつて淡褐色を呈していたものが
、結晶化によつて黒化する場合が多い。情報の読み出し
は書き込みしきい値以下のエネルギを持つビームを照射
し、従来と同様の方法によつて再生可能である。一方前
述の記録状態は、即ち結晶状態は昇温し、高温非晶質相
となしクエンチングにより元のアモルフアス伏態に復帰
できる。具体的には書き込みしきい値を上回る高エネル
ギーのレーザビームをパルス的に照射することによつて
実現できる。一方このような記録材料を用いて情報信号
の記録再生を行う装置を構成する場合、光源として用い
るレーザはHe−Neガスレーザが最も実用的である。Also, when irradiating light near the absorption edge of an amorphous material,
A wavelength shift of the absorption edge may occur. Using the former property, when irradiated with light with energy above the threshold level, the optical properties (density) change,
Since the change is reversible, it can be used as a rewritable high-density optical recording material. More specifically, an amorphous material is formed into a thin film of several hundred λ and deposited on the disk base material. Chalcogenide glass, which is the most common amorphous material, often takes on a light brown color due to absorption of energy above the writing threshold, but turns black due to crystallization. Information can be read by irradiating a beam with energy below the writing threshold, and can be reproduced by the same method as in the past. On the other hand, the above-mentioned recording state, that is, the crystalline state, is heated to become a high-temperature amorphous phase, and by quenching, the original amorphous state can be restored. Specifically, this can be achieved by irradiating a pulsed laser beam with high energy exceeding the writing threshold. On the other hand, when configuring an apparatus for recording and reproducing information signals using such a recording material, the most practical laser to be used as a light source is a He--Ne gas laser.
しかし、機能的に記録、再生、消去の各機能のいずれか
あるいは全てを同時に行う場合、一つのレーザ光源で相
異なるモードに対応してビームを照射し、それぞれに付
随する各種コントロールを行うことは装置の構成が極め
て複雑になり、実際上困難である。またガスレーザチユ
ーブを2本以上用いる方法も、装置が大型化する点で不
都合である。 ”本発
明では、上記従来技術に鑑み、消去光源に半導体レーザ
を用い、装置を小型化するとともに、前記記録材料に適
した消去条件を得、消去情報のモニタも簡単に行うこと
が出来る特徴を持つた装置を実現する。ここで半導体レ
ーザについて述べると、近年、特にレーザの小型化、高
効率化、変調の容易さという利点から半導体レーザの研
究が活発化し、従来はパルス発振のみ可能であつたもの
が、室温にて連続発振可能の製品が現われつつある。However, when functionally performing any or all of the functions of recording, playback, and erasing at the same time, it is difficult to irradiate beams corresponding to different modes with a single laser light source and perform various controls associated with each mode. The configuration of the device becomes extremely complicated and is difficult in practice. Furthermore, the method of using two or more gas laser tubes is also disadvantageous in that the apparatus becomes larger. ``In view of the above-mentioned conventional technology, the present invention uses a semiconductor laser as an erasing light source, miniaturizes the device, obtains erasing conditions suitable for the recording material, and has the features of easily monitoring erasing information. Regarding semiconductor lasers, research on semiconductor lasers has become active in recent years due to the advantages of miniaturization, high efficiency, and ease of modulation. However, products that are capable of continuous oscillation at room temperature are emerging.
この場合、GaAs等の−V族化合物半導体と異種化合
物にAlを加えたGaAsと(GaAl)Asのヘテロ
接合構造の半導体レーザが代表的なものである。第1図
に示す例は、ダブルヘテロ接合構造の半導体レーザで、
A面とN面が共振器を構成し、P一GaAs部分が発光
領域である。一般にGaAs半導体レーザで得られる光
の特徴として、発振波長8000λ〜9000λ、光束
は接合面と平行な面内では〜100程度しか拡がらない
が、垂直な面内では接合層の厚さ(0.5μm〜2μm
程度)によつて異なるが数100〜1000の角度で拡
がる。従つてこのように急激に拡散する光をレンズ光学
系で数μm以下のスポツトに収束させることは困難であ
る。そこで、フアイバーリボンを発光層に接合させた半
導体レーザを用い微小なスポツトを得る。以下に本発明
について図面にしたがい説明する。In this case, a semiconductor laser having a heterojunction structure of GaAs and (GaAl)As, in which Al is added to a -V group compound semiconductor such as GaAs and a different compound, is typical. The example shown in Figure 1 is a semiconductor laser with a double heterojunction structure.
The A-plane and the N-plane constitute a resonator, and the P-GaAs portion is a light emitting region. In general, the characteristics of light obtained from GaAs semiconductor lasers are that the oscillation wavelength is 8000λ to 9000λ, and the luminous flux spreads only about 100 nm in a plane parallel to the bonding surface, but in a plane perpendicular to the bonding layer thickness (0. 5μm~2μm
It spreads out over several hundred to a thousand angles, depending on the degree. Therefore, it is difficult for the lens optical system to converge such rapidly diffusing light onto a spot of several micrometers or less. Therefore, a minute spot is obtained using a semiconductor laser in which a fiber ribbon is bonded to a light emitting layer. The present invention will be explained below according to the drawings.
第1図はフアイバ一付き半導体レーザの構造を示す模式
図で、1は半導体レーザ、2は発光領域に接合されたフ
アイバーリボンで、本発明の場合、集束型フアイバ一で
あることが望ましい。第2図は半導体レーザと対物レン
ズからなる再生、消去ヘツド3の構造図でAは断面図、
Bはヘツド3を上から見た図で、4はフアイバ一2の保
護カバー、5は半導体レーザ1のパツケージで放熱性の
良いもの、6はパツケージ5の端に付けた磁石、7は電
磁石で、入力端子8に電流を加えることによつて動作す
る。9は対物レンズ、10は対物レンズ9および半導体
レーザ1を支持するホルダー、11はマグネツト、12
は板バネ、13はコイルである。FIG. 1 is a schematic diagram showing the structure of a semiconductor laser with a fiber, in which 1 is a semiconductor laser and 2 is a fiber ribbon bonded to a light emitting region, preferably a focusing fiber. Figure 2 is a structural diagram of the read/erase head 3 consisting of a semiconductor laser and an objective lens, and A is a cross-sectional view.
B is a top view of the head 3, 4 is a protective cover for the fiber 12, 5 is a package for the semiconductor laser 1 with good heat dissipation, 6 is a magnet attached to the end of the package 5, and 7 is an electromagnet. , by applying a current to the input terminal 8. 9 is an objective lens, 10 is a holder that supports the objective lens 9 and the semiconductor laser 1, 11 is a magnet, 12
1 is a leaf spring, and 13 is a coil.
第3図は本発明の一実施例の装置の構成図であり、14
はレーザ光源、15はリレーレンズ、16は回転軸をも
つた可動型反射鏡、17はハーフミラー、18はターン
テーブル、19はターンテーブル駆動のモーター、20
はデイスク記録盤、21は4個の領域に別れた分割型光
検出器である。FIG. 3 is a configuration diagram of an apparatus according to an embodiment of the present invention, with 14
15 is a laser light source, 15 is a relay lens, 16 is a movable reflecting mirror with a rotation axis, 17 is a half mirror, 18 is a turntable, 19 is a motor for driving the turntable, 20
21 is a disc recorder, and 21 is a divided photodetector divided into four areas.
22は加算および減算増幅器であり、再生信号、トラツ
キング信号およびフオーカシング信号を出力し、23は
再生信号出力端子、24はターンテーブル18の回転に
したがつて、デイスク中心方向へ移動可能な筐体である
。22 is an addition and subtraction amplifier which outputs a reproduction signal, a tracking signal and a focusing signal; 23 is a reproduction signal output terminal; and 24 is a housing movable toward the center of the disk as the turntable 18 rotates. be.
第4図はデイスク記録盤20と再生および消去ヘツド3
付近の拡大図で、25はデイスク記録盤20上に形成さ
れたトラツク、26はトラツク25上に記録された記録
要部、27は読み出しビームスポツト、28は消去ビー
ムスポツト。Figure 4 shows the disk recorder 20 and the playback and erasing head 3.
In the enlarged view of the vicinity, 25 is a track formed on the disk recorder 20, 26 is the main recording part recorded on the track 25, 27 is a read beam spot, and 28 is an erase beam spot.
第5図は加減算増幅器28の構成図で、29は分割型光
検出器21の信号入力端子、30は加算回路、31は減
算回路、32は再生信号出力端子、33はトラツキング
信号出力端子、34はフオーカシング信号出力端子であ
る。次に動作を説明する。FIG. 5 is a block diagram of the addition/subtraction amplifier 28, in which 29 is a signal input terminal of the split photodetector 21, 30 is an addition circuit, 31 is a subtraction circuit, 32 is a reproduced signal output terminal, 33 is a tracking signal output terminal, 34 is a focusing signal output terminal. Next, the operation will be explained.
本発明の消去用光源として用いる半導体レーザは第1図
に示す如く、その発光層に多数の集束性フアイバーリボ
ン2を接合したもので、フアイバ一終端で、幅数μm1
長さ数10μmの長方形スポツトを得ることができる。
第2図に示す、再生および消去ヘツド3は、ホルダー1
0によつて、再生及び制御に用いる対物レンズ9と消去
用半導体レーザ1とが近接して保持されている。ヘツド
3自身は、ボイスコイルと同様な構造および機能を持ち
、コイル13に印加される電流と、マグネツト11の作
用によつて板バネ12で制動しながら、ホルダー10を
図中で上下方向に移動させることができる。即ち対物レ
ンズ9をフオーカシング信号によつてデイスク記録盤2
0に対し、一定の距離に保つことができる。一方半導体
レーザ1はパツケージ5に格納され、極めて細く折れ易
いフアイバ一2も保護カバー4によつて覆われている。
この半導体レーザ1は、第2図において上下の方向に移
動可能である。すなわち端子8に加える電流の向きを切
り替えれば、電磁石7と永久磁石6の相互の間には引力
あるいは反撥力が生じる。消去以外のモードで動作する
時は、引力が生じるように電流を端子8に印加し、フア
イバ一2の先端がデイスク記録盤20に対し十分遠い距
離を保ち、接触して相互に損傷を与えないようにする。
消去モードの時は、逆向きの電流が加えられ、反撥力に
よつてパツケージ5がホルダー10により制限される位
置まで進む。すなわち、フアイバ一2がデイスク記録盤
20上に十分小さなビームスポツトを結像するにたる距
離を保てる位置まで進む。次に第3図以下によつて具体
的な装置の動作を説明する。As shown in FIG. 1, the semiconductor laser used as the erasing light source of the present invention has a light-emitting layer bonded with a large number of focusing fiber ribbons 2, with a width of several μm at one end of the fiber.
A rectangular spot with a length of several tens of μm can be obtained.
The read and erase head 3 shown in FIG.
0, the objective lens 9 used for reproduction and control and the erasing semiconductor laser 1 are held close to each other. The head 3 itself has the same structure and function as a voice coil, and moves the holder 10 in the vertical direction in the figure while being braked by a leaf spring 12 due to the current applied to the coil 13 and the action of the magnet 11. can be done. That is, the objective lens 9 is moved to the disk recorder 2 by a focusing signal.
It can be maintained at a constant distance from 0. On the other hand, the semiconductor laser 1 is housed in a package 5, and the fiber 12, which is extremely thin and easily broken, is also covered by a protective cover 4.
This semiconductor laser 1 is movable in the vertical direction in FIG. That is, by switching the direction of the current applied to the terminal 8, an attractive force or a repulsive force is generated between the electromagnet 7 and the permanent magnet 6. When operating in a mode other than erasing, a current is applied to the terminal 8 so that an attractive force is generated, and the tip of the fiber 2 is kept at a sufficiently far distance from the disk recorder 20 so that they do not come into contact and damage each other. Do it like this.
In the erase mode, a current in the opposite direction is applied and the repulsive force advances the package 5 to a position where it is restricted by the holder 10. That is, the fiber 12 advances to a position where it can maintain a distance sufficient to form a sufficiently small beam spot on the disk recorder 20. Next, the specific operation of the apparatus will be explained with reference to FIG. 3 and subsequent figures.
レーザ光源14から出た略平行ビームはリレーレンズ1
5で収束拡大される。回転軸を持つた可動型ミラー16
によつて、一旦進行方向を変えた後ハーフミラー17を
通つて再生および消去ヘツド3の対物レンズ9に入射し
たビームは第4図に示すように、対物レンズ9の光軸に
対しデイスク記録型20のトラツク接線方向にずらして
ある。したがつて再生ビームスポツト27が、トラツク
25に最小のスポツトで結像している場合}』、反射光
はハーフミラー17の裏面で反射後、分割型デイテクタ
21の左右の中心部に投射されるが、対物レンズ7とト
ラツク25の距離が変化した時、即ち焦点からずれた場
合、反射ビームはデイテクタ21の左(A,D側)ある
いは右(B,C側)の方向へ移動する。また再生ビーム
スポツト27がトラツク25から外れ、微ノ」媚已眼要
素26上を正しく照射しなくなつた場合、デイテクタ2
1に投影される反射光は上下方向に(A,B側とC,D
側とで)アンバランスになる。したがつて第5図に示す
加減算増幅器20では、分割型デイテクタ21の出力信
号に対し、(A+B)(D+C)とすればトラツキング
信号が、(A+D)−(B+C)とすればフオーカシン
グ信号A+B+C+Dと全ての和をとれば再生信号が得
られる。端子33で得られたトラツキング誤差信号は、
可動型反射鏡16を回転させ、誤差信号を減少させる方
向に制(財)し、端子34で得られたフオーカシング誤
差信号は、再生および消去ヘツド3”のコイル13に電
流を流し、やはり誤差を減少させる方向に制両する。こ
のように再生ビームの反射光の一部を利用して、トラツ
キング制御とフオーカシング制御を行い、再生ビーム2
7がトラツク25に沿つて正確に微少記録要素側上を照
射することが可能となる。一方前述したように消去光源
として用いる半導体レーザ1は対物レンズ9に近接した
状態で設けられている故、消去動作時において、フオー
カシング制御およびトラツキング制御を再生ビームによ
る制御と兼用しても何ら差しつかえない。A substantially parallel beam emitted from the laser light source 14 is transmitted through the relay lens 1
5 to converge and expand. Movable mirror 16 with a rotation axis
As shown in FIG. 4, the beam, which has once changed its traveling direction and is incident on the objective lens 9 of the reproduction/erasing head 3 through the half mirror 17, is aligned with the optical axis of the objective lens 9 in the direction of the disk recording type. 20 in the track tangent direction. Therefore, if the reproduction beam spot 27 is focused on the smallest spot on the track 25}, the reflected light is reflected on the back surface of the half mirror 17 and then projected onto the left and right centers of the split type detector 21. However, when the distance between the objective lens 7 and the track 25 changes, that is, when the focus shifts, the reflected beam moves to the left (A, D side) or right (B, C side) of the detector 21. In addition, if the reproduction beam spot 27 deviates from the track 25 and no longer correctly illuminates the microscopic amorous element 26, the detector 2
The reflected light projected onto 1 is directed upward and downward (A, B side and C, D
side) becomes unbalanced. Therefore, in the adder/subtractor amplifier 20 shown in FIG. 5, for the output signal of the split type detector 21, if (A+B)(D+C) is the tracking signal, if (A+D)-(B+C) is the tracking signal, it is the focusing signal A+B+C+D. A reproduced signal can be obtained by summing all the sums. The tracking error signal obtained at the terminal 33 is
The movable reflector 16 is rotated to reduce the error signal, and the focusing error signal obtained at the terminal 34 causes a current to flow through the coil 13 of the read/erase head 3'', which also reduces the error. In this way, a part of the reflected light of the reproduction beam is used to perform tracking control and focusing control, and the reproduction beam 2
7 can be accurately irradiated onto the minute recording element side along the track 25. On the other hand, as mentioned above, since the semiconductor laser 1 used as the erasing light source is provided close to the objective lens 9, there is no problem even if the focusing control and tracking control are also used as control using the reproduction beam during the erasing operation. do not have.
また消去モードの時、再生ビームスポツト27を照射し
ても何ら消去条件には影響を与えることなく、機能的に
は消去情報のモニタリングができるという利点がある。
即ち記録された情報を再生しながら、操作者が消去する
必要性の有る部分のみを消去することが可能となる。こ
の時装置の動作として、再生消去ヘツド3に於いては、
電磁石7の作用により、フアイバ一2の先端が、デイス
ク記録盤20に接近した状態に移るとともに、半導体レ
ーザ1には消去パルス信号が印加され、消去ビームスポ
ツト28が照射される。この場合前述したように、アモ
ルフアス半導体の性質から、消去モードでは高温加熱に
より結晶を溶融し非晶質と成した後、クエンチングによ
りその状態を保持しながら元のアモルフアス伏態に復帰
できるので、デユーテイフアツタの小さなパルス光を照
射する必要がある。この印加パルスのパルス周期T1及
びパルス幅:τと長方形ビームスポツトの長手方向のサ
イズ:lとは密接な関連がある。即ちターンテーブル1
8がモータ19により、一定の角速度:ωにて回転させ
られる時、デイスク記録盤20の記録可能な最外周トラ
ツクの径をRとすれば、消去ビームスポツト28のサイ
ズlについてl〉Rω(T+τ)の関係が成立する。更
に外周から内周へと再生を進めてゆくと、即ちターンテ
ーブル18の回転に連動して筐体24が内周方向へ移動
すると、デイスク記録盤20には常に等しいエネルギー
密度のビームと、冷却条件を与えるため、前記パルス周
期を長く、パルス幅τを小さくしなければならない。(
但しスポツト長2は一定である。)以上述べた装置によ
つてアモルフアス半導体材料を用いたデイスク状記録盤
の情報の再生・消去が可能であり、図面に記載していな
いが、情報の記録も前述の装置を用いて簡単に行うこと
ができる。Further, in the erasing mode, even if the reproduction beam spot 27 is irradiated, the erasing conditions are not affected in any way, and there is the advantage that erasing information can be monitored functionally.
That is, while reproducing the recorded information, it becomes possible for the operator to erase only the portion that needs to be erased. At this time, the operation of the device is as follows in the reproducing/erasing head 3:
Due to the action of the electromagnet 7, the tip of the fiber 1 2 moves close to the disk recording disk 20, and at the same time, an erasing pulse signal is applied to the semiconductor laser 1, and the erasing beam spot 28 is irradiated. In this case, as mentioned above, due to the properties of amorphous semiconductors, in the erase mode, the crystals are melted into an amorphous state by high-temperature heating, and then returned to the original amorphous state while maintaining that state by quenching. It is necessary to irradiate pulsed light with a small duty force. There is a close relationship between the pulse period T1 and pulse width τ of this applied pulse and the longitudinal size l of the rectangular beam spot. That is, turntable 1
8 is rotated by the motor 19 at a constant angular velocity: ω, and if the diameter of the outermost recordable track of the disk recorder 20 is R, then for the size l of the erasing beam spot 28, l>Rω(T+τ ) holds true. As playback progresses further from the outer circumference to the inner circumference, that is, as the housing 24 moves toward the inner circumference in conjunction with the rotation of the turntable 18, the disc recording disk 20 is constantly exposed to a beam of equal energy density and a cooling beam. In order to meet these conditions, the pulse period must be made long and the pulse width τ must be made small. (
However, the spot length 2 is constant. ) It is possible to reproduce and erase information on a disc-shaped recording disk made of amorphous semiconductor material using the above-mentioned device, and although it is not shown in the drawing, information can also be easily recorded using the above-mentioned device. be able to.
すなわち記録の際、再生と同様のHe−Neガスレーザ
を光源に用いた場合、高出力のレーザ光源を用い、リレ
ーレンズ15の前に光変調器を設ける。この変調器はA
・0.(音響光学効果)変調器か、E・0(電気光学効
果)変調器を用いる。更に記録の際はトラツキング制御
は不要である以外、再生時と同様に行うことができる。
また大型のレーザ光源と光変調器を用いるのが不都合な
場合、消去の側と同様に書き込みに半導体レーザを用い
るのも有効である。この時は連続発振可能なタイプの半
導体レーザによりほぼ円形のビームを記録トラツクに照
射する。他は前例と同様にすれば良いので省略する。以
上のように、本発明では小型で直接変調可能な半導体レ
ーザを用い、しかも再生ヘツドと一体化することにより
、フオーカシング、トラツキングの制両を簡単にできる
消去方法が実現でき、しかも、消去される情報は常にモ
リタリングすることができ、部分消去が可能である。That is, when a He--Ne gas laser similar to that used for reproduction is used as a light source during recording, a high-output laser light source is used and an optical modulator is provided in front of the relay lens 15. This modulator is A
・0. (acousto-optic effect) modulator or E.0 (electro-optic effect) modulator is used. Furthermore, during recording, tracking control is not required, but can be performed in the same manner as during playback.
Furthermore, if it is inconvenient to use a large laser light source and optical modulator, it is also effective to use a semiconductor laser for writing as well as for erasing. At this time, a substantially circular beam is irradiated onto the recording track using a continuous wave type semiconductor laser. The rest can be omitted as they can be done in the same way as in the previous example. As described above, in the present invention, by using a small semiconductor laser that can be directly modulated and integrating it with a reproducing head, an erasing method that can easily control focusing and tracking can be realized. Information can always be monitored and partially erased.
また従来半導体レーザの光はレンズ光学系では微少スポ
ツトに収束することが困難であつたが、集束型フアイバ
一を用いてこれを解決した。Furthermore, it was difficult to converge the light from a semiconductor laser into a minute spot using a lens optical system, but this problem was solved by using a focusing fiber.
図面は本発明に関するものであり、第1図は半導体レー
ザの構成図、第2図は再生・消去ヘツドの構成図、第3
図は本発明の一実施例の光学的記録装置の構成図、第4
図は第3図の機能を説明する図、第5図は本発明の構成
要素である加減算増幅器の詳細説明図。
1・・・・・・半導体レーザ、2・・・・・・フアイバ
一、3・・・・・・再生・消去ヘツド、9・・・・・・
対物レンズ、14・・・・・・レーザ光源、16・・・
・・・可動型反射ミラー、17・・・・・・ハーフミラ
ー、20・・・・・・デイスク記録盤、21・・・・・
・分割型光検出器、22・・・・・・加算・減算増幅器
。The drawings relate to the present invention; FIG. 1 is a configuration diagram of a semiconductor laser, FIG. 2 is a configuration diagram of a read/erase head, and FIG. 3 is a configuration diagram of a read/erase head.
Figure 4 is a block diagram of an optical recording device according to an embodiment of the present invention.
This figure is a diagram explaining the function of FIG. 3, and FIG. 5 is a detailed diagram illustrating an addition/subtraction amplifier that is a component of the present invention. DESCRIPTION OF SYMBOLS 1... Semiconductor laser, 2... Fiber 1, 3... Reproduction/erase head, 9...
Objective lens, 14... Laser light source, 16...
...Movable reflective mirror, 17...Half mirror, 20...Disc recorder, 21...
・Divided photodetector, 22... Addition/subtraction amplifier.
Claims (1)
により記録および消去可能な記録媒体に記録再生用ビー
ムとして集光する対物レンズと、前記対物レンズと記録
媒体との距離が常に一定になよう制御する制御手段と、
半導体レーザと、一端がそれぞれ前記半導体レーザの接
合面に沿つて配設された複数本の光ファイバーとを有し
、前記複数本の光ファイバーの他端は、それらの光ファ
イバーよりの射出光が、前記記録再生用ビームの照射さ
れた情報トラックを、その記録再生用ビームに近接して
、情報トラックの方向に伸びる矩形状ビームとして照射
されるよう前記対物レンズと一体的に固定されている光
学記録再生装置。1. An objective lens that focuses a light beam from a first light source as a recording/reproduction beam onto a recording medium that can be recorded and erased depending on the irradiation conditions of the light beam, and a distance between the objective lens and the recording medium is always constant. a control means for controlling the
It has a semiconductor laser and a plurality of optical fibers each having one end disposed along the bonding surface of the semiconductor laser, and the other end of the plurality of optical fibers is arranged so that the light emitted from the optical fibers is connected to the recording medium. an optical recording/reproducing device fixed integrally with the objective lens so that the information track irradiated with the reproducing beam is irradiated as a rectangular beam extending in the direction of the information track in close proximity to the recording/reproducing beam; .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP51002271A JPS5920168B2 (en) | 1976-01-09 | 1976-01-09 | optical recording/playback device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP51002271A JPS5920168B2 (en) | 1976-01-09 | 1976-01-09 | optical recording/playback device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5285412A JPS5285412A (en) | 1977-07-15 |
JPS5920168B2 true JPS5920168B2 (en) | 1984-05-11 |
Family
ID=11524697
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP51002271A Expired JPS5920168B2 (en) | 1976-01-09 | 1976-01-09 | optical recording/playback device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5920168B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57162137A (en) * | 1981-03-28 | 1982-10-05 | Kokusai Denshin Denwa Co Ltd <Kdd> | Photomagnetic recording and reproducing system |
JPS5936338A (en) * | 1982-08-24 | 1984-02-28 | Matsushita Electric Ind Co Ltd | Optical disk recording and reproducing method |
JPS5945739U (en) * | 1982-09-20 | 1984-03-27 | ソニー株式会社 | Optical pickup servo device |
JPS5968844A (en) * | 1982-10-14 | 1984-04-18 | Matsushita Electric Ind Co Ltd | Optical reversible recording and reproducing device |
JPS60185232A (en) * | 1984-03-05 | 1985-09-20 | Matsushita Electric Ind Co Ltd | Optical recording and reproducing device |
JPS61158254A (en) * | 1984-12-29 | 1986-07-17 | Toshiba Corp | Automatic answering telephone set |
JPH0341627A (en) * | 1989-07-10 | 1991-02-22 | Sanyo Electric Co Ltd | Tracking control method |
-
1976
- 1976-01-09 JP JP51002271A patent/JPS5920168B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5285412A (en) | 1977-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4566088A (en) | Optical and reversible recording and reproducing apparatus | |
JP3201759B2 (en) | Magneto-optical recording / reproducing method, recording medium suitable for use in this method, and magneto-optical recording / reproducing apparatus | |
JP3707812B2 (en) | Optical recording method, optical recording apparatus, and optical recording medium | |
JPS5920168B2 (en) | optical recording/playback device | |
JPH0816987B2 (en) | Optical recording / reproducing device | |
JP3492934B2 (en) | Information recording / reproducing device | |
JPH02177131A (en) | Method and device for erasing/recording of optical recording medium | |
JPS6233648B2 (en) | ||
JPS59172167A (en) | Reversible optical recorder and reproducing device | |
JPS60197935A (en) | Erasable optical recording and reproducing device | |
JPS6231410B2 (en) | ||
JP3205050B2 (en) | Optical information recording device and optical information reproducing device | |
JPS5858734B2 (en) | Kogaku Tekikiki Rokusai Seisouchi | |
JPS59144049A (en) | Optical recording and reproducing system | |
JPS6316429A (en) | Optical head device for information recording medium | |
JPH05114137A (en) | Optical information recording and reproducing device | |
JPS6047242A (en) | Information recorder | |
JPS6145435A (en) | Optical head | |
JPS6113454A (en) | Optical recording and reproducing device | |
JPS60263351A (en) | Erasable optical recording and reproducing device | |
JPH0544736B2 (en) | ||
JPS6348625A (en) | Optical information recording and reproducing device | |
JPS615447A (en) | Erasable optical recording and reproducing device | |
JP2001023227A (en) | Optical pickup device, optical disk device, and recording and/or reproducing method | |
JPS6271036A (en) | Information recording method |