JPS61928A - Optical reversible recording and reproducing device - Google Patents

Optical reversible recording and reproducing device

Info

Publication number
JPS61928A
JPS61928A JP59121146A JP12114684A JPS61928A JP S61928 A JPS61928 A JP S61928A JP 59121146 A JP59121146 A JP 59121146A JP 12114684 A JP12114684 A JP 12114684A JP S61928 A JPS61928 A JP S61928A
Authority
JP
Japan
Prior art keywords
recording
spot light
erasing
minute spot
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59121146A
Other languages
Japanese (ja)
Inventor
Shunji Ohara
俊次 大原
Tomio Yoshida
吉田 富夫
Takashi Ishida
隆 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59121146A priority Critical patent/JPS61928A/en
Publication of JPS61928A publication Critical patent/JPS61928A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/126Circuits, methods or arrangements for laser control or stabilisation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0055Erasing

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

PURPOSE:To shorten the length of erasing spot light and improve stability by irradiating recording spot light at power equal to or higher than reproducing power and lower than recording power at the time of erasing, and prolonging further slow cooling time of erasing spot light. CONSTITUTION:Reference voltage VSW2 is selected to output erasing auxiliary recording power equal to or higher than reproducing power at the time of reproduction and lower than recording power at the time of recording as light output power of a semiconductor laser 101 for recording/reproducing at the time of erasing. That is, reference voltage VSW2 of VSW1 (whern reproducing)<=VSW2< VSW3 (when recording) is applied to a driving circuit 126 at the time of erasing, and light power of laser 103 for erasing is supplement by light power of a laser 101 for recording/reproducing. This, slow cooling time if made longer, and stable erasing condition can be obtained even by a short erasing laser spot light.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光学的記録再生装置に係るものである。さら
に具体的には、レーザ光をレンズ等を用いて直径11t
m程度の微小光ビームに絞り、光記録媒体に照射し、高
密度に信号を記録再生し、かつ一旦記録した信号をレー
ザ照射により消去することによって繰り返し信号を記録
再生できる消去可能な光学的記録再生装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an optical recording/reproducing device. More specifically, the laser beam is 11t in diameter using a lens etc.
Erasable optical recording that can repeatedly record and reproduce signals by narrowing the light beam to a microscopic light beam of about m and irradiating it onto an optical recording medium, recording and reproducing signals at high density, and erasing the once recorded signals by laser irradiation. The present invention relates to a playback device.

従来例の構成とその問題点 消去可能な光学的記録再生装置として、レーザ等の熱エ
ネルギーのみを用いて光学的濃度を可逆的に変化させる
方式が提案されている。前記方式の1つに記録薄膜の非
晶質状態と結晶質状態との間の転移を繰り返し利用する
方法がある。
As an optical recording and reproducing device that can eliminate the conventional structure and its problems, a method has been proposed in which the optical density is reversibly changed using only thermal energy such as a laser. One of the methods described above is a method of repeatedly utilizing the transition between the amorphous state and the crystalline state of the recording thin film.

第1図に、上記の非晶質状態と結晶状態の間の転移をモ
デル化して簡単に示す。
FIG. 1 briefly shows a model of the transition between the amorphous state and the crystalline state.

第1図で記録薄膜の非晶質状態をAとして示す。In FIG. 1, the amorphous state of the recording thin film is shown as A.

非晶質状態における記録薄膜の光の反射率は小さく、光
の透過率は大きい。また結晶状態をCで示し、結晶状態
における記録薄膜は1反射率が大きく、透過率は小さい
The recording thin film in an amorphous state has a low light reflectance and a high light transmittance. Further, the crystalline state is indicated by C, and the recording thin film in the crystalline state has a high 1 reflectance and a low transmittance.

この可逆的に光学濃度を変化しうる記録薄膜で、第1図
における非晶質状態Aにある記録薄膜の温度を局部的に
融点近くまで上げ、その部分を徐冷すると結晶状態Cと
なる。一方、結晶状態にある記録薄膜の温度を局部的に
融点近くまで」こげてその部分を急冷すると非晶質状態
Aになる。
With this recording thin film whose optical density can be reversibly changed, the temperature of the recording thin film in the amorphous state A in FIG. 1 is locally raised to near the melting point, and when that portion is slowly cooled, it becomes the crystalline state C. On the other hand, if the temperature of the recording thin film in the crystalline state is locally burnt to near the melting point and then the area is rapidly cooled, it becomes an amorphous state A.

第2図に記録薄膜上において、昇温急冷条件。Figure 2 shows the temperature and rapid cooling conditions on the recording thin film.

昇温徐冷条件を実現する1つの具体的方法を示す。One specific method for realizing the temperature raising and slow cooling conditions will be shown.

第2図aは、矢印の方向に相対的に進む記録媒体上にレ
ーザ等によって形成される直径lxの略円形の微小スポ
ラ)Lを示す。この光スポラ)Lの光強度を短時間だけ
強め才薄膜の局部を昇温すると、この局部での温度上昇
はすみやかに記録薄膜および薄膜の支持部材へ拡散し昇
温急冷条件を作る。この光スポラ)Lにより例えば信号
の記録が可能となる。この光スポットLは以下記録スポ
ット光と呼ぶ。
FIG. 2a shows a substantially circular microspora L with a diameter lx formed by a laser or the like on a recording medium that moves relatively in the direction of the arrow. When the light intensity of this optical spora) L is increased for a short period of time to raise the temperature of a local part of the thin film, the temperature rise in this local area is quickly diffused into the recording thin film and the supporting member of the thin film, creating conditions for rapid heating and cooling. This optical spora) L makes it possible, for example, to record a signal. This light spot L is hereinafter referred to as a recording spot light.

一方、第2図すに示すように、記録媒体の進む方向(矢
印)に細長い長径m工の光スポラ)Mを記録媒体上に、
レーザ等で形成し、光スポラ)Mの強度を連続的にある
いは間欠的に強くすると、記録薄膜の昇温部はaの場合
よりはるかにゆっくり冷却することになり、昇温徐冷条
件を得ることができる。この光スポラ)Mにより例えば
信号の消去が可能となる。以下この光スポラ)Mを消去
スポット光と呼ぶ。
On the other hand, as shown in Fig. 2, an optical spora M with a long diameter m elongated in the direction in which the recording medium advances (arrow) is placed on the recording medium.
If the intensity of optical spora) M is increased continuously or intermittently by using a laser, etc., the heated part of the recording thin film will be cooled much more slowly than in the case of a, and temperature increasing and slow cooling conditions will be obtained. be able to. This optical spora) M makes it possible, for example, to erase a signal. Hereinafter, this optical spora) M will be referred to as erasure spot light.

第3図は両スポット光により照射された領域の時間的な
熱変化を示した図であり横軸は時間、縦軸は温度である
FIG. 3 is a diagram showing temporal thermal changes in the area irradiated by both spotlights, with the horizontal axis representing time and the vertical axis representing temperature.

第3図aにて消去スポット光による昇温時間は’E1 
’徐冷時間はtE2−またbにて記録スポット光による
昇温時間はtwl、急冷時間はtW2 となる。同図に
おいて、消去条件は徐冷時間tE2=記録条件は急冷時
間tW2に大きく影響を受け、両条件の違いは、tE2
とtW2との差が大きい程明確で、記録薄膜の設計もや
りやすく安定した消去、および記録が可能となる。上記
’E2とtW2の差を大きくするには、記録スポット光
の直径l□に比べ消去スポット光の長径m工が大きい程
前記差は大きくなる。しかし消去スポット光の長径mx
を長くすればする程、同一トラック上で一直線に記録ス
ポット光りと消去スポット光Mを並べることが難しくな
シ、特に温度変動等の環境条件の違いによりレーザの光
軸がわずかでも生ずると両スボ′ット光は同一トラック
上で一直線に並ばなくなる0 従って両スポット光の配置の安定性からみれば消光スポ
ット光Mは短かい程良く、逆に記録薄膜の設計からみる
と前記消去スポット光Mは長い方が良くなる。
In Figure 3a, the temperature rise time due to the erasing spot light is 'E1
'The slow cooling time is tE2-b, the heating time by the recording spot light is twl, and the rapid cooling time is tW2. In the same figure, the erasing condition is greatly influenced by the slow cooling time tE2; the recording condition is greatly influenced by the rapid cooling time tW2, and the difference between the two conditions is tE2
The larger the difference between tW2 and tW2, the clearer the difference, which makes it easier to design the recording thin film and enables stable erasing and recording. In order to increase the difference between 'E2 and tW2, the larger the long axis m of the erasing spot light is compared to the diameter l of the recording spot light, the larger the difference becomes. However, the long axis mx of the erased spot light
The longer it is, the more difficult it becomes to line up the recording spot light and the erasing spot light M in a straight line on the same track. Therefore, from the viewpoint of stability of the arrangement of both spot lights, the shorter the extinction spot light M is, the better.Conversely, from the viewpoint of the design of the recording thin film, the erasure spot light M The longer the better.

また一般に記録媒体がディスクの場合周速はディスクの
内周に比べ外周へ行く程早くなる。しかし消去スポット
光の長さmxは一定なので外周へ行く程、相対的に徐冷
時間tE2は短かくなり消去条件がディスクの外内周と
で大きく異なってしまう。例えばディスクの最内周の直
径Di(10crn)に対し、外周の直径D 0(30
crn)が3倍あれば消去スポット光の長さmxは内周
に比べ外周では相対的にみて3Am!となり徐冷時間は
かなり短かくなる。このように徐冷時間が外内周とで大
きく異なる条件下で余裕のある安定した消去条件を持つ
記録薄膜の設計は難しくなる。
Generally, when the recording medium is a disk, the circumferential speed becomes faster toward the outer circumference of the disk compared to the inner circumference. However, since the length mx of the erasing spot light is constant, the annealing time tE2 becomes relatively shorter toward the outer periphery, and the erasing conditions differ greatly between the outer and inner peripheries of the disk. For example, the diameter Di (10 crn) of the innermost circumference of the disk and the diameter D 0 (30 crn) of the outer circumference
crn) is 3 times, the length mx of the erasing spot light is relatively 3 Am at the outer circumference compared to the inner circumference! Therefore, the slow cooling time becomes considerably shorter. In this way, it becomes difficult to design a recording thin film that has stable erasing conditions with sufficient margin under conditions where the annealing time differs greatly between the outer and inner peripheries.

発明の目的 本発明は、以上の問題点に鑑みて為された発明で、消去
時に消去スポット・光と記録スポット光を同時に照射す
ることにより消去スポット光だけが照射される時、l徐
冷時間を長くし、消去スポット光の長さを短かくする仁
とにより、安定な光学的可逆記録再生装置を提供するこ
とを目的とした0 さらに本発明の他の目的は、ディスクの外内周に従い記
録スポット光の照射パワーf変え外内周にかかわらず常
に徐冷時間がほぼ一定となるようにし、記録薄膜の設計
が容易になるような新規な光学的可逆記録再生装置を提
供することを目的とした。
Purpose of the Invention The present invention has been made in view of the above-mentioned problems.The present invention is an invention that has been made in view of the above-mentioned problems. Another object of the present invention is to provide a stable optical reversible recording/reproducing device by increasing the length of the erasing spot light and shortening the length of the erasing spot light. The purpose of the present invention is to provide a new optical reversible recording and reproducing device which allows the cooling time to be almost constant regardless of the outer or inner circumference by changing the irradiation power f of the recording spot light, and which facilitates the design of the recording thin film. And so.

発明の構成 本発明は、同一トラック上で消去スポット光が記録スポ
ット光より時間的に先行するようにし、かつ消去スポッ
ト光が照射する領域に記録スポット光が熱的影響与える
程度の距離能れて両スポット光を配置し、消去時には記
録スポット光が再生パワーと同等あるいはそれより高く
、かつ記録パワーより低くなるようなパワーで照射し、
消去スポット光の徐冷時間がより長くなるように構成し
ている。
Structure of the Invention The present invention provides for the erasing spot light to temporally precede the recording spot light on the same track, and for the recording spot light to be at a distance such that the recording spot light has a thermal effect on the area irradiated by the erasing spot light. Both spot lights are arranged, and when erasing, the recording spot light is irradiated with a power that is equal to or higher than the reproduction power and lower than the recording power,
It is configured so that the annealing time of the erase spot light is longer.

また前記記録スポット光の照射パワーを、周速が早くな
るディスクの外周へ行くに従い太きくなるようにパワー
制御するように構成することにより、実質的な徐冷時間
がディスクの外内周でほぼ同じになるようにしている。
In addition, by controlling the irradiation power of the recording spot light so that it becomes thicker toward the outer periphery of the disk where the circumferential speed becomes faster, the actual slow cooling time is approximately I try to make it the same.

実施例の説明 以下本発明を実施例にもとづいて詳しく説明する。Description of examples The present invention will be explained in detail below based on examples.

第4図に、本発明で用いる光学的案内トラックを有する
光ディスクの径方向の断面図を示す。ここでは光学的案
内トラックの1つの例として光デイスク上の信号記録領
域全面に溝を有する溝付き光ディスクの例を示す。図で
基材6oは透明な材質が用いられ、その上に幅W、深さ
d、)ラックピッチpの溝51がスパイラル状あるいは
同心円状に作られる。その上に厚さtの記録薄膜62が
蒸着あるいはその他の方法で形成され、その上に保護層
63が設けられる。溝61は、レーザの照射光54に対
して、光学的に検出可能な案内トラックとして機能する
よう深さd9幅Wが設計される。この溝によって照射光
64は特定の溝に沿って信号を記録または再生を行なう
ことができる。
FIG. 4 shows a radial cross-sectional view of an optical disk having optical guide tracks used in the present invention. Here, as an example of an optical guide track, an example of a grooved optical disk having grooves over the entire signal recording area on the optical disk is shown. In the figure, a transparent material is used as the base material 6o, and grooves 51 having a width W, a depth d, and a rack pitch p are formed thereon in a spiral or concentric shape. A recording thin film 62 having a thickness t is formed thereon by vapor deposition or other methods, and a protective layer 63 is provided thereon. The groove 61 is designed to have a depth d9 and a width W so that it functions as an optically detectable guide track for the laser irradiation light 54. This groove allows the irradiation light 64 to record or reproduce a signal along a specific groove.

第5図は本発明の一実施例を示したものである。FIG. 5 shows an embodiment of the present invention.

図で101は波長λ1の光を発生する半導体レーザを示
し、その出力光ビームをlで示す。102は集光レンズ
を示し、拡が9を有する半導体レーザの出力光を集光し
て略平行な光ビームとした。
In the figure, reference numeral 101 indicates a semiconductor laser that generates light of wavelength λ1, and its output light beam is indicated by l. Reference numeral 102 denotes a condensing lens which condenses the output light of the semiconductor laser having a magnification of 9 into a substantially parallel light beam.

106は、波長λ1の光を透過し、後述の波長λ2の光
を反射する光ビーム合成器、106はビームスプリッタ
、107は反射ミラーを示す。半導体レーザ101の光
ビームlはこれらの光学素子を通って絞りレンズ108
に入射する。絞りレンズ108は、入射する光ビームl
を絞って、案内トラック51上に略円形の記録スポット
光りを作る。109は絞りレンズ108を駆動するアク
チュエータを示し、ディスクの面ぶれに対応して、絞り
レンズを光軸方向に駆動して公知のフォーカス制御を行
なう。また本来偏心を有する案内トラックに公知のトラ
ッキング制御を行なうために絞りレンズ108を入射光
軸および案内トラックに対して直角方向に駆動する。
Reference numeral 106 indicates a light beam combiner that transmits light of wavelength λ1 and reflects light of wavelength λ2, which will be described later. Reference numeral 106 indicates a beam splitter, and reference numeral 107 indicates a reflecting mirror. The light beam l of the semiconductor laser 101 passes through these optical elements and enters the aperture lens 108.
incident on . The aperture lens 108 focuses the incident light beam l
is narrowed down to create a substantially circular recording spot light on the guide track 51. Reference numeral 109 denotes an actuator for driving the aperture lens 108, which drives the aperture lens in the optical axis direction in response to surface wobbling of the disk to perform known focus control. Further, in order to perform a known tracking control on a guide track that is inherently eccentric, the aperture lens 108 is driven in a direction perpendicular to the incident optical axis and the guide track.

第5図で103は波長λ2の光ビームmを発生する半導
体レーザであり、104は集光レンズを示す。光ビーム
mは、ビーム合成器105で反射されて、光ビームlと
ほぼ同じ光路を通り絞りレンズ108に入射し、記録ス
ポット光りと同じ溝61上に長円形で、かつその長径方
向が溝61の長手方向と一致する消去スポット光Mが形
成される0 第6図には、上記の様に、溝61上に形成した波長の異
なる2ケの光スポットL 、Mと溝61の相互関係を拡
大して示す。
In FIG. 5, 103 is a semiconductor laser that generates a light beam m of wavelength λ2, and 104 is a condenser lens. The light beam m is reflected by the beam combiner 105, passes through almost the same optical path as the light beam l, and enters the aperture lens 108. 6 shows two light spots L having different wavelengths formed on the groove 61, and the mutual relationship between M and the groove 61, as described above. Shown enlarged.

光スポラ)L 、Mは同一案内溝上に近接し、かつ速度
Vで進行する溝61に対し消去スポット光Mが先行する
ようかつ記録スポット光が消去スポット光に熱的影響を
与える範囲離れて配置される。
Optical spora) L and M are located close to each other on the same guide groove, and are arranged so that the erasing spot light M precedes the groove 61 which advances at a speed V, and is spaced apart within a range where the recording spot light has a thermal effect on the erasing spot light. be done.

光ディスクで反射された光は、絞りレンズ1o8゜ミラ
ー107を通ってビームスプリッタ106に入射し、ビ
ームスプリッタ106で反射されてフィルター板111
に入射する。ここでは波長λ1の光のみが透過し、波長
λ2の光は透過しないフィルター板を示す。112は単
レンズで反射光ビ−ムlを絞シ光に変換する。113は
反射ミラーを示し、単レンズ112による絞り光の約半
分を遮りかつ反射してその光を光検出器116の方へ導
び〈役割りをする。114はフォーカス誤差信号を検出
するだめの二分割のフォトダイオードを示し、単レンズ
112のフォーカス点に配置され、分割された光11 
に移動に対応して、従来公知のフォーカス誤差信号を検
出する。116はトラッキング誤差信号を検出するだめ
の二分割フォトダイオードであり、ミラー113による
反射光12によシ従来公知のトラッキング誤差信号を検
出する0 また光デイスク上の溝61に記録された信号の再生信号
は、光検出器114、または115より得られる。
The light reflected by the optical disk passes through the aperture lens 1o8° mirror 107, enters the beam splitter 106, is reflected by the beam splitter 106, and passes through the filter plate 111.
incident on . Here, a filter plate is shown that allows only the light of wavelength λ1 to pass through, but not the light of wavelength λ2. 112 is a single lens which converts the reflected light beam l into aperture light. Reference numeral 113 denotes a reflecting mirror, which functions to block and reflect about half of the light focused by the single lens 112 and guide the light toward the photodetector 116. Reference numeral 114 indicates a two-split photodiode for detecting a focus error signal, which is placed at the focus point of the single lens 112 and captures the split light 11.
A conventionally known focus error signal is detected in response to the movement. Reference numeral 116 designates a two-split photodiode for detecting a tracking error signal, which detects a conventionally known tracking error signal by using the reflected light 12 from the mirror 113. Also, it reproduces the signal recorded in the groove 61 on the optical disk. The signal is obtained from a photodetector 114 or 115.

増幅器118は分割されたフォトダイオード115の各
素子間の差信号を増幅し、端子TRにトラッキング誤差
信号を発生する。増幅器129は分割されたフォトダイ
オード116の各出力の和信号を増幅する回路で端子P
Bに再生信号を出力する。増幅器119は分割されたフ
ォトダイオード114の各素子間の差信号を増幅する回
路で端子FDにフォーカス誤差信号を出力する。
The amplifier 118 amplifies the difference signal between each element of the divided photodiode 115, and generates a tracking error signal at the terminal TR. The amplifier 129 is a circuit that amplifies the sum signal of each output of the divided photodiodes 116, and is connected to the terminal P.
A playback signal is output to B. The amplifier 119 is a circuit that amplifies the difference signal between each element of the divided photodiode 114, and outputs a focus error signal to the terminal FD.

記録スポット光りは、略円形の微小スポットであり一案
内トラック61に沿って信号の記録(非晶質化)まだは
再生に用いられる。また、焦点制御やトラッキング制御
等の制御信号の検出にも用いられる。一方、案内トラッ
クの接線方向に長径を有する消去スポット光Mは、光デ
ィスクに昇温徐冷条件を与え消去(非晶質化)に用いら
れる。
The recording spot light is a small, approximately circular spot, and is used for recording (amorphizing) or reproducing a signal along one guide track 61. It is also used to detect control signals such as focus control and tracking control. On the other hand, the erasing spot light M having a long axis in the tangential direction of the guide track is used for erasing (making it amorphous) by applying heating and slow cooling conditions to the optical disc.

117は前記記録スポット光のパワーを制御する記録ス
ポット光パワー制御回路で、116は前記消去スポット
光のパワーを制御する消去スポット光パワー制御回路で
ある。
117 is a recording spot light power control circuit for controlling the power of the recording spot light, and 116 is an erasing spot light power control circuit for controlling the power of the erasing spot light.

第7図aに本発明に用いる記録スポット光パワー制御回
路の一構成例、bに消光スポット光パワー制御回路の一
構成例を示す。両回路とも基本的にはほぼ同じ構成なの
で同時に説明する。1.01は記録/再生用の半導体レ
ーザ、103は消光用の半導体レーザ、120,121
は各半導体レーザに内蔵されたピンダイオードであり各
半導体レーザの後方から出射される半導体レーザパワー
をモニターする。122,123Fi基準電圧発生回路
でvsw、vsEを出力する。前記基準電圧vsw。
FIG. 7a shows a configuration example of a recording spot light power control circuit used in the present invention, and FIG. 7b shows a configuration example of an extinction spot light power control circuit. Since both circuits basically have almost the same configuration, they will be explained at the same time. 1.01 is a semiconductor laser for recording/reproduction, 103 is a semiconductor laser for extinction, 120, 121
is a pin diode built into each semiconductor laser, and monitors the semiconductor laser power emitted from the rear of each semiconductor laser. 122 and 123Fi reference voltage generation circuits output vsw and vsE. The reference voltage vsw.

vsEは例えば両スポット光が照射されるディスクの径
方向の位置に応じて可変される。124゜126は差動
幅増器で120 、121の両ビンダイオードからの出
力電圧vPw、vPEと前記基準電圧発生回路■sw、
vsEとの各差を出力する。126゜127は両レーザ
駆動回路であり、常にvPw−VSW、vPE”vSE
になるように各レーザに電流を流しパワー制御をかける
0128はスイッチング回路で端子Qに加えられる記録
すべき信号に応じて高速にスイッチングし、記録レーザ
パワーを変調する。第8図に再生時、消去時、記録時に
おける両生導体レーザの光出力パワーPw1.Pw2゜
PW3・PE1・PE2と・基準電圧vSW1・VSW
2・78w3.■sE1.vsE2の関係を各々示す。
vsE is varied depending on, for example, the position in the radial direction of the disk that is irradiated with both spot lights. 124° and 126 are differential width amplifiers, and output voltages vPw and vPE from both bin diodes 120 and 121 and the reference voltage generation circuit SW,
Output each difference with vsE. 126° and 127 are both laser drive circuits, always vPw-VSW, vPE"vSE
A switching circuit 0128 controls the power by supplying a current to each laser so that the power is controlled at high speed according to the signal to be recorded applied to the terminal Q, and modulates the recording laser power. FIG. 8 shows the optical output power Pw1 of the bidirectional conductor laser during reproduction, erasing, and recording. Pw2゜PW3・PE1・PE2 and・Reference voltage vSW1・VSW
2.78w3. ■sE1. The relationship between vsE2 is shown.

同図において消去時には記録/再生用の半導体レーザの
光出力パワーは再生時の再生パワーPw1と同等あるい
はそれより高く、かつ記録時の記録パワーPw3より低
い消去補助記録パワーPw2が出力されるように基準電
圧■sw2が選ばれている。すなわち消去時にはvsw
lく78w2く78w3なる基準電圧■sw2を加え、
記録/再生用レーザの光パワーが消去用レーザの光パワ
ーを補助するように構成している。
In the figure, during erasing, the optical output power of the semiconductor laser for recording/reproducing is outputted as erasure auxiliary recording power Pw2, which is equal to or higher than the reproduction power Pw1 during reproduction, and lower than the recording power Pw3 during recording. The reference voltage ■sw2 is selected. In other words, when erasing, vsw
Add the reference voltage ■sw2, which is l x 78w2 x 78w3,
The optical power of the recording/reproducing laser is configured to supplement the optical power of the erasing laser.

なお第8図において両レーザ光の立ち上り、立ち下り時
の時間差しは両スポット光が距離X(第6図)離れて配
置されているため、ディスクの速度Vとしたとt = 
X/V  だけ早く消去スポット光Mを照射する必要が
あるために設けた時間差である。
In addition, in Fig. 8, the time difference between the rise and fall of both laser beams is t = t = since both spot lights are placed a distance X (Fig. 6) apart, and the speed of the disk is V.
This time difference is provided because it is necessary to irradiate the erasing spot light M earlier by X/V.

第9図は記録/再生用レーザが消光用レーザを熱的に補
助する様子を説明するだめの図であり、消去時に記録/
再生用の半導体レーザ1o1の光出力Pw2 をaの時
は2w2−0.bの時1l−t、Pw1−PW’2 (
=再生パワー)、cの時はPwl〈2w2く2w3にな
るように選んだ時の徐冷時間(tE1〜(E3)の違い
を示している。横軸は時間、縦軸は温度である。同図を
みてわかるように、消去時に再生パワーと同様あるいは
それ以上で、かつ記録パワーより低い消去補助記録パワ
ーを記録/再生用し〜ザ1o1が出力すれば徐冷時間が
長くなり、短かい消去レーザスポット光Mでも安定した
消去条件が得られる。
Figure 9 is a diagram to explain how the recording/reproducing laser thermally assists the quenching laser.
When the optical output Pw2 of the reproducing semiconductor laser 1o1 is 2w2-0. When b, 1l-t, Pw1-PW'2 (
= reproduction power), c indicates the difference in slow cooling time (tE1 to (E3)) when Pwl<2w2 x 2w3 is selected. The horizontal axis is time, and the vertical axis is temperature. As can be seen from the figure, if the erasing auxiliary recording power is the same as or higher than the reproduction power and lower than the recording power during erasing, and the 1o1 outputs it, the annealing time will be longer and the annealing time will be shorter. Even with the erasing laser spot light M, stable erasing conditions can be obtained.

一方第9図をみてわかるように消去補助記録パワーの強
さに応じて徐冷時間は可変できる。従って消去スポット
光だけではディスクの外周へ行く程徐冷時間が短かくな
るので、記録スポット光の前記消去補助記録パワーを強
くしてやれば、前記短かくなった徐冷時間が補正でき、
ディスクの内外周にかかわらずほぼ一定の徐冷時間を得
ることが可能となる。
On the other hand, as can be seen from FIG. 9, the slow cooling time can be varied depending on the strength of the erasing auxiliary recording power. Therefore, if only the erasing spot light is used, the annealing time becomes shorter toward the outer periphery of the disk, so by increasing the erasure auxiliary recording power of the recording spot light, the shortened annealing time can be corrected.
It is possible to obtain a substantially constant slow cooling time regardless of the inner or outer circumference of the disk.

第10図に前記記録スポット光の消去補助記録パワーの
強さく縦軸に示す)をディスクの内外周(横軸に示す)
に応じて変化させる様子を示す。
In Figure 10, the strength of the erasing auxiliary recording power of the recording spot light (indicated on the vertical axis) is expressed as the inner and outer periphery of the disk (indicated on the horizontal axis).
This shows how it changes depending on the situation.

ここで消去補助記録パワーを可変させるには、両スポッ
ト光が照射しているディスクの径方向の位置の情報を第
7図の端子Pに加え、基準電圧■sEを可変して行う。
In order to vary the erasure auxiliary recording power, information on the radial position of the disk irradiated by both spot lights is applied to the terminal P in FIG. 7, and the reference voltage sE is varied.

発明の詳細 な説明してきたように本発明の構成によれば、従来と比
べ消去スポット光の長さmxが短かくても、長い徐冷時
間が得られることとなり、前記両スポット光を一直線に
並べることが容易で、かつ温度等の環境変化に対しても
安定した両スポット光配置が得られる。まだ消去スポッ
ト光の長さmxが一定でも、可変しやすい記録スポット
光の光パワーを可変することによりディスクの外内周の
周速の違いにより生ずる徐冷時間の違いを無くすること
ができるため、記録条件とは明らかに異なりかつ常に一
定の消去条件が得られ記録薄膜の設計も容易となる。
As described in detail, according to the configuration of the present invention, even if the length mx of the erasing spot light is shorter than that of the conventional art, a long annealing time can be obtained, and the two spot lights can be aligned in a straight line. A double spot light arrangement that is easy to line up and is stable against environmental changes such as temperature can be obtained. Even if the length mx of the erasing spot light is still constant, by varying the optical power of the easily variable recording spot light, it is possible to eliminate the difference in annealing time caused by the difference in peripheral speed between the outer and inner circumferences of the disk. , an erasing condition that is clearly different from the recording condition and always constant can be obtained, and the design of the recording thin film is also facilitated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は非晶質状態と結晶状態の間の転移をモデル化し
て示した図、第2図は記録薄膜上において昇温急冷、昇
温徐冷条件を実現する光スポットの一例を示す図、第3
図は昇温徐冷と昇温急冷の時間的な熱変化を示す図、第
4図は本発明で用いる光学的案内トラックを有する光デ
ィスクの径方向の断面図、第5図は本発明の一実施例を
示すブロック図、第6図は両スポット光の溝トラツク上
の配置を示す図、第7図は本発明に用いる両レーザのパ
ワー制御回路の一実施例を示す回路図、第8図は両レー
ザパワーの各状態におけるパワーの変化を示す図、第9
図は本発明により徐冷時間が変化する様子を示す図、第
10図は記録スポット光の強さをディスクの径方向で変
化させる様子を示した図である。 61・・・・・・溝トラツク、52・・・・・・記録媒
体、101・・・・・・記録/再生用レーザ、103・
・・・・・消去用レーザ、116・・・・・・消去用レ
ーザ駆動回路、117・・・・・・記録/再生用レーザ
、L・・・・・・記録スポット光(第1の微小スポット
光)、M・・・・・・消去スポット光(第2の微小スポ
ット光)、Pwl、2w2,2w3・・・・・・再生時
、消去時、記録時の記録スポット光の強さ、tEl ”
 Wl ・・””昇温時間、tE2〜tE4・・・・・
・徐冷時間、tW2・・・・・・急冷時間。 第1図 第2図 [ 第3図 第4図 第5図 第6図 第7図 (の      (1))
Figure 1 is a diagram showing a model of the transition between an amorphous state and a crystalline state, and Figure 2 is a diagram showing an example of a light spot that realizes rapid heating and cooling conditions and slow heating and cooling conditions on a recording thin film. , 3rd
The figure shows temporal thermal changes during gradual heating and cooling and rapid heating and cooling, Figure 4 is a radial cross-sectional view of an optical disc having an optical guide track used in the present invention, and Figure 5 is a diagram showing one example of the present invention. FIG. 6 is a block diagram showing the embodiment; FIG. 6 is a diagram showing the arrangement of both spot lights on the groove track; FIG. 7 is a circuit diagram showing an embodiment of the power control circuit for both lasers used in the present invention; FIG. Figure 9 shows the power change in each state of both laser powers.
The figure shows how the slow cooling time changes according to the present invention, and FIG. 10 shows how the intensity of the recording spot light changes in the radial direction of the disk. 61...Groove track, 52...Recording medium, 101...Recording/reproducing laser, 103...
...Erasing laser, 116... Erasing laser drive circuit, 117... Recording/reproducing laser, L... Recording spot light (first minute Spot light), M...Erasing spot light (second minute spot light), Pwl, 2w2, 2w3...Intensity of recording spot light during playback, erasing, and recording, tEl”
Wl...""Temperature rising time, tE2-tE4...
- Slow cooling time, tW2...Quick cooling time. Figure 1 Figure 2 [ Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 (of (1))

Claims (3)

【特許請求の範囲】[Claims] (1)記録媒体上で絞られた第1の微小スポット光によ
り前記記録媒体に昇温急冷効果を与え信号を記録し、前
記第1の微小スポット光と同一トラック上で略一直線に
並び、かつ前記第1の微小スポット光の照射領域に熱の
影響を与える範囲離れて、時間的に先行するよう配置さ
れる少なくとも1ヶ以上の第2の微小スポット光により
前記記録媒体に昇温徐冷効果を与えて消去を行う装置で
あって、前記第2の微小スポット光が照射し消去する領
域を前記第1の微小スポット光が続いて同時に照射し、
かつその時の前記第1の微小スポット光の強さが記録時
の前記第1の微小スポット光の強さより低いことを特徴
とした光学的可逆記録再生装置。
(1) A first minute spot light focused on a recording medium causes a heating and rapid cooling effect on the recording medium to record a signal, and is arranged substantially in a straight line on the same track as the first minute spot light, and At least one or more second minute spot lights placed temporally ahead of the irradiation area of the first minute spot light are placed at a distance from a range that exerts a thermal influence on the irradiation area of the first minute spot light, causing a temperature raising and slow cooling effect on the recording medium. The apparatus performs erasing by giving a , wherein the first minute spot light simultaneously irradiates the area to be irradiated and erased by the second minute spot light,
An optical reversible recording and reproducing apparatus characterized in that the intensity of the first minute spot light at that time is lower than the intensity of the first minute spot light at the time of recording.
(2)第2の微小スポット光が照射し消去する記録媒体
上の領域を、第1の微小スポット光が続いて同時に照射
し、かつその時の前記第1の微小スポット光の強さが信
号再生時の前記第1の微小スポット光の強さより高く、
かつ信号記録時の前記強さより低いことを特徴とした特
許請求の範囲第1項記載の光学的可逆記録再生装置。
(2) The first minute spot light simultaneously irradiates the area on the recording medium to be irradiated and erased by the second minute spot light, and the intensity of the first minute spot light at that time is the signal reproduction higher than the intensity of the first minute spot light at
2. The optical reversible recording and reproducing apparatus according to claim 1, wherein the intensity is lower than the intensity during signal recording.
(3)第2の微小スポット光が照射し消去する記録媒体
上の領域を、第1の微小スポット光が続いて同時に照射
し、かつその時前記第1の微小スポット光の強さが前記
記録媒体の進行速度に応じて変化させることを特徴とし
た特許請求の範囲第1項または第2項記載の光学的可逆
記録再生装置。
(3) The area on the recording medium to be irradiated and erased by the second minute spot light is simultaneously irradiated with the first minute spot light, and at that time, the intensity of the first minute spot light is equal to the area on the recording medium that is to be erased. 3. An optical reversible recording/reproducing apparatus according to claim 1 or 2, wherein the optical reversible recording/reproducing apparatus changes according to the traveling speed of the optical disc.
JP59121146A 1984-06-12 1984-06-12 Optical reversible recording and reproducing device Pending JPS61928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59121146A JPS61928A (en) 1984-06-12 1984-06-12 Optical reversible recording and reproducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59121146A JPS61928A (en) 1984-06-12 1984-06-12 Optical reversible recording and reproducing device

Publications (1)

Publication Number Publication Date
JPS61928A true JPS61928A (en) 1986-01-06

Family

ID=14803991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59121146A Pending JPS61928A (en) 1984-06-12 1984-06-12 Optical reversible recording and reproducing device

Country Status (1)

Country Link
JP (1) JPS61928A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0286126A2 (en) * 1987-04-10 1988-10-12 Hitachi, Ltd. Information recording method and apparatus using reversible phase change

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0286126A2 (en) * 1987-04-10 1988-10-12 Hitachi, Ltd. Information recording method and apparatus using reversible phase change

Similar Documents

Publication Publication Date Title
JPS5968844A (en) Optical reversible recording and reproducing device
JPS6049977B2 (en) optical disk device
JP5332462B2 (en) Short pulse light source, laser beam emitting method, optical device, optical disk device, and optical pickup
JPS61928A (en) Optical reversible recording and reproducing device
KR100813942B1 (en) Method for high rate optical recording and apparatus thereof
JPH0816987B2 (en) Optical recording / reproducing device
JPS618739A (en) Erasable optical recording and reproducing device
JPS60197935A (en) Erasable optical recording and reproducing device
JP3006645B2 (en) Optical disk drive
JP2000076653A (en) Information recorder
JPS6233648B2 (en)
JPS61287055A (en) Optical recording and reproducing device
JPS60258733A (en) Erasable optical recording and reproducing device
JPS60256924A (en) Optical reversible recording and reproducing device
JPS615446A (en) Erasable optical recording and reproducing device
JPS59172167A (en) Reversible optical recorder and reproducing device
JP3249377B2 (en) Reproduction method of optical recording medium
JPS61133034A (en) Optical information device
JPH02105342A (en) Optical disk recording device
JPH11265509A (en) Optical information recording and reproducing method and optical information recording medium
JPS6276029A (en) Erasable optical recording and reproducing device
JPH07307025A (en) Optical disk and signal reproducing device therefor
JPS59144049A (en) Optical recording and reproducing system
JPS60263351A (en) Erasable optical recording and reproducing device
JPS61184739A (en) Optical pickup device for multispot