JPS6154447A - Device and method of in-tube running device - Google Patents

Device and method of in-tube running device

Info

Publication number
JPS6154447A
JPS6154447A JP59177977A JP17797784A JPS6154447A JP S6154447 A JPS6154447 A JP S6154447A JP 59177977 A JP59177977 A JP 59177977A JP 17797784 A JP17797784 A JP 17797784A JP S6154447 A JPS6154447 A JP S6154447A
Authority
JP
Japan
Prior art keywords
wheel
wheels
pipe
arms
arm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59177977A
Other languages
Japanese (ja)
Other versions
JPH059309B2 (en
Inventor
Tokuji Okada
徳次 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP59177977A priority Critical patent/JPS6154447A/en
Publication of JPS6154447A publication Critical patent/JPS6154447A/en
Publication of JPH059309B2 publication Critical patent/JPH059309B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/265Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/26Pigs or moles, i.e. devices movable in a pipe or conduit with or without self-contained propulsion means
    • F16L55/28Constructional aspects
    • F16L55/30Constructional aspects of the propulsion means, e.g. towed by cables
    • F16L55/32Constructional aspects of the propulsion means, e.g. towed by cables being self-contained
    • F16L55/34Constructional aspects of the propulsion means, e.g. towed by cables being self-contained the pig or mole being moved step by step
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0258Structural degradation, e.g. fatigue of composites, ageing of oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Pipeline Systems (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To run the running device freely in a conduit which has a vertical part, inflection part, different-diameter part, twist part, etc., by providing one wheel having a driving device each to terminals of extension arms projecting from the main body in both directions, and controlling the speed of each wheel so that the angles between both extension arms and onward surface of the tube wall are equal. CONSTITUTION:The main body 2 is provided with extension arms 1, wheel driving devices 1a and 1b, wheels 3a and 3b, energizing force source motors whih project the extension arms 1, springs, etc. The angles thetaa and thetab between the arms 1 and tube walls Wa and Wb are detected and the wheels are so controlled that the lower wheel 3b (or 3a) when thetaa>thetab or upper wheel 3a (or 3b) when thetaa<thetab is accelerated. Consequently, even when the tube walls Wa and Wb vary in onward inclination, the body runs while holding an invariably stably attitude. Front and rear probing rods 5a are provided in front of and behind the wheels 3a and 3b so as to detect the angles thetaa and thetab respectively, and the inclinations of the walls to the arms 1 are calculated by comparing spring lengths h1 or h2 or from variations.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は管(管路を含む)内走行装置及びその用法に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to an intra-pipe (including conduit) running device and its use.

パイプ内の亀裂、損傷、摩耗、腐食、汚れ、異物の付着
、材質の劣化などの諸検査や、パイプ接合箇所の状況把
握、あるいはまた、パイプ内へのケーブル敷設、パイプ
内での資材輸送等の作業を人手に依らずロボット化する
ことは、将来に向けての大きな希望である。殊に、人手
による作業空間の採れないパイプ内とか、原子炉関係で
人による作業が危険であるようなパイプ内作業では、単
に作業の合理化、省力化には留まらない必須の要請とな
る。
Inspection of cracks, damage, wear, corrosion, dirt, adhesion of foreign matter, deterioration of materials, etc. inside pipes, understanding the condition of pipe joints, laying cables inside pipes, transporting materials inside pipes, etc. It is a great hope for the future that this work can be done by robots without relying on human hands. In particular, when working inside pipes where there is no space for manual work, or when working inside pipes related to nuclear reactors where manual work is dangerous, this is an essential requirement that goes beyond simply streamlining the work and saving labor.

(従来の技術) 従来は、重力による車輪と管壁の摩擦を利用した走行方
式が考えられていたにすぎない。これは陸上の走行方式
をそのまま管内に適用したものと考えられる。このよう
な方式では、水平でないパイプや曲折したパイプ、さら
には管径が一定していないパイプの内部を移動すること
は不可能であった。
(Prior Art) In the past, only a traveling method was considered that utilized the friction between the wheels and the pipe wall due to gravity. This is thought to be a direct application of the land-based travel system within the area. With this method, it is impossible to move inside pipes that are not horizontal, bent, or have an uneven diameter.

本発明者はこの問題の対策として特願昭57−2207
17 「車輪」及び特願昭57−220719 「管内
移動装置」、特願昭ss、−211344「管内自走装
置」を開発し、特許出願中である。
As a countermeasure to this problem, the inventor filed a patent application in 1983-2207.
17 ``Wheel'' and Japanese Patent Application 1983-220719 ``Intra-Pipe Moving Device'', Japanese Patent Application 1983-211344 ``Intra-Pipe Self-propelled Device'' were developed and a patent application is pending.

(発明が解決しようとする問題点) 上記出願中の発明は、管径及び管軸方向が不定な管内を
走る装置が未開発であるという問題を解決することを目
的としたのであるが、今回の発明も同じ目的で、さらに
改善されたものを提供する。
(Problem to be solved by the invention) The purpose of the above-pending invention is to solve the problem that a device running inside a pipe whose diameter and axis direction are undefined has not yet been developed. The invention of the invention also provides a further improvement for the same purpose.

(問題点を解決するための手段) 今回の発明の概要は次の装置A、Bとその用法0.Dで
ある。
(Means for Solving the Problems) The outline of the present invention is as follows: Devices A and B and their usage 0. It is D.

人6反対方向へ突き出るよう付勢した一対の伸縮腕をも
つ本体と、 上記各腕先端に一個ずつ固定した駆動装置付き車輪と、 上記二車輪が接する管壁の進行方向表面と上記腕軸線と
のなす角度、又はその対応量を検出する夫々の検出装置
と、 これら検出装置の検出値が等しくなるよう、上記二車輪
の各駆動装置を速度制御する制御装置と、 を備えることを特徴とする管内走行装置。
Person 6: A body having a pair of telescoping arms urged to protrude in opposite directions; A wheel with a drive device fixed to the tip of each arm; and a surface in the traveling direction of the pipe wall where the two wheels contact and the axis of the arms. and a control device that controls the speed of each drive device of the two wheels so that the detected values of these detection devices become equal. In-pipe running device.

B・ 反対方向へ突き出るよう付勢した一対の伸縮腕を
もつ本体と、 上記各腕先端に一個ずつ固定した駆動装置付き車輪と、 一方又は双方の上記伸縮腕に、車輪と同じ向きで上下動
可能に設けられ、管壁の低い方へ先端を向ける探触棒と
、 上記二車輪が接する管壁の進行方向表面と上記腕軸線と
のなす角度、又はその対応量を検出する夫々の検出装置
と、 これら検出装置の検出値が等しくなるよう、上記二車輪
の各駆動装置を速度制御する制御装置と、 を備えることを特徴とする管内走行装置。
B. A main body with a pair of telescoping arms urged to protrude in opposite directions, a wheel with a drive device fixed to the tip of each arm, and one or both of the telescoping arms capable of vertical movement in the same direction as the wheels. a probe rod that can be installed so that its tip points toward the lower side of the tube wall; and a detection device that detects the angle between the arm axis and the surface of the tube wall in the traveling direction that the two wheels touch, or the corresponding amount thereof. and a control device that controls the speed of each drive device of the two wheels so that the detection values of these detection devices become equal.

0、反対方向へ突き出るよう付勢した一対の伸縮腕をも
つ本体と、 上記各腕先端に一個ずつ固定した駆動装置付き車輪と、 上記車輪を管軸方向へ向ける機構と、 上記二車輪が接する管壁の進行方向表面と上記腕軸線と
のなす角度、又はその対応量を検出する夫々の検出装置
と、 これら検出装置の検出値が等しくなるよう、上記二車輪
の各駆動装置を速度制御する制御装置と、 を備える管内走行装置を管内走行させる際、管軸方向へ
向けられる車輪の向きを、回転関節の角度調節によって
一定量だけ横へずらし1、 該車輪をして、らせん状に
管壁面を転進せしめることを特徴とする管内走行装置の
用法。
0. A main body having a pair of telescopic arms urged to protrude in opposite directions, a wheel with a drive device fixed to the tip of each arm, a mechanism for directing the wheels in the direction of the tube axis, and the two wheels contact each other. Each of the detection devices detects the angle between the moving direction surface of the tube wall and the arm axis, or the corresponding amount thereof, and the speed of each drive device of the two wheels is controlled so that the detected values of these detection devices are equal. When a pipe traveling device comprising: a control device and A method of using an in-pipe running device characterized by turning a wall surface.

96反対方向へ突き出るよう付勢して一対の伸縮腕をも
つ本体と1 上記各腕先端に一個ずつ固定した駆動装置付き車輪と、 上記二車輪が接する管壁の進行方向表面と上記腕軸線と
のなす角度、又はその対応量を検出する夫々の検出装置
と、 これら検出装置の検出値が等しくなるよう、上記二車輪
の各駆動装置を速度制御する制御装置と、 を備える管内走行装置を複数個並べ、夫々の本体間を伸
縮、屈曲、ねじり回転可能な連結材でつなぎ、伸縮量検
出装置を付け、検出した伸縮量を一定範囲内に収めるよ
う上記各走行装置車輪の速度制御をすることを特徴とす
る管内走行装置の用法。
96 A main body having a pair of telescoping arms urged to protrude in opposite directions; 1 A wheel with a driving device fixed to the tip of each of the arms, and a surface in the traveling direction of the pipe wall where the two wheels contact and the axis of the arm. a plurality of in-pipe traveling devices each comprising: a detection device for detecting the angle formed by the two wheels, or a corresponding amount thereof; and a control device for controlling the speed of each drive device of the two wheels so that the detection values of these detection devices are equal; Arranged in a row, each main body is connected with a connecting member that can be expanded/contracted, bent, and torsionally rotated, an expansion/contraction amount detection device is attached, and the speed of each traveling device wheel is controlled so that the detected expansion/contraction amount is within a certain range. A method of using an in-pipe running device characterized by:

(作用) 本発明者がこれまでに開発した管内走行装置は、三脚が
コンパス状に管壁を突っ張るか、本体から出た両腕端に
二輪車枠をつけていたのに対し、今回の発明は一本の伸
M棒の両端に動輪を一個ずつ付けた形であり、通常の車
輪を動輪として使うことも可能である。つまり地上を走
る二輪車が一輪車に変ったような変革であるが、これで
十分、機能する。
(Function) In contrast to the pipe traveling devices developed by the present inventors so far, either the tripod stretched out against the pipe wall like a compass or a two-wheeled frame was attached to the ends of both arms protruding from the main body. It has one driving wheel attached to each end of a single elongated M rod, and it is also possible to use regular wheels as the driving wheels. In other words, it is a transformation similar to turning a two-wheeled vehicle on the ground into a unicycle, but it is fully functional.

装置光#iAは、管内で両側壁面に車輪を押付ける逆向
き伸縮腕と、これらを支持し付勢する本体とが主要部で
、あとは腕と進行方向管壁面とのなす角度検出装置、車
輪駆動速度の制御装置が加わる。走りやすい管路であれ
ば、案内不要か、簡単な案内具を本体に付ければよい。
The main parts of the device light #iA are a reverse telescoping arm that presses the wheels against both side wall surfaces in the tube, and a main body that supports and biases them. A wheel drive speed control device is added. If the conduit is easy to navigate, no guide is required, or a simple guide can be attached to the main body.

そうでない場合、これに進路案内用探触棒を加えた装置
発明Bがある。
If this is not the case, there is a device invention B in which a probe rod for route guidance is added to this.

探触棒は車輪付近の管壁の高低(車輪の踏面を標準とし
て)を探るもので、その最も低い所へ車輪を向かわせる
ことによって、円筒路の場合・管軸方向へ車輪を進める
ことになる。また管の断面が真円でない場合、車輪が大
径部分を選んで進むことになる。
The probe rod detects the height of the pipe wall near the wheel (with the wheel tread as the standard), and by directing the wheel to the lowest point, in the case of a cylindrical road, it is possible to move the wheel in the direction of the pipe axis. Become. Also, if the cross section of the pipe is not a perfect circle, the wheels will choose the large diameter part to move forward.

角度検出装置と両車輪の速度制御装置は、両伸縮腕が原
則として管壁に直角を保つようにするものである。管が
先すぼまりか、先広がりの場合も、各腕と管壁のなす角
度を等しくすれば安定して進む。従って、両車輪が管壁
の進行方向表面となす角度を常時検出し、両角度を等し
くするよう、進行方向の角度が小さな方の腕の車輪を他
より速めるよう制御するのである。
The angle detection device and the speed control device for both wheels ensure that both telescopic arms remain essentially at right angles to the tube wall. Whether the tube tapers at the end or widens at the end, it will move stably if the angles between each arm and the tube wall are equal. Therefore, the angles that both wheels make with the surface of the tube wall in the direction of travel are constantly detected, and the wheel on the arm with the smaller angle in the direction of travel is controlled to be faster than the others so that both angles are equal.

本体が伸縮腕を突き出す付勢動力源は第5゜6,7図の
実施例のようにコイルバネだけの簡単なものから電動、
電磁力、空気圧力等も利用できる。車輪駆動装置は通常
、電動機、特殊な条件で流体圧モータとなる。
The power source for urging the main body to protrude the extendable arm may be as simple as a coil spring as shown in the embodiment shown in Figs.
Electromagnetic force, air pressure, etc. can also be used. The wheel drive device is usually an electric motor, and in special conditions a hydraulic motor.

用法発明のCは装置が管内をらせん状に旋回進行するも
のである。管軸方向へ向けられるはずの車輪の向きを故
意に横へずらすだけで簡単である。これは、新規な管内
走法を開いた。用法発明のDは、この発明装置を複数個
連結させ、車輪駆動装置を連結材伸縮値により制御する
ことにより、物品運搬に適した走行体にすることができ
る。
Usage Invention C is one in which the device moves spirally inside the tube. It is easy to do this simply by intentionally shifting the direction of the wheel, which should be directed toward the tube axis, to the side. This opened a new intratubular strategy. Usage D of the invention can be made into a traveling body suitable for transporting articles by connecting a plurality of devices of this invention and controlling the wheel drive device by the expansion/contraction value of the connecting member.

(実施例) 第1図は装置発明の詳細な説明図で、その/は前述の伸
縮腕、lα、/bは車輪駆動装置、λは本体、3α、J
bは車輪を示す。管壁をWα、wb。
(Example) Fig. 1 is a detailed explanatory diagram of the device invention, in which / is the aforementioned telescopic arm, lα, /b is the wheel drive device, λ is the main body, 3α, J
b indicates a wheel. The tube wall is Wα, wb.

管壁進行方面と腕輪とのなす角をθα、θbとしている
The angles formed by the direction in which the tube wall advances and the bracelet are defined as θα and θb.

本体2には、伸縮腕lをつき出す付勢動力源として、モ
ータ、バネ等を設けるがその図は略した。なお付勢力、
っまり管壁へ向う腕lの突つげり力を伸びる時弱く、縮
む時強くし、両腕相等しくなるようにしておくと、本体
コを常に管の中心位置に置き、かつ突っ張り力を一定に
することが可能になる。
The main body 2 is provided with a motor, a spring, etc. as a power source for urging the extendable arm l, but their illustrations are omitted. Furthermore, the biasing force
By making the thrusting force of the arm L toward the tube wall weaker when it extends and stronger when it contracts so that both arms are equal, the main body can always be placed in the center of the tube and the thrusting force can be kept constant. It becomes possible to

腕/と管壁爾、Wbとのなす角度θα、θbが等しくな
るように両車輪3α、Jbの速度制御をすれば・図のよ
うに正しい姿勢で進行するわけである。
If the speeds of both wheels 3α and Jb are controlled so that the angles θα and θb between the arm and the tube wall and Wb are equal, the robot will move in the correct posture as shown in the figure.

つまり第1図の矢印方向へ進む場合、後述のようにして
角θα、θbを検出し、比較した時、θα〉θbなら下
側車輪3bを加速(又は3αを減速)し、θαくθbな
ら上側車輪3αを加速(又は3bを減速)するという簡
単な制御である。これで管壁背。
In other words, when moving in the direction of the arrow in Fig. 1, the angles θα and θb are detected as described later, and when compared, if θα>θb, the lower wheel 3b is accelerated (or 3α is decelerated), and if θα<θb, the lower wheel 3b is accelerated. This is a simple control that accelerates the upper wheel 3α (or decelerates the upper wheel 3b). This is the back of the tube wall.

菊の進行方向の傾斜が変っても、この発明の装置は常に
安定した姿勢で進む。
Even if the inclination of the direction in which the chrysanthemums travel changes, the device of this invention always advances in a stable posture.

装置発明Bの探触俸の二実施例を第2α、 2b図に示
す。この例では探触子jは全方向に転進し得る球体で、
探触俸jczの先端に付いている。第2α図の場合、前
後の探触体jα夫々が、伸縮腕/に直角に固定したビー
ム76両端の垂直筒部17に滑合して車輪3と同じ向き
になり、探触棒5α後端と筒部/7とをつなぐフィルバ
ネSにより棒端の探触子jを管壁Wに押付けている。
Two embodiments of the probe of device invention B are shown in Figures 2α and 2b. In this example, probe j is a sphere that can move in all directions,
It is attached to the tip of the probe jcz. In the case of FIG. 2α, the front and rear probes jα are slid onto the vertical cylinders 17 at both ends of the beam 76 fixed at right angles to the telescopic arm/, and are oriented in the same direction as the wheel 3, so that the rear end of the probe rod 5α The probe j at the end of the rod is pressed against the tube wall W by a fill spring S that connects the tube portion 7 and the probe j.

押付けられた前後の探触子!、!は・この場合、その押
付力により管壁Wの低い方へ転がろうとするが、腕lの
まわりしか動けないため管軸方向に並んだ位置に落付く
。従って車輪3も管軸方向へ向けられる。腕/につけた
捩じり回転用関節弘が、この動きを自由にしている。な
お、この実施例は探触俸jαを角度θの検出装置に使う
ため、車輪3の前後に設けている。このことは、管壁W
の最も低い方に車輪3を倣わせ、管軸方向に車輪を案内
することをより確実なものにしている。
The probe before and after being pressed! ,! In this case, due to the pressing force, they try to roll toward the lower part of the tube wall W, but because they can only move around the arm l, they end up in a position lined up in the tube axis direction. Therefore, the wheels 3 are also oriented in the direction of the tube axis. The twisting and rotating joints attached to the arms allow for this movement. Incidentally, in this embodiment, the probe arms jα are provided at the front and rear of the wheel 3 in order to be used as a device for detecting the angle θ. This means that the tube wall W
The wheels 3 are made to follow the lowest side of the tube, thereby making it more reliable to guide the wheels in the direction of the tube axis.

角度θα、θbを検出するには第2α図のバネ長さhl
 F hlの比較、あるいはその変化から、腕/に対す
る管壁Wの傾斜を演算できる。
To detect the angles θα and θb, use the spring length hl in Figure 2α.
From the comparison of F hl or its change, the inclination of the tube wall W with respect to the arm can be calculated.

第2b図に示した実施例も進路案内用探触俸兼角度θ検
出装置で、製品としては第5.6.7図に示す。等長探
触俸!α、jαを腕/の一点乙に、車輪3と同面内で上
下揺動可能に軸支し、棒間のバネSで引寄せる事により
管壁Wを押させている。このため、第2α図と同様、車
輪3を管軸方向へ向けることができる。第2b図中のポ
テンショメータP1は探触俸よα一本に一個、つまり二
個重ねたものである。腕/と両探触棒5α、よαとのな
す角度をポテンショメータP、によって知れば、面角度
の和の1/2が、管壁W上に立つ二等辺三角形の垂線の
向きになるから、これと腕lとの角θは容易に演算でき
る。
The embodiment shown in Fig. 2b is also a probe and angle θ detection device for route guidance, and its product is shown in Fig. 5.6.7. Equal length probe! α and jα are pivotally supported at one point B on the arm so that they can swing up and down in the same plane as the wheel 3, and the tube wall W is pushed by pulling them together with a spring S between the rods. Therefore, the wheels 3 can be directed in the direction of the tube axis, similar to FIG. 2α. The potentiometer P1 in FIG. 2b is one for each probe arm α, that is, two potentiometers are stacked one on top of the other. If we know the angle formed by the arm / and both probe rods 5α and yα using the potentiometer P, then 1/2 of the sum of the surface angles will be in the direction of the perpendicular to the isosceles triangle standing on the tube wall W. The angle θ between this and the arm l can be easily calculated.

なお第5.6.7図の実施例では、差動歯車機構(傘歯
車3個) trを使い、たった1個のポテンショメータ
で第2b図の探触棒5α、jαのはさみ角二等分線の方
向を求めている。第1図の角度θα、θbは、その角度
の対応量を検出してもよい事はいうまでもない。例えば
第2b図の探触俸!αを前側だけとし、これと伸縮腕l
とのなす角度のみをポテンショメータP、で検出し比較
制御に用いてもよい。
In the embodiment shown in Fig. 5.6.7, a differential gear mechanism (three bevel gears) tr is used, and the scissor angle bisector of the probe rods 5α and jα in Fig. 2b is obtained using only one potentiometer. I'm looking for direction. It goes without saying that for the angles θα and θb in FIG. 1, the corresponding amounts of the angles may be detected. For example, the probe payload in Figure 2b! α is only the front side, and this and the extendable arm l
It is also possible to detect only the angle formed by the potentiometer P and use it for comparative control.

第3図は第2b図の探触棒5αを付けた実施例装置の走
行状態を示す。探触棒5αの進路案内作用と、角度θの
検出、およびこれによる各車輪速度制御により安定して
進む。
FIG. 3 shows the running state of the embodiment device equipped with the probe rod 5α of FIG. 2b. The vehicle travels stably due to the course guiding action of the probe rod 5α, the detection of the angle θ, and the speed control of each wheel thereby.

第2α、 2b図のように車輪3の前後に探触棒jαを
設けた装置では、例えば第4図のような断面の管の場合
、上記実施例装置は二本並べて画いた位置のどちらを進
むか分らない(2本とも管軸方向に進む点で共通)。右
側の位置のものの方が、左側のものより管の大径部を進
むから安定しているが、上述の実施例では、車輪3を管
軸方向へ向けるのが主になるため、より低い方へ車輪3
を移す働きに乏しい。車輪3の横滑りにより少しずつ低
い方へ移すだけである。
In a device in which probe rods jα are installed before and after the wheel 3 as shown in Figures 2α and 2b, for example, in the case of a tube with a cross section as shown in Figure 4, the device of the above embodiment can detect which of the two positions drawn side by side. I don't know if it will move forward (both of them have the same point that they move in the direction of the tube axis). The one on the right is more stable than the one on the left because it travels along the large diameter part of the pipe, but in the above embodiment, the wheel 3 is mainly directed toward the axis of the pipe, so the lower one is more stable. to wheel 3
It lacks the ability to transfer. It simply moves to a lower position little by little due to the wheels 3 skidding.

第5〜7図に示す実施例は上の問題を解消している。即
ち、この実施例は車輪3の軸を中空とし、これに通した
丸棒の両端に短い探触棒を直角につけたコ形探触棒7を
加えている。コ形探触棒7の先端には球体探触子5を付
けているが、この実施例は前後進いずれにも探触子!を
管壁Wに当てるため、探触棒7の左右俸端夫々の上下に
球体を付けている。つまり進行方向の違いによって上下
の球体を使いわけている。
The embodiment shown in FIGS. 5-7 solves the above problem. That is, in this embodiment, the shaft of the wheel 3 is made hollow, and a U-shaped probe rod 7 is added, which is a round rod passed through the shaft and short probe rods attached at right angles to both ends of the rod. A spherical probe 5 is attached to the tip of the U-shaped probe rod 7, but in this embodiment, the probe can be used both forward and backward! In order to hit the tube wall W, spheres are attached to the top and bottom of the left and right ends of the probe rod 7, respectively. In other words, the upper and lower spheres are used differently depending on the direction of travel.

この球体探触子j、!を管iWへ押付ける力は、車輪3
の軸と、これに挿入したコ形探触俸7水平部との摩擦に
よっている。コ形探触棒7は第6図のように、両探触子
j、rが共に管壁Wに載っている時は操舵作用を生じな
いが、例えば第4図の左側の装置のように管の大径部か
ら側方へそれた場合、そのフ形探触棒7の片側探触子!
が浮上る。すると、他側探触子5だけが管壁Wの傾斜面
を押すことになり、低い方へ横滑り転進するため、車輪
3もその方へ向けられる。もつとも、車輪3は角度検出
用探触腕!α。
This spherical probe j! The force pushing the pipe iW is the force of the wheel 3
This is due to the friction between the shaft of the probe and the horizontal part of the U-shaped probe arm 7 inserted therein. As shown in FIG. 6, the U-shaped probe rod 7 does not produce a steering action when both probes j and r are placed on the tube wall W. If it deviates to the side from the large diameter part of the tube, the probe on one side of the flat-shaped probe rod 7!
emerges. Then, only the probe 5 on the other side pushes against the inclined surface of the tube wall W, causing the vehicle to skid to a lower position, so that the wheels 3 are also directed in that direction. Of course, wheel 3 is a probe arm for angle detection! α.

5αを付けているため、上の作用はや\弱められる。Since 5α is attached, the above effect is somewhat weakened.

上記フ形探触棒7は特に操舵性能を高める場合のもので
、一般には第2α、 zb図の角度検出装置兼用の探触
棒jαで、車輪3を軸方向へ向けるだけで安定に進行で
きる管路が多い。
The above-mentioned flat-shaped probe rod 7 is used especially to improve steering performance, and is generally a probe rod jα shown in Figures 2α and zb that also doubles as an angle detection device, allowing stable movement by simply pointing the wheels 3 in the axial direction. There are many pipes.

第5〜7図のPlは第2b図のポテンショメータP、と
同じで差動歯車機構を用いて指示される探触俸jα、!
αの2等分線が腕軸からずれる角度を検出する。P、は
車輪30回転量、つまり走行距離を検出するものである
。PltPfともポテンショメータを使ったが、これに
限るわけでない。
Pl in FIGS. 5 to 7 is the same as the potentiometer P in FIG. 2b, and the probe radius jα, ! is indicated using a differential gear mechanism.
The angle at which the bisector of α deviates from the arm axis is detected. P is for detecting the amount of wheel 30 rotations, that is, the distance traveled. Although a potentiometer was used for PltPf, it is not limited to this.

Mは駆動装置を含む車輪速度制御装置で、ポテンショメ
ータP、によって検出した探触棒りα、jαの腕/に対
する角度から第2b図のθ、又は第1図のθα、θbを
求め、両側角度が等しくなるよう両車軸3α、3bf)
速度制御をする。この両車軸速度の協調制御により、両
側−車輪ずつの装置でも安定して進行するのであって、
その様子を第8図に示す。
M is a wheel speed control device including a drive device, and θ in Fig. 2b or θα and θb in Fig. 1 are determined from the angles of the probe rods α and jα with respect to the arms detected by the potentiometer P, and the angles on both sides are calculated. Both axles 3α, 3bf)
Control speed. This cooperative control of the speeds of both axles allows for stable progress even with a device that has only one wheel on each side.
The situation is shown in FIG.

第8図は本体2の位置が管径中央部になくてもよい場合
であるため、反対方向へつき出るよう付勢した一対の伸
縮腕/、/は、本体2から両方向へ対称的に出す、専ら
図の上方側腕/を伸縮させる例である。しかし、両腕が
対称的に伸縮すると管の中心点が常に本体コの一点にあ
り、これを後方から追跡すると、管の中心線を連続的に
測定できる。
Fig. 8 shows a case where the position of the main body 2 does not need to be at the center of the pipe diameter, so the pair of telescopic arms /, /, which are urged to protrude in opposite directions, are symmetrically extended from the main body 2 in both directions. This is an example in which the upper arm in the figure is expanded and contracted. However, when both arms expand and contract symmetrically, the center point of the tube is always at one point on the main body, and if this is traced from behind, the center line of the tube can be continuously measured.

第9α、9b図は本発明者がさきに開発した(特願昭5
7−220717号)横移動容易な車輪を示す。
Figures 9α and 9b were developed earlier by the present inventor (Japanese Patent Application No. 5
No. 7-220717) Indicates a wheel that can be easily moved laterally.

車輪3′の多数の外周切込み夫々に納めた横行用小車1
0は、車輪3′外周沿いの環状穴に通した共通軸棒lに
より保持される。環状穴は工作不能ゆえ、実際には車輪
3′を二枚合わせとし、その合せ面夫々に環状U溝を旋
削し、接着又は締合わして一体化する。小車10が車輪
3′の踏み面に2b図の探触棒兼角度検出装置5αと、
コ形探触棒7とを併用した例を示しているが、熱論、後
者を省略してもよい。
A small traversing wheel 1 housed in each of the numerous outer peripheral notches of the wheel 3'
0 is held by a common axle rod l passed through an annular hole along the outer circumference of the wheel 3'. Since an annular hole cannot be machined, two wheels 3' are actually assembled, an annular U-groove is cut into each of the mating surfaces, and the wheels are integrated by gluing or tightening. The small wheel 10 has a probe rod/angle detection device 5α shown in Fig. 2b on the tread surface of the wheel 3',
Although an example is shown in which the U-shaped probe rod 7 is used in combination, the latter may be omitted.

第10b図は両車軸3,3が共に第9α、 9b図の横
移動する車輪3′であって、コ形探触棒を全熱必要とし
ない。この場合探触棒jα、jαは管軸方向への動輪の
倣い制御と、角度検出に使われる。
In FIG. 10b, both axles 3, 3 are the laterally moving wheels 3' of FIGS. 9α and 9b, and the U-shaped probe rod does not require full heating. In this case, the probe rods jα and jα are used to control the tracing of the driving wheel in the direction of the tube axis and to detect the angle.

第10c図は第10α図の上側のコ形探触棒7をなくし
、代って車@3の向きを前後探触枠5α。
In Fig. 10c, the U-shaped probe rod 7 on the upper side of Fig. 10α is removed, and instead, the direction of the car @3 is the front and rear probe frame 5α.

5αの向きから強制的に横へずらす回転角度調節観梅ワ
を加えている。
A rotation angle adjustment feature is added to forcefully shift it sideways from the 5α orientation.

第10d図は第10c図の下側腕lのコ形探触俸7もな
くし、その代りに横移動する車輪3′を使ったものであ
る。
In FIG. 10d, the U-shaped probe arm 7 of the lower arm l in FIG. 10c is also eliminated, and in its place a laterally moving wheel 3' is used.

第11図は回転角変調fffJ機構りをもつ装置の走行
状況を示す。図の上側車輪3は調節機構9の操舵角に応
じて管軸方向からずれて走り、両腕端は管壁面をらせん
状に回り進む。曲線0は操舵輪3と管壁Wとの接点の軌
跡を現わす。このように強制操舵された側の車@3の回
転量は、自主的に操舵している車輪3′のそれよりも一
般に大きい。このため、走行距離検出用の装置P。
FIG. 11 shows a running situation of a device having a rotation angle modulation fffJ mechanism. The upper wheel 3 in the figure runs deviated from the tube axis direction according to the steering angle of the adjustment mechanism 9, and the ends of both arms spiral around the tube wall surface. Curve 0 represents the locus of the contact point between the steering wheel 3 and the tube wall W. The amount of rotation of the vehicle @ 3 on the side that is forcibly steered in this way is generally larger than that of the wheel 3' that is steered voluntarily. For this reason, the device P for detecting the distance traveled.

は、探触棒によって自主的に操舵する車輪の回転量を計
数する方がより正確なデータを得られる。つまり第10
c図、第10d図において、下側の車@ 3 、3/の
回転量を検出するのがよい。
More accurate data can be obtained by counting the amount of rotation of the autonomously steered wheels using a probe rod. That is, the 10th
In Figures c and 10d, it is preferable to detect the amount of rotation of the lower wheels @3, 3/.

回転角度調節機構りの操舵角が大きい場合、自主操舵す
る車輪には真横へ移動する機能が強く要求される。この
ため、第10c図は操舵角が小さい場合、第10d図は
大きい場合の走行に適する。
When the steering angle of the rotation angle adjustment mechanism is large, the self-steering wheels are strongly required to have the ability to move sideways. Therefore, FIG. 10c is suitable for running when the steering angle is small, and FIG. 10d is suitable for running when the steering angle is large.

第12図は復数装Nを連結走行させる用法発明の実施例
を示す。連結材/弘は伸縮継手lりと、図示しない伸縮
量検出装置、及び回転関節≠をつけ、各走行装置本体λ
との連結点に屈折間tfN/3を入れている。これで連
結材/μは伸縮、屈曲、ねじり回転可能になる。この例
は両伸縮腕/。
FIG. 12 shows an embodiment of the invention in which multiple units N are connected and run. The connecting member/Hiroshi is equipped with an expansion joint, an expansion/contraction amount detection device (not shown), and a rotary joint, and each traveling device main body λ
The refraction interval tfN/3 is inserted at the connection point with This allows the connecting member /μ to expand and contract, bend, and twist and rotate. This example has both extendable arms/.

/共に回転関節≠を付け、これと屈折関節/3とで互い
に影響を与えないようにしているが、屈折M 節/Jを
ユニバーサルジヨイントにすれば、腕lの方の回転関節
弘は一個でよい。
A rotary joint ≠ is attached to both /3 so that this and the refraction joint /3 do not affect each other, but if the refraction M joint /J is made a universal joint, there will be only one rotary joint Hiroshi on the arm L side. That's fine.

複数走行装置の一個を主動的に走らせ、これに伴う伸縮
継手/jの伸縮量検出値が一定範囲に収まるよう、他の
装置を走らせる。例えば第12図右側装置を主動体とし
て右へ走らせる場合、伸縮継手isが伸びたことを検出
したら、左側装置の車輪駆動装置へ指令して右へ走らせ
る。その結果、伸縮継手15が縮み過ぎたら左側装置を
減速させる、というように連携して走らせるのである。
One of the plurality of traveling devices is actively run, and the other devices are run so that the detected value of the expansion/contraction amount of the expansion joint /j falls within a certain range. For example, when the device on the right side of FIG. 12 is used as the main moving object to run to the right, when it is detected that the expansion joint IS is extended, a command is given to the wheel drive device of the device on the left side to make it run to the right. As a result, if the expansion joint 15 contracts too much, the left side device is decelerated, and so on.

計器、装置、資材等を運搬させるには、これらを連結材
/lに固定するとよい。複数装置を連結して強制操舵す
ることも可能である。
In order to transport instruments, equipment, materials, etc., these may be fixed to the connecting member/l. It is also possible to perform forced steering by connecting multiple devices.

以上、少数の実施例によって説明したが、この発明装置
は構造が簡単であるだけに、機械技術者の公知技術によ
り多様に変化、応用し得る。
Although the invention has been described above with reference to a small number of embodiments, since the device of the present invention is simple in structure, it can be varied and applied in a variety of ways using the known techniques of mechanical engineers.

角度θα、θb検出装置と探触俸とは必ずしも兼用させ
る必要はない。これらを管壁へ押付ける手段、伸縮腕の
突つばり付勢手段は上記実施例のようなバネのほか、電
磁力、空気圧、その他によっても可能である。
The angle θα, θb detection device and the probe radius do not necessarily have to be used together. The means for pressing these against the tube wall and the means for biasing the telescopic arms against each other may be not only springs as in the above embodiments, but also electromagnetic force, pneumatic force, or other means.

探触棒は直接、管壁に触れなくても、高低を判別できれ
ばよいので、光学的、電磁的、空気力学的近接センサを
使って、低い方へ車輪を向けることも可能である。
The probe rod does not need to directly touch the tube wall as long as it can determine the height, so it is also possible to use optical, electromagnetic, or aerodynamic proximity sensors to direct the wheels toward the lower side.

伸縮腕と管壁との角度を検出する装置も同様である。The same applies to the device that detects the angle between the telescopic arm and the tube wall.

じれ部等のある管路を自由に走行できる装置を、−1提
供し得た。
-1 could provide a device that can freely run through a conduit with twists and the like.

それは本体から両方向へ出た伸縮腕と、各腕端に一個ず
つ付けた駆動装置つき車輪だけが主要部材という簡素さ
で、あたかも管路内に一本の突張り棒をはめ、その両側
に動輪をつけて走らせるという、従来の走行体の観念か
らは考えられない新規な走行装置を提供し得た。
It is simple, with the only main components being telescopic arms extending in both directions from the main body and a wheel with a drive device attached to the end of each arm. We have been able to provide a new running device that is unimaginable from the conventional concept of running objects.

そして、それは新規なだけでなく、両側だヌー個の車輪
であるため、伸縮腕と管壁進行方向とのなす角度が測り
易く、車輪の向きの操作も容易になった。
Not only is it new, but because it has wheels on both sides, it is easy to measure the angle between the telescopic arm and the direction of movement of the pipe wall, and it is also easy to control the direction of the wheels.

両伸縮腕と管壁の進行方向表面との角度を検出・比較し
、双方の角度を等しくするよう各車輪を速度制御するこ
とにより、一本の突っかい棒のような走行装置が安定し
て管内を走れるようになった。
By detecting and comparing the angles between both telescoping arms and the surface of the tube wall in the direction of travel, and controlling the speed of each wheel to make both angles equal, a traveling device like a single pike rod can be stabilized. You can now run inside the pipe.

また伸縮腕に車輪と同じ向きで上下動可能な探触腕をつ
けたので、車輪の踏面付近の管壁の高低を探り、車輪を
管軸方向又は最大径部分へ向かわせる自主操舵性を与え
得た。
In addition, a probe arm that can move up and down in the same direction as the wheel is attached to the telescoping arm, so it detects the height of the tube wall near the wheel tread and provides autonomous steering ability to direct the wheel toward the tube axis or the maximum diameter. Obtained.

また車輪を管軸方向へ向けるこの発明の装置を管内走行
させる際、車輪の向きを調節して横へずらす事により、
管内をらせん状に旋回しつつ進行させるという新しい管
内走行方式を開発した。
In addition, when the device of this invention, which directs the wheels in the direction of the pipe axis, is run inside the pipe, by adjusting the direction of the wheels and shifting them laterally,
We have developed a new method for traveling inside the pipe, which allows the vehicle to travel in a spiral manner.

また、−輪車のようなこの発明装置を数個連結する用法
により、寸法、向き、断面が不定な管路を、荷を取付け
て円滑に前後進する運搬車を提供し得たのである。
In addition, by connecting several devices of this invention, such as wheeled wheels, it was possible to provide a transport vehicle that smoothly moves back and forth through conduits of variable size, direction, and cross section with loads attached to them.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明装置の一実施例説明図、第2α、′2
b図は案内用探触棒兼角度検出装置の二実施例説明図、
第3図はこの発明実施例の管内走行状前説aA図、第4
図は同じく管路の横断面図、第5.6.7図は夫々、こ
の発明装置の製品化した実施例の立面、側面、及び乍面
図、第8図は第1図の実施例が寸法変化の激しい管路最
大径部分を安定に進行する状況の説明図、第90゜9b
図は横方向移動容易な車輪の一例の平面及び側面図、第
10(! 、 106 、10c 、 10d図はこの
発明装置の四実施例説明図、第11図はこの発明装置が
強制操舵され、管内をらせん状に進む用法を示す説明図
、第12図は同じく複数個連結する用法の実施例説明図
である。 /・・・伸縮腕、2・・・本体、J、 3’、 Jα、
Jb・・・車輪、弘・・・回転関節、5α・・・探触棒
(兼、角度検出装置)。
Fig. 1 is an explanatory diagram of one embodiment of the device of the present invention, Fig. 2α, '2
Figure b is an explanatory diagram of two embodiments of the guiding probe rod and angle detection device;
Fig. 3 is a previously described drawing of the inside running state of the pipe according to the embodiment of this invention;
The figure is also a cross-sectional view of the pipe, Figures 5, 6, and 7 are elevational, side, and cross-sectional views of the commercialized embodiment of the device of this invention, and Figure 8 is the embodiment of Figure 1. Explanatory diagram of the situation in which the pipe progresses stably through the maximum diameter part of the pipe where the dimensions change rapidly, No. 90゜9b
The figure is a plan and side view of an example of a wheel that can be easily moved in the lateral direction, Figures 10 (!, 106, 10c, and 10d) are explanatory diagrams of four embodiments of the device of the present invention, and Figure 11 is a diagram showing the device of the present invention in which the device is forcibly steered. An explanatory diagram showing how to proceed spirally in a pipe, and Fig. 12 is an explanatory diagram showing an example of how to connect a plurality of units. /... telescopic arm, 2... main body, J, 3', Jα,
Jb...Wheel, Hiroshi...Rotary joint, 5α...Probe rod (also angle detection device).

Claims (9)

【特許請求の範囲】[Claims] (1)反対方向へ突き出るよう付勢した一対の伸縮腕を
もつ本体と、 上記各腕先端に一個ずつ固定した駆動装置 付き車輪と、 上記二車輪が接する管壁の進行方向表面と 上記腕軸線とのなす角度、又はその対応量を検出する夫
々の検出装置と、 これら検出装置の検出値が等しくなるよう、上記二車輪
の各駆動装置を速度制御する制御装置と、 を備えることを特徴とする管内走行装置。
(1) A main body with a pair of telescoping arms urged to protrude in opposite directions, a wheel with a drive device fixed to the tip of each arm, a surface in the traveling direction of the tube wall where the two wheels touch, and the axis of the arm. and a control device that controls the speed of each drive device of the two wheels so that the detected values of these detection devices become equal. In-pipe running device.
(2)特許請求の範囲(1)記載の装置において、その
車輪の一方又は双方は、進行方向を向いたまゝ横移動容
易な車輪である管内走行装置。
(2) An in-pipe traveling device according to claim (1), wherein one or both of the wheels are wheels that can be easily moved laterally while facing the direction of travel.
(3)反対方向へ突き出るよう付勢した一対の伸縮腕を
もつ本体と、 上記各腕先端に一個ずつ固定した駆動装置 付き車輪と、 一方又は双方の上記伸縮腕に、車輪と同じ 向きで上下動可能に設けられ、管壁の低い方へ先端を向
ける探触棒と、 上記二車輪が接する管壁の進行方向表面と 上記腕軸線とのなす角度、又はその対応量を検出する夫
々の検出装置と、 これら検出装置の検出値が等しくなるよう、上記二車輪
の各駆動装置を速度制御する制御装置と、 を備えることを特徴とする管内走行装置。
(3) A main body with a pair of telescoping arms biased to protrude in opposite directions, a wheel with a drive device fixed to the tip of each of the arms, and one or both of the telescoping arms being placed up and down in the same direction as the wheels. a probe rod that is movably provided and whose tip is directed toward the lower side of the tube wall; and a probe that detects the angle formed between the moving direction surface of the tube wall in contact with the two wheels and the arm axis, or the corresponding amount thereof. An in-pipe traveling device comprising: a control device that controls the speed of each drive device of the two wheels so that the detection values of these detection devices become equal.
(4)特許請求の範囲(3)記載の装置において、その
探触棒は車輪の前後にあつて、車輪を管軸方向へ向ける
ものである管内走行装置。
(4) An in-pipe traveling device according to claim (3), wherein the probe rods are located at the front and rear of the wheel, and direct the wheel in the direction of the tube axis.
(5)特許請求の範囲(3)記載の装置において、その
探触棒は車輪の前方にあつて、車輪を管壁の低い方へ向
けるものである管内走行装置。
(5) An intra-pipe traveling device according to claim (3), wherein the probe rod is located in front of the wheel and directs the wheel toward a lower part of the pipe wall.
(6)特許請求の範囲(3)記載の装置において、その
検出装置は上記伸縮腕軸と上記探触棒とのなす角度を計
測するものである管内走行装置。
(6) The in-duct traveling device according to claim (3), wherein the detection device measures the angle formed between the telescopic arm axis and the probe rod.
(7)特許請求の範囲(3)記載の装置において、その
伸縮腕の一方又は双方は捩じり回転可能である管内走行
装置。
(7) An intra-pipe traveling device according to claim (3), wherein one or both of the telescoping arms are twistably rotatable.
(8)反対方向へ突き出るよう付勢した一対の伸縮腕を
もつ本体と、 上記各腕先端に一個ずつ固定した駆動装置 付き車輪と、 上記車輪を管軸方向へ向ける機構と、 上記二車輪が接する管壁の進行方向表面と 上記腕軸線とのなす角度、又はその対応量を検出する夫
々の検出装置と、 これら検出装置の検出値が等しくなるよう、上記二車輪
の各駆動装置を速度制御する制御装置と、 を備える管内走行装置を管内走行させる際、管軸方向へ
向けられる車輪の向きを、回転関節の角度調節によつて
一定量だけ横へずらし、該車輪をして、らせん状に管壁
面を転進せしめることを特徴とする管内走行装置の用法
(8) a main body having a pair of telescoping arms urged to protrude in opposite directions; a wheel with a drive device fixed to the tip of each arm; a mechanism for directing the wheels in the direction of the tube axis; Each of the detection devices detects the angle formed between the traveling direction surface of the adjacent pipe wall and the arm axis, or the corresponding amount thereof, and the speed of each drive device of the two wheels is controlled so that the detected values of these detection devices become equal. When an in-pipe traveling device comprising: a control device for traveling in a pipe, the direction of the wheel directed toward the pipe axis is shifted to the side by a certain amount by adjusting the angle of the rotary joint; 1. A method of using an in-pipe traveling device characterized by displacing a pipe wall surface.
(9)反対方向へ突き出るよう付勢した一対の伸縮腕を
もつ本体と、 上記各腕先端に一個ずつ固定した駆動装置 付き車輪と、 上記二車輪が接する管壁の進行方向表面と 上記腕軸線とのなす角度、又はその対応量を検出する夫
々の検出装置と、 これら検出装置の検出値が等しくなるよう、上記二車輪
の各駆動装置を速度制御する制御装置と、 を備える管内走行装置を複数個並べ、夫々の本体間を伸
縮、屈曲、ねじり回転可能な連結材でつなぎ、伸縮量検
出装置を付け、検出した伸縮量を一定範囲内に収めるよ
う上記各走行装置車輪の速度制御をすることを特徴とす
る管内走行装置の用法。
(9) A main body having a pair of telescoping arms urged to protrude in opposite directions, a wheel with a drive device fixed to the tip of each of the arms, a surface in the traveling direction of the pipe wall where the two wheels touch, and the axis of the arms. and a control device that controls the speed of each drive device of the two wheels so that the detection values of these detection devices are equal. A plurality of them are lined up, each main body is connected with a connecting member that can be expanded/contracted, bent, and torsionally rotated, an expansion/contraction amount detection device is attached, and the speed of each traveling device wheel is controlled so that the detected amount of expansion/contraction is within a certain range. A method of using an in-pipe running device characterized by:
JP59177977A 1984-08-27 1984-08-27 Device and method of in-tube running device Granted JPS6154447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59177977A JPS6154447A (en) 1984-08-27 1984-08-27 Device and method of in-tube running device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59177977A JPS6154447A (en) 1984-08-27 1984-08-27 Device and method of in-tube running device

Publications (2)

Publication Number Publication Date
JPS6154447A true JPS6154447A (en) 1986-03-18
JPH059309B2 JPH059309B2 (en) 1993-02-04

Family

ID=16040379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59177977A Granted JPS6154447A (en) 1984-08-27 1984-08-27 Device and method of in-tube running device

Country Status (1)

Country Link
JP (1) JPS6154447A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61201154A (en) * 1985-03-05 1986-09-05 Mitsubishi Heavy Ind Ltd Pressing mechanism
JPS6327752A (en) * 1986-07-21 1988-02-05 Electric Power Dev Co Ltd Running roller support mechanism in running apparatus in large caliber pipe
JPH01178072A (en) * 1988-01-08 1989-07-14 Electric Power Dev Co Ltd Traveling device in conduit
JPH0254673U (en) * 1988-10-13 1990-04-20
JPH06293259A (en) * 1993-04-05 1994-10-21 Kansai Electric Power Co Inc:The In-pipe self-propelling device
JPH0899232A (en) * 1994-10-03 1996-04-16 Sekisui Chem Co Ltd Running frame device
JP2013095254A (en) * 2011-10-31 2013-05-20 Osaka Gas Co Ltd In-pipe moving device
WO2017197418A1 (en) * 2016-05-20 2017-11-23 Müller Matthias Manuel Worm robot

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61201154A (en) * 1985-03-05 1986-09-05 Mitsubishi Heavy Ind Ltd Pressing mechanism
JP2647364B2 (en) * 1985-03-05 1997-08-27 三菱重工業株式会社 Pressing mechanism
JPS6327752A (en) * 1986-07-21 1988-02-05 Electric Power Dev Co Ltd Running roller support mechanism in running apparatus in large caliber pipe
JPH01178072A (en) * 1988-01-08 1989-07-14 Electric Power Dev Co Ltd Traveling device in conduit
JPH0254673U (en) * 1988-10-13 1990-04-20
JPH06293259A (en) * 1993-04-05 1994-10-21 Kansai Electric Power Co Inc:The In-pipe self-propelling device
JPH0899232A (en) * 1994-10-03 1996-04-16 Sekisui Chem Co Ltd Running frame device
JP2013095254A (en) * 2011-10-31 2013-05-20 Osaka Gas Co Ltd In-pipe moving device
WO2017197418A1 (en) * 2016-05-20 2017-11-23 Müller Matthias Manuel Worm robot

Also Published As

Publication number Publication date
JPH059309B2 (en) 1993-02-04

Similar Documents

Publication Publication Date Title
US4862808A (en) Robotic pipe crawling device
Choi et al. Robotic system with active steering capability for internal inspection of urban gas pipelines
JP2020526448A (en) Magnetic crawler vehicle with passive rear surface equipment
US4677865A (en) Pipe pig with running gear
EP3074188B1 (en) Modular mobile inspection vehicle
EP2170565B1 (en) Robotic arm with a plurality of articulated segments
JP6549116B2 (en) System and method for calculating device orientation
Ryew et al. In-pipe inspection robot system with active steering mechanism
US11154989B2 (en) Pipe traversing apparatus, sensing, and controls
JPS6132195B2 (en)
JPH10318478A (en) In-pipeline traveling device
EP0177112B1 (en) Self-traversing vehicle for pipe
JPS6154447A (en) Device and method of in-tube running device
JPH0544390B2 (en)
US20230373578A1 (en) Modular pipe traversing apparatus
JPH09295573A (en) Traveling mechanism in pipe
JP2617137B2 (en) In-pipe drive trolley
JPH0487784A (en) Running vehicle in pipe
JPH0342231B2 (en)
JPH038310B2 (en)
JPH0518667B2 (en)
JPH02120168A (en) Pipe travel carriage
JPH0156940B2 (en)
US8464642B2 (en) Self-orienting, two-wheel pipe crawler
JPS61105278A (en) In-conduit traveling apparatus

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term