JPS6154432A - Instrument for measuring optically surface physical properties - Google Patents

Instrument for measuring optically surface physical properties

Info

Publication number
JPS6154432A
JPS6154432A JP59176820A JP17682084A JPS6154432A JP S6154432 A JPS6154432 A JP S6154432A JP 59176820 A JP59176820 A JP 59176820A JP 17682084 A JP17682084 A JP 17682084A JP S6154432 A JPS6154432 A JP S6154432A
Authority
JP
Japan
Prior art keywords
radiation source
fiber
fluorescence
reflectance
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59176820A
Other languages
Japanese (ja)
Inventor
Kenji Saito
謙治 斉藤
Noritaka Mochizuki
望月 則孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59176820A priority Critical patent/JPS6154432A/en
Publication of JPS6154432A publication Critical patent/JPS6154432A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence

Abstract

PURPOSE:To make fluorescence measurement with the same device without exchanging a sample by providing the 2nd radiation source and a light absorber additionally to a reflectance measuring instrument. CONSTITUTION:The 2nd radiation source 38 such as Ar laser or the like is arranged to make tilted incident radiation to obtain the fluorescence of the surface 29 to be detected, and fiber for detection is used in common as fiber 15 used for ordinary reflectance measurement. Fluorescence scattering is made on the surface 29 to be detected by excitation radiation from the radiation source 38 and its reflected light is detected by the fiber 15 for the reflectance measurement to observe the fluorescence characteristic. Further, a regular reflection component of the radiation source 38 is eliminated by a light absorber 39. Thus, the fluorescence measurement by using the same fiber 15 for detection can be made.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は物質の表面反射率及び蛍光を測定する光学的表
面物性測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an optical surface property measuring device for measuring surface reflectance and fluorescence of a substance.

[従来の技術] 本発明における反射率測定装置の基本形態は、参照文献
rJournal of Chemical Phys
ics J7918、 15・0ctober  ・1
983. P、 3701〜37Hに記載されたもので
ある。以下、この測定装置の基本概念を第3図に基いて
説明する。
[Prior Art] The basic form of the reflectance measuring device in the present invention is described in the reference document rJournal of Chemical Phys.
ics J7918, 15・0ctober・1
983. P, 3701-37H. The basic concept of this measuring device will be explained below with reference to FIG.

放射源lからの放射束3−1.3−2は楕円反射鏡2に
よって平行な放射束3−3となって、モノクロメータ−
4へ入射する。モノクロメータ−4からの出射放射束は
、Y字型ファイバー50の入力部5を経てファイバー6
.7へ各々伝達される。放射束はファイバー6と9及び
7と10の間にあるチョッパ8によって交互に伝達され
、ファイバー9からの放射束はその端面11から被検面
29へ、ファイバーlOからの放射束はその端面12か
ら参照面30に各々交互に照射される。被検面29から
の反射放射束13は端面11からファイバー15へ、参
照面30からの反射放射束14は端面12からファイバ
ー16へ伝達され、17のモノクロメータ−に入射する
The radiant flux 3-1, 3-2 from the radiant source 1 is converted into a parallel radiant flux 3-3 by the elliptical reflector 2, and is converted into a parallel radiant flux 3-3 by the monochromator.
4. The output radiation flux from the monochromator 4 passes through the input section 5 of the Y-shaped fiber 50 to the fiber 6.
.. 7 respectively. The radiant flux is transmitted alternately by the chopper 8 between the fibers 6 and 9 and between the fibers 7 and 10, the radiant flux from the fiber 9 is transmitted from its end face 11 to the test surface 29, and the radiant flux from the fiber IO is transmitted from its end face 12. The reference surface 30 is alternately irradiated from each other. The reflected radiation flux 13 from the test surface 29 is transmitted from the end face 11 to the fiber 15, and the reflected radiation flux 14 from the reference surface 30 is transmitted from the end face 12 to the fiber 16, and is incident on a monochromator 17.

モノクロメータ−17からの射出放射束34は、遮光筒
35等を経てフォトマルチプライヤ−19へ入力され、
その後ログアンブリファイヤー20、バイパスフィルタ
ー21、アンブリファイヤー22、位相回期回路23、
A−Dコンバータ25を経てマイクロコンピユータ−2
7にデジタル信号として入力される。
The emitted radiant flux 34 from the monochromator 17 is inputted to the photomultiplier 19 via a light-shielding tube 35, etc.
After that, a log amblifier 20, a bypass filter 21, an amblifier 22, a phase recirculating circuit 23,
Microcomputer 2 via A-D converter 25
7 as a digital signal.

なお、モノクロメータ−4と17は、マイクロコンピュ
ータ−27にあらかじめ記憶されている信号33により
ステップモーター1B−1,18−2を介して各々同期
させて波長走査される。またチョフパ8の走査信号24
は、位相同期回路を経てマイクロコンピュータ−27へ
入力される。
The monochromators 4 and 17 are synchronously wavelength-scanned via step motors 1B-1 and 18-2 using a signal 33 previously stored in the microcomputer 27. In addition, the scanning signal 24 of the chopper 8
is input to the microcomputer 27 via a phase synchronized circuit.

次に、マイクロコンピュータ−27に入力される信号に
ついて説明する。
Next, the signals input to the microcomputer 27 will be explained.

第3図において、被検面29、参照面30から反射して
電気的増巾系を経てマイクロコンピュータ−27へ入る
信号を、各々rl+r2とすると。
In FIG. 3, let rl+r2 be the signals reflected from the test surface 29 and the reference surface 30 and input to the microcomputer 27 via the electrical amplification system.

rl+r2は次のように表わされる。rl+r2 is expressed as follows.

r、=IQXtIXRI rl = I。Xt2 XR2 但し、各記号は下記事項を表わす。r,=IQXtIXRI rl = I. Xt2 XR2 However, each symbol represents the following items.

Io :光源強度(増巾系による増巾率もこの項へ入っ
ているものとする) tl :被検面検出側光学系透過率 t2 :参照面検出側光学系透過率 R1:被検面反射率 R2:参照面反射率 被検面28の反射率R,は前記r、をrlで徐し、更に
tlとt2の違いを補正する為の項Asで除したものに
参照面と同物質の理論反射率RTを乗じたものにより得
られる。これを式に表わすと次のようになる。
Io: Light source intensity (the amplification rate by the amplification system is also included in this term) tl: Transmittance of the optical system on the detection side of the test surface t2: Transmittance of the optical system on the reference surface detection side R1: Reflection of the test surface Rate R2: Reference surface reflectance The reflectance R of the test surface 28 is calculated by dividing the above r by rl and further dividing by the term As for correcting the difference between tl and t2. It is obtained by multiplying by the theoretical reflectance RT. This can be expressed as follows.

・・・・・・・・・(1) なお(1)式においてはR2嬌RT  とし、Asに関
しては、被検面に参照面と同一物質を置いた時、そこか
ら反射して増巾系を経てマイクロコンピュータ−27に
入る信号値(Io X t lXR2)を、参照面から
反射して増巾系を経て同じくマイクロコンピュータ−2
7へ入る信号(工。Xt2XRz)で除したもの、すな
わち また、被検面29、参照面30から反射した放射束の電
気的に増巾された信号rl、r2は、チ厘ツバ8の周期
Tに同期して、その周期Tの間隔で交互に伝達される。
・・・・・・・・・(1) In equation (1), R2嬌RT is used. As for As, when the same material as the reference surface is placed on the test surface, it is reflected from there and the amplification system The signal value (Io
7, the electrically amplified signals rl and r2 of the radiant flux reflected from the test surface 29 and the reference surface 30 are the period of the chip 8. The signals are transmitted alternately at intervals of the period T in synchronization with T.

第2図は、rl+r2と周期Tの関係を表わしたもので
ある。したがって、何個分かのr、の和を取ったものの
平均値をrlの値、また何個分かのrlの和を取ったも
のの平均値をrlの値とすることもできる。
FIG. 2 shows the relationship between rl+r2 and period T. Therefore, the average value of the sum of several r's can be taken as the value of rl, or the average value of the sum of several rl's can be taken as the value of rl.

この様にrI+r2と(1)式を用いることにより得ら
れた被検面からの反射率R1のモノクロメータ−による
可変波長に対する関係、更には二種類の被検面からの反
射率の相対差のモノクロメータ−による可変波長に対す
る関係を、プロッター28やブラウン管3Bに表示させ
たりディスク37に記録させる。
In this way, the relationship between the reflectance R1 from the test surface obtained by using rI+r2 and equation (1) with respect to the wavelength variable by the monochromator, and the relative difference in reflectance from the two types of test surfaces. The relationship to the wavelength variable by the monochromator is displayed on the plotter 28 or the cathode ray tube 3B, or recorded on the disk 37.

尚上記文中におけるファイバーは、ファイバーに限定さ
れることなくセルフォックや、レンズによる結像のリレ
ーや、内面反射を呈した導波路の様なものでも良い。
Note that the fiber in the above text is not limited to a fiber, and may be a selfoc, an image-forming relay using a lens, or a waveguide exhibiting internal reflection.

[発明が解決しようとする問題点] 従来の装置においては、被検面の表面反射率しか測定す
ることができず、蛍光の測定には他の装置を別に用意す
る必要があったため、 1T11定作業が重複し、大変
不便であった。
[Problems to be Solved by the Invention] Conventional devices can only measure the surface reflectance of the surface to be tested, and it is necessary to prepare another device to measure fluorescence. It was very inconvenient as the work was duplicated.

本発明はこのような問題点に着目し、なされたもので、
簡単かつ実施容易な方法により、同一の検出用ファイバ
ーを用いての蛍光測定が可能な装置の提供を目的として
いる。
The present invention has been made by paying attention to such problems.
The object of the present invention is to provide a device that can perform fluorescence measurements using the same detection fiber using a simple and easy-to-implement method.

[問題点を解決するための手段] 第1図は本発明の基本概念を示したもので、第3図の破
線部に相当するものである0図中、38は、 Arレー
ザー等による第2の放射源で、被検面の蛍光を得るため
斜入射照射するよう配置されている。38は、第2放射
源38からの正反射放射束を吸収するための光吸収体(
牛の角状で内部が黒色塗料により反射防止されたもの)
である、なお。
[Means for Solving the Problems] Fig. 1 shows the basic concept of the present invention. The radiation source is arranged to provide oblique illumination to obtain the fluorescence of the surface to be examined. 38 is a light absorber (
Cow horn shaped with black paint on the inside to prevent reflection)
Yes, it is.

検出用ファイバーは、通常の反射率測定に用いるファイ
バー15を兼用する。
The detection fiber also serves as the fiber 15 used for normal reflectance measurement.

[作 用] 第2の放射源38からの励起放射(Arレーザー等)に
よって被検面に蛍光散乱を起こ°し、その反射光を反射
率測定用ファイバー15によって検出し、蛍光特性を観
測する。なお、放射源38の正反射成分は、光吸収体3
9によって除去される。
[Function] Excitation radiation (Ar laser, etc.) from the second radiation source 38 causes fluorescence scattering on the test surface, and the reflected light is detected by the reflectance measurement fiber 15 to observe fluorescence characteristics. . Note that the specular reflection component of the radiation source 38 is reflected by the light absorber 3
removed by 9.

[実施例] 木実流側では、第3図に示した装置図において、被検面
への照射部に、第1図に示したように、第2の放射源3
8と光吸収体39を設置した。したがって、それ以外の
各装置の構成及びモノクロメータ−17以降の信号の流
れは前記[従来の技術]で説明した通りである。この様
にして装置を構成し、被検面に励起放射を与えれば、そ
の蛍光反射光を反射率測定用のファイバー15で検出す
ることができる。なお、被検面としては、L−B  (
ラングミュア−プロジェット)膜等も含まれる。
[Example] On the wood flow side, in the apparatus diagram shown in FIG. 3, a second radiation source 3 is installed in the irradiation section for the test surface as shown in FIG.
8 and a light absorber 39 were installed. Therefore, the configuration of the other devices and the flow of signals after the monochromator 17 are as explained in the above-mentioned [Prior Art]. By configuring the apparatus in this manner and applying excitation radiation to the surface to be measured, the reflected fluorescence light can be detected by the fiber 15 for measuring reflectance. Note that the surface to be tested is L-B (
Langmuir-Prodgett) membranes and the like are also included.

[発明の効果] 本発明によれば、通常の反射率測定装置に第2の放射源
と光吸収体を追加設置することにより、試料の取り換え
をすることなく、同一の装置で蛍光測定を行うことがで
きる。
[Effects of the Invention] According to the present invention, by additionally installing a second radiation source and a light absorber in a normal reflectance measuring device, fluorescence measurement can be performed with the same device without replacing the sample. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の基本概念を示す構成図、第2図は、
信号rl+r2と周期Tとの関係を表わすグラフ、第3
図は、本発明に係わる反射率測定装置の基本形態を示す
構成図。 1;放射源 2;楕円反射鏡 3−1.3−2;放射束 3−3;平行な放射束 4.17;モノクロメータ− 5;Y字型ファイバー人力音心 6.7,9,10,15.1B、  、ファイバー8.
40;チョッパ 11.12;ファイバ一端面 13.14.反射放射束 1B−1,18−2;ステップモーター19;フォトマ
ルチプライヤ− 20:ログアンプリファイヤー 21;バイパスフィルター 22;アンブリファイヤー 23;位相同期回路 24;チョッパ8の走査信号 25 ; A−Dコンバータ 27;マイクロコンピュータ− 28;プロッター 28;被検面 30;参照面 31、冷却器 32;安定化電源 33;ステップモータ18−1.18−2走査信号34
;モノクロメーター17からの射出放射束35;遮光筒 36;ブラウン管 37;ディスク 38;fJS2放射源 38;光吸収体 50;Y字型ファイバー rI ;被検面28から反射した放射束の電気的に増巾
された信号 r2 ;参照面30から反射した放射束の電気的に増巾
された信号 T;チ1ツバ8の走査周期
FIG. 1 is a block diagram showing the basic concept of the present invention, and FIG.
Graph showing the relationship between the signal rl+r2 and the period T, 3rd
FIG. 1 is a configuration diagram showing a basic form of a reflectance measuring device according to the present invention. 1; Radiation source 2; Elliptical reflector 3-1.3-2; Radiant flux 3-3; Parallel radiant flux 4.17; Monochromator 5; Y-shaped fiber human powered sound center 6.7, 9, 10 ,15.1B, ,Fiber8.
40; Chopper 11.12; One end face of fiber 13.14. Reflected radiation flux 1B-1, 18-2; Step motor 19; Photo multiplier 20: Log amplifier 21; Bypass filter 22; Amblifier 23; Phase synchronization circuit 24; Scanning signal 25 of chopper 8; A-D converter 27; Microcomputer 28; Plotter 28; Test surface 30; Reference surface 31, cooler 32; Stabilized power supply 33; Step motor 18-1, 18-2 scanning signal 34
emitted radiant flux 35 from monochromator 17; light-shielding tube 36; cathode ray tube 37; disk 38; fJS2 radiation source 38; light absorber 50; Y-shaped fiber rI; Amplified signal r2; electrically amplified signal T of the radiant flux reflected from the reference surface 30; scanning period of the chip 8

Claims (1)

【特許請求の範囲】 1)放射源からの光を第1のモノクロメーターを介して
被検面へ照射し、その反射放射束を第2のモノクロメー
ターに入射させ、電気的に情報を検出する測定装置にお
いて、前記放射源とは別に、蛍光を検出するための第2
の放射源を設けたことを特徴とする光学的表面物性測定
装置。 2)前記第2の放射源による正反射光が生ずる位置に、
光吸収体を設けた特許請求の範囲第1項記載の光学的表
面物性測定装置。
[Claims] 1) Light from a radiation source is irradiated onto a surface to be inspected via a first monochromator, and the reflected radiation flux is incident on a second monochromator to electrically detect information. In the measuring device, apart from the radiation source, a second radiation source for detecting fluorescence is provided.
An optical surface property measuring device characterized in that it is provided with a radiation source. 2) at a position where specularly reflected light from the second radiation source occurs;
An optical surface property measuring device according to claim 1, which is provided with a light absorber.
JP59176820A 1984-08-27 1984-08-27 Instrument for measuring optically surface physical properties Pending JPS6154432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59176820A JPS6154432A (en) 1984-08-27 1984-08-27 Instrument for measuring optically surface physical properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59176820A JPS6154432A (en) 1984-08-27 1984-08-27 Instrument for measuring optically surface physical properties

Publications (1)

Publication Number Publication Date
JPS6154432A true JPS6154432A (en) 1986-03-18

Family

ID=16020414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59176820A Pending JPS6154432A (en) 1984-08-27 1984-08-27 Instrument for measuring optically surface physical properties

Country Status (1)

Country Link
JP (1) JPS6154432A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005515470A (en) * 2002-01-23 2005-05-26 アプレラ コーポレイション Method for fluorescence detection to minimize unwanted background fluorescence

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005515470A (en) * 2002-01-23 2005-05-26 アプレラ コーポレイション Method for fluorescence detection to minimize unwanted background fluorescence

Similar Documents

Publication Publication Date Title
US5154512A (en) Non-contact techniques for measuring temperature or radiation-heated objects
JPS6154432A (en) Instrument for measuring optically surface physical properties
JP3207882B2 (en) Spectral fluorometer spectral correction method and spectral fluorometer with spectrum correction function
JPS6151569A (en) Cell identifying device
JPH0416749A (en) Method and apparatus for measuring ozone concentration
JPS6321556A (en) Dna base sequence determining apparatus
JPS6154429A (en) Instrument for measuring optically surface physical properties
JP2756298B2 (en) Sample test equipment
CN112098371A (en) Strength type SPRi sensing system and method based on dual-wavelength difference
RU2281479C1 (en) Fluorometer-turbidimeter
JP2674128B2 (en) Particle size distribution analyzer
JPS62278436A (en) Fluorescence light measuring method and apparatus
JPS594258Y2 (en) double beam spectrophotometer
JPS6154430A (en) Instrument for measuring optically surface physical properties
RU2035721C1 (en) Method of checking transparency of flat light-translucent materials
Fotiou et al. Photothermal deflection densitometer with pulsed-UV laser excitation
JPH05281130A (en) Foreign-matter inspection apparatus
RU2071056C1 (en) Device for assaying milk and dairy products for content of fat and protein
JPH02304332A (en) Particle measuring instrument
KR950019660A (en) Non-contact internal defect flaw detection method and device
JPS6154431A (en) Instrument for measuring optically surface physical properties
JPS59147229A (en) Spectrophotometer
JPH0215814B2 (en)
JPS6020691B2 (en) Minute temperature detection method
JP2581464Y2 (en) Filter evaluation device