JPS6154428A - Densitometer - Google Patents

Densitometer

Info

Publication number
JPS6154428A
JPS6154428A JP17711784A JP17711784A JPS6154428A JP S6154428 A JPS6154428 A JP S6154428A JP 17711784 A JP17711784 A JP 17711784A JP 17711784 A JP17711784 A JP 17711784A JP S6154428 A JPS6154428 A JP S6154428A
Authority
JP
Japan
Prior art keywords
scanning
memory
data
motor
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17711784A
Other languages
Japanese (ja)
Other versions
JPH0621863B2 (en
Inventor
Kenji Nakamura
健次 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP59177117A priority Critical patent/JPH0621863B2/en
Publication of JPS6154428A publication Critical patent/JPS6154428A/en
Publication of JPH0621863B2 publication Critical patent/JPH0621863B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • G01N21/5907Densitometers
    • G01N21/5911Densitometers of the scanning type

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To obtain a measurement signal having locality corrected by dividing the current photometric output at every position of a luminous flux scanning mechanism during measurement by locality correction data in a storage means which corresponds to the position. CONSTITUTION:A motor 4 is driven forward to check whether or not there is the detection signal of one hole of a hole array (b) generated by a detector 6; when B=1 is detected, the turning direction of the motor 4 is inverted and the motor is driven in the direction continuously. Consequently, luminous flux begins to scan from one end of a scanning range and it is checked whether the detection signal of the hole of a hole array (a) is present or not; when A=0, i.e. the falling of the detection signal is detected, a switch 16 is turned on and the output of a photoelectron multiplier tube 14 is inputted to a computer 18 and stored in the memory of the computer. Then, it is checked whether B=1 or not, and said operation is repeated until B=1. Thus, holes in the hole array (a) are detected, one by one, from one end and data on a photometric output are sampled at the falling of the detection signal and stored in the memory. Then, the largest value is retrieved in the memory and values obtained by dividing it by respective data are stored in the memory to obtain locality correction data.

Description

【発明の詳細な説明】 イ・産業上の利用分野 本発明は光束走査型デンシトメータに関し、特にその走
査機構に関するものである。デンシトメータには試料の
方をジグザグに移動させて走査を行う型と、光束を動か
して走査する型とがあるが、試料を動かす型では移動部
分の慣性が大きくて高速走2′−が困難であり、高速走
査を行うには光束走査型が適している。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a beam scanning densitometer, and particularly to its scanning mechanism. There are two types of densitometers: one type that scans by moving the sample in a zigzag pattern and the other type that scans by moving the light beam. However, in the type that moves the sample, the inertia of the moving part is large, making high-speed scanning difficult. A beam scanning type is suitable for high-speed scanning.

口・従来の技術 デンシトメータにおいて、測定対象の試料スポットを微
小部分に分割して測定する方法は、バックグランド補正
とか散乱補正等が可能となり、定量性が向上する。この
ため細い光束で試料を照射し、試料と光束とを相対的に
移動させて試料を走査するが、その走査方式として光束
を動かす方式は高速の往復運動を行う機械的部分が小さ
く高速走査が可能である。しかしこの方式では分光器の
出射光束が局部的に見た場合、エネルギーが不均一であ
り、走査に伴って、試料照射光束の方向、光検出器から
みた試料スポットの光束照射点の方向が変化するから、
見掛上の感度が変動する、いわゆるローカリティが存在
するため、光束走査方式のデンシトメータは原理上の提
案にとどまり、定量測定用の装置とし、て実用に耐え得
る装置は未だ知られていない。
- Conventional technology In a densitometer, a method in which a sample spot to be measured is divided into minute parts for measurement enables background correction, scattering correction, etc., and improves quantitative performance. For this reason, the sample is irradiated with a thin beam of light and the sample is scanned by moving the sample and the beam relative to each other.However, the scanning method that moves the beam of light has a small mechanical part that performs high-speed reciprocating motion, making it difficult to perform high-speed scanning. It is possible. However, with this method, the energy of the spectrometer's output beam is non-uniform when viewed locally, and the direction of the sample irradiation beam and the direction of the sample spot's beam irradiation point as seen from the photodetector change with scanning. Because I do,
Because of the existence of so-called locality, in which the apparent sensitivity varies, the beam scanning densitometer remains a theoretical proposal, and no device that can be put to practical use as a quantitative measurement device is known yet.

ハ・ 発明が解決しようとする問題点 本発明は光束走査型デンシトメータにおける上述したロ
ーカリティを解消しようとするものである。
C. Problems to be Solved by the Invention The present invention attempts to solve the above-mentioned locality in a beam scanning densitometer.

ニ1問題点を解決するだめの手段 光束を走査のために動かす機構の位置と試料光検出器の
測光出力との対応関係を記憶する手段と、試料光検出器
の測光出力を上記記憶手段に記憶されたデータを用いて
ローカリティ補正演算を行う手段とを備え、均一な試料
プレートを用いて光束走査を行って上記記憶手段にロー
カリティ補正データを記憶させるようにした。
D1 Means for solving the problem: means for storing the correspondence between the position of the mechanism that moves the light beam for scanning and the photometric output of the sample photodetector, and storing the photometric output of the sample photodetector in the storage means. means for performing a locality correction calculation using the stored data, and the locality correction data is stored in the storage means by performing light beam scanning using a uniform sample plate.

ホ・作用 均一な試料プレートを用いて光束走査を行い−そのとき
の光走査機構の各位置のデータとその位置に対応する光
検出器の測光出力を記憶手段に記憶させておくと、これ
らのデータは相手が均一なプレートでちるから、ローカ
リティがなければ全ての位置を同一測光値が対応するこ
とになるが、ローカリティが存在するので、測光値は光
走査機構の位置の関数となっており、この関数が記記憶
手段の中にあるその位置に対応する゛測光データつ1リ
ローカリテイ補正データで割算することでローカリティ
を補正した測定信号が得られる。
E. Effect: Perform light flux scanning using a uniform sample plate. If data for each position of the optical scanning mechanism at that time and the photometric output of the photodetector corresponding to that position are stored in the storage means, these data can be stored. Since the data is collected using a uniform plate, if there was no locality, the same photometric value would correspond to all positions, but since locality exists, the photometric value is a function of the position of the optical scanning mechanism. By dividing this function by the photometric data corresponding to the position in the storage means and the locality correction data, a measurement signal with locality corrected is obtained.

へ・実施例 第1図は本発明の一実施例を示す。鎖、IMで囲回折さ
れた光を分光器の出口スリット面に集光さセ ぎスペクトル像を形成する。出口スリットは図で上下方
向に延びており、この出ロスリントに沼って走査スリッ
ト3が配置されている。走査スリット3は図で上下方向
に可動でモータ4によって上下に往復駆動される。この
構造によって走査スリット3の光出口開口りはスペクト
ル像の成る波長位置を上下方向に走査する。開口りから
出射した単色光は鏡7?8によって反射され、試料ステ
ージSのステージ面を照射する。鏡7は凹面鏡で開口り
の像の上記ステージ面に形成するようになっており、開
口りの図で上下方向の往復移動にょシ、ステージ面の像
はX軸方向に往復移動する。他方ステージSはy方向送
シモータYによってy方向に駆動されるので、試料ステ
ージS上にセットされた試料プレート9を光束照射点は
X方向に往復しなからy方向に移動してジグザグ走査を
行うことになる。
Embodiment FIG. 1 shows an embodiment of the present invention. The light diffracted by the chain and the IM is focused on the exit slit surface of the spectrometer to form a spectral image. The exit slit extends in the vertical direction in the figure, and a scanning slit 3 is disposed in the exit loss lint. The scanning slit 3 is movable in the vertical direction in the figure, and is driven reciprocally up and down by a motor 4. With this structure, the light exit aperture of the scanning slit 3 scans the wavelength position where the spectral image is formed in the vertical direction. The monochromatic light emitted from the opening is reflected by the mirrors 7 to 8 and illuminates the stage surface of the sample stage S. The mirror 7 is a concave mirror that forms an image of the aperture on the stage surface, and while the image of the aperture is reciprocated in the vertical direction, the image of the stage surface is reciprocated in the X-axis direction. On the other hand, the stage S is driven in the y direction by the y direction feed motor Y, so the light beam irradiation point does not reciprocate in the X direction but moves in the y direction to scan the sample plate 9 set on the sample stage S in a zigzag manner. I will do it.

第2図は走査スリット3を拡大して示す。開口りの片側
には位置検出用孔列aが設けられ、反対側には走査端検
出!牝が設けられている。第1図に戻って走査スリット
3の両側には孔列aをはさんで光電検出器5及び孔列す
をはさんで光電検出器6が配置されている。第3図Aは
光電検出器5の出力信号で孔列aの一つの孔が光電検出
器5を過ぎる度に一個のパルスが出力される。同図Bは
光検出器6の出力信号で走査スリット3の開口りが走査
範囲の端に来たとき孔列すの一方が光電検出器6の位置
に来るので、Bの信号におけるパルスによって走査スリ
ットの開口りが走査範囲の端に来たことが検知される。
FIG. 2 shows the scanning slit 3 on an enlarged scale. A hole row a for position detection is provided on one side of the opening, and a scanning end detection hole is provided on the other side! A female is provided. Returning to FIG. 1, on both sides of the scanning slit 3, a photoelectric detector 5 is arranged across the hole array a, and a photoelectric detector 6 is arranged across the hole array. FIG. 3A shows the output signal of the photoelectric detector 5, in which one pulse is output each time one hole in the hole array a passes the photoelectric detector 5. B in the figure shows the output signal of the photodetector 6. When the opening of the scanning slit 3 reaches the end of the scanning range, one of the hole arrays comes to the position of the photoelectric detector 6, so the pulse in the signal B causes scanning. It is detected that the opening of the slit has reached the end of the scanning range.

これらの信号を用い、Bのパルスが検出されてからAの
パルスを計数すると、その計数値は走査スリットの開口
りの位置のデータとなる。
Using these signals, when pulses A are counted after pulses B are detected, the counted value becomes data on the position of the opening of the scanning slit.

第1図において、l:L、14は光電子増倍管である0
鏡8から試料9に入射する光束の光路中に水晶板10が
斜めに挿入されており、試料照射光の一部が反射され光
源モニタ用として光電子増倍管11に入射せしめられる
。光電子増倍管14は試料プレート9からの反射光を受
光するようになっている0光源モニタ光を受光する光電
子増倍管11の出力はプリアンプ12を介して高圧発生
回路13に印加され、高圧発生回路13の出力が光電子
増倍管11の出力が一定となるように両方の光電子増倍
管11,14のダイノードにフイ、−ドパツクされ、こ
れによって試料照射光の変動が補償される。
In Figure 1, l:L, 14 is a photomultiplier tube 0
A crystal plate 10 is obliquely inserted into the optical path of the light flux that enters the sample 9 from the mirror 8, and a part of the sample irradiation light is reflected and made to enter a photomultiplier tube 11 for use in monitoring the light source. The photomultiplier tube 14 is configured to receive the reflected light from the sample plate 9. The output of the photomultiplier tube 11, which receives the zero light source monitor light, is applied to the high voltage generation circuit 13 via the preamplifier 12, and the high voltage The output of the generating circuit 13 is fed to the dynodes of both photomultiplier tubes 11 and 14 so that the output of the photomultiplier tube 11 is constant, thereby compensating for fluctuations in the sample irradiation light.

試料プレート9からの反射光を受光する光電子増倍管1
4″の出力はプリアンプ15.スイッチトロ、A/D変
換器17を経てコンピュータ1日に取込まれるようにな
っている019はモータ駆動回路でモータ4及びモータ
Yを駆動する。モータYはパルスモータで、その駆動パ
ルスはコンピュータ1日に送られ、試料プレートのy軸
方向の位置の情報を与える。20はコンピュータ1日の
データバスで光電検出器5,6の出力パルスもこのデー
タパスヲ通してコンピュータ18に入力される0 第4図は上述した装置の動作のフローチャートである。
A photomultiplier tube 1 that receives reflected light from a sample plate 9
The output of 4" is input to the computer 1 through the preamplifier 15, switch controller, and A/D converter 17. 019 is a motor drive circuit that drives motor 4 and motor Y. Motor Y is a pulse The drive pulses of the motor are sent to the computer 1, giving information on the position of the sample plate in the y-axis direction.20 is the data bus of the computer 1, and the output pulses of the photoelectric detectors 5 and 6 are also passed through this data path. FIG. 4 is a flowchart of the operation of the apparatus described above.

第4図Aはローカリティ補正データを得る動作のフロー
で、スタートによりまずモータ4を正方向に駆動何)し
、第2図の信号B即ち検出器6による孔列すの一方の孔
の検出信号(B=1)の有無をチェック(ロ)L、、B
 =1−が検出されるまでモータ4を駆動し、(ロ)の
ステップがYESになったら、モータ4の回転方向を反
転儒)して、その方向に駆動を続ける(二)。この動作
によシ、光束の走査は走査範囲の一方の端から開始され
ることになり、ステップ(ホ)で第2図の信号A即ち孔
列aの孔の検出信号(A=1)の有無をチェックし、次
いでステップ(へ)でA−0を検出したら、即ち孔列a
の孔の検出信号の立下りが検出されたら、スイッチ16
(第1図)をON+))L、光電子増倍管14の出力を
コンピュータ1日に取込み、同コンピュータ内のメモリ
に格納(チフする。次いでステップ(ソ)でB=1か否
かチェックし、B=Oなら動作は(ニ)°のステップに
戻ってB=1になるまで上述した動作が繰返される。こ
のようにして孔列aの孔が一方の端から一つずつ検出さ
れてはその検出信号の立下りで測光出力のデータが採取
され、メモリに格納されて行く。第5図はこのメモリの
内部を示し、採取されたデータは1番目の測光値から順
にMl、M2.・・・の場所に格納されて行き、(ソ)
のステップがYEf9になると一回の走査が終了する。
FIG. 4A shows the flow of the operation for obtaining locality correction data. At the start, the motor 4 is first driven in the forward direction, and the signal B in FIG. Check the presence or absence of (B=1) (b) L,,B
The motor 4 is driven until 1- is detected, and when step (b) becomes YES, the rotational direction of the motor 4 is reversed and the drive continues in that direction (2). As a result of this operation, the scanning of the light beam starts from one end of the scanning range, and in step (e), the signal A in FIG. The presence is checked, and if A-0 is detected in step (to), that is, hole row a
When the fall of the hole detection signal is detected, the switch 16
(Figure 1) is turned ON+))L, the output of the photomultiplier tube 14 is taken into the computer and stored (chip) in the memory within the computer.Next, in step (S), it is checked whether B=1 or not. , if B=O, the operation returns to step (d)° and the above-mentioned operation is repeated until B=1.In this way, the holes in hole row a are detected one by one from one end. Photometric output data is collected at the falling edge of the detection signal and stored in the memory. Figure 5 shows the inside of this memory, and the collected data is sequentially collected from the first photometric value to Ml, M2, . It will be stored in the location of (So)
When the step reaches YEf9, one scan ends.

次いでメモリから上記Ml、M2のデータを読出し、そ
れらの中の最大値Mxを検索(ヌ)し、Mxを各データ
Ml、M2.・・・で割算した値をメモリのMl、M2
.・・・の場所に入れ替えるレリ。かくして上記メモリ
に格納されたデータ(M X / M 1 ) r(M
X/M2)、・・・等がローカリティ補正データとなる
Next, read the data M1, M2 from the memory, search for the maximum value Mx among them, and set Mx to each data M1, M2 . The value divided by ... is Ml, M2 in memory.
.. Reli to be replaced in the place of... Thus, the data (M x / M 1 ) r (M
X/M2), . . . become locality correction data.

第4図Bは試料測定動作のフローである。動作をスター
トさせると第4図Aの場合と同様モータ4を正転させ(
イ)、B=1になるまで走査スリット3を駆動して走査
始端に達したら、当初(す)のステップはNo(後述)
でモータ4を反転し、A=1の検出に次いでA=Oが検
出(ロ)されたらスイッチ16をONI、て光電子増倍
管14の測光出力をコンピュータ18に取込み、上記メ
モリからデータM x / M lを読出して今取込ん
だ測光出力のデータに掛算してメモリの試料測定データ
記憶エリヤに格納(ハ)し、上述動作をステップ(ニ)
でB=1が検出されるまで繰返し、動作を一回繰返す度
に補正データを順次M X7M 1. M x/M 2
.・・・と変えて行く。かくしてステップ(ニ)がYE
SになったらモータYを一定量回転させて試料ステ゛−
ジをy方向に一定量移動(ホ)させ、モータ4を正転(
へ)し、今度は信号A=1即ち孔列aの孔の検出信号の
立上りによって測光データの取込みを行い、補正データ
をM x / M nから逆順に取出しては今取込んだ
データに掛算してメモリの試料測定データのエリヤに格
納する。この動作がE=1が検出呪ト)されるまで繰返
される。こ\で信号Aの立上りで測定値の取込みを行う
のは、先の行程ではAの立下りでデータ取込みを行った
ので、逆方向の走査ではAの立上シが位置的に先の行程
と一致するからである。ステップ(ト)でB=1が検出
されたら、走査の−往復が終ったので、ステージSをy
方向に一定量駆動(刊して動作はX点に戻る。こうして
ステージSのy方向移動が一定距離に達したら(ソ)の
ステップがYESとなシ、−回の測定動作が完了する。
FIG. 4B is a flowchart of the sample measurement operation. When the operation starts, the motor 4 is rotated in the forward direction (as in the case of Fig. 4A).
b) When the scanning slit 3 is driven until B=1 and the scanning start end is reached, the initial step is No (described later).
The motor 4 is reversed, and when A=1 is detected and then A=0 is detected (B), the switch 16 is turned ON, and the photometric output of the photomultiplier tube 14 is taken into the computer 18, and the data M x is transferred from the memory. /Ml is read out and multiplied by the photometric output data just taken in, stored in the sample measurement data storage area of the memory (c), and the above operation is performed in step (d).
Repeat until B=1 is detected, and each time the operation is repeated, the correction data is sequentially added to M X7M 1. Mx/M2
.. I'm going to change it to... Thus step (d) is YES
When S is reached, motor Y is rotated a certain amount to move the sample to the sample stage.
The motor 4 is moved in the y direction by a certain amount (e), and the motor 4 is rotated forward (
), and this time, photometric data is taken in at the rising edge of the signal A=1, that is, the detection signal of the holes in hole row a, and the correction data is taken out in reverse order from M x / M n and multiplied by the data just taken in. and stores it in the sample measurement data area of memory. This operation is repeated until E=1 (detection curse). In this case, the measurement value is acquired at the rising edge of signal A.In the previous process, the data was acquired at the falling edge of signal A, so in scanning in the reverse direction, the rising edge of A is positioned in the previous process. This is because it matches. When B = 1 is detected in step (g), the - round trip of scanning has been completed, so the stage S is
The stage S is driven by a certain amount in the direction and the operation returns to point X. When the movement of the stage S in the y direction reaches a certain distance, the step (S) becomes YES, and the measurement operation of - times is completed.

以上の実施例では走査スリット3は往復移動を行ってい
るが、走査スリットをエンドレスにして一方向走査のみ
にすることも可動である。
In the embodiments described above, the scanning slit 3 moves back and forth, but it is also possible to make the scanning slit endless so that it only scans in one direction.

ト・効果 本発明デンシトメータは上述したような構成で、光束走
査型であるから高速走査が可能であり、試料照射光束の
移動による試料光検出器の受光効率の変化によるローカ
リティが補正されるので、定量性が向上でき、そのため
パックグラウンド補正等も可能となって、一層定量性が
向上できる。
G. Effect The densitometer of the present invention has the above-mentioned configuration and is a beam scanning type, so high-speed scanning is possible, and locality due to changes in the light receiving efficiency of the sample photodetector due to movement of the sample irradiation beam is corrected. Quantitativeness can be improved, and therefore pack-ground correction etc. can be performed, and quantitativeness can be further improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例装置の構成を示すブロック図
、第2図は走査スリットの拡大正面図、第3図は信号波
形図、第4図A、Bは夫々上記実施例装置の動作のフロ
ーチャート、第5図は上記実施例におけるメモリの一部
の内部構成を示すメモリマツプである。 M・・・分光器、1・・・回折格子、3・・・走査スリ
ット・4・・・走査スリット駆動用のモータ、5,6・
・・光電検出器、9・・・試料プレー)、11.14・
・・光電子増倍管、S・・・試料ステージ、h・・・走
査スリットの開口、a・・・走査スリットの位置検出用
の孔列、b・・・走査端検出用の孔列。 代理人 弁理士  係   浩  弁 箱j図 第5図 回旺匪■5
FIG. 1 is a block diagram showing the configuration of an apparatus according to an embodiment of the present invention, FIG. 2 is an enlarged front view of a scanning slit, FIG. 3 is a signal waveform diagram, and FIGS. The flowchart of the operation, FIG. 5, is a memory map showing the internal structure of a part of the memory in the above embodiment. M...Spectroscope, 1...Diffraction grating, 3...Scanning slit, 4...Motor for driving the scanning slit, 5, 6...
・・Photoelectric detector, 9...sample plate), 11.14・
. . . Photomultiplier tube, S . . . Sample stage, h . . . Opening of scanning slit, a . Agent Hiroshi Patent Attorney Figure 5 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 試料走査のために光束を動かす機構と、同機構の走査動
作中の各位置を検出する手段と、試料光検出器の出力を
上記機構位置と関係づけて記憶する手段と、上記光検出
器の測光出力に対して上記記憶手段に記憶されたデータ
を用いてローカリテイ補正演算を行う手段を備えたデン
シトメータ。
a mechanism for moving a light beam for sample scanning; a means for detecting each position of the mechanism during scanning; a means for storing the output of the sample photodetector in relation to the position of the mechanism; A densitometer comprising means for performing locality correction calculation on photometric output using data stored in the storage means.
JP59177117A 1984-08-24 1984-08-24 Densitometer Expired - Fee Related JPH0621863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59177117A JPH0621863B2 (en) 1984-08-24 1984-08-24 Densitometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59177117A JPH0621863B2 (en) 1984-08-24 1984-08-24 Densitometer

Publications (2)

Publication Number Publication Date
JPS6154428A true JPS6154428A (en) 1986-03-18
JPH0621863B2 JPH0621863B2 (en) 1994-03-23

Family

ID=16025459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59177117A Expired - Fee Related JPH0621863B2 (en) 1984-08-24 1984-08-24 Densitometer

Country Status (1)

Country Link
JP (1) JPH0621863B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5113298A (en) * 1974-07-23 1976-02-02 Joko Sangyo Kk Reezaaokogentosuru takentainodosokuteihohoto sochi
JPS55147655U (en) * 1979-04-10 1980-10-23
JPS55146040A (en) * 1979-05-01 1980-11-14 Shimadzu Corp Measuring method of concentration
JPS58225344A (en) * 1982-06-25 1983-12-27 Toa Medical Electronics Co Ltd Automatic analytical apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5113298A (en) * 1974-07-23 1976-02-02 Joko Sangyo Kk Reezaaokogentosuru takentainodosokuteihohoto sochi
JPS55147655U (en) * 1979-04-10 1980-10-23
JPS55146040A (en) * 1979-05-01 1980-11-14 Shimadzu Corp Measuring method of concentration
JPS58225344A (en) * 1982-06-25 1983-12-27 Toa Medical Electronics Co Ltd Automatic analytical apparatus

Also Published As

Publication number Publication date
JPH0621863B2 (en) 1994-03-23

Similar Documents

Publication Publication Date Title
JP2527540B2 (en) Device for fluorescence signal analysis and image display
US5780857A (en) Apparatus for imaging biochemical samples on substrates
US5315375A (en) Sensitive light detection system
US4833332A (en) Scanning fluorescent detection system
US5100529A (en) Fluorescence detection type gel electrophoresis apparatus
US5424841A (en) Apparatus for measuring spatial distribution of fluorescence on a substrate
US5776782A (en) Method for measuring fluorescence resonance energy transfer
JP2823970B2 (en) Near-field scanning optical microscope
US5469251A (en) Apparatus for detecting fluorescence of particles in a fluid and analyzing the particles
JP3292935B2 (en) Fluorescence spectroscopic image measurement device
TW201702574A (en) Measurement system of real-time spatial-resolved spectrum and time-resolved spectrum and measurement module thereof
US6504167B2 (en) Image reading apparatus
JP2001194305A (en) Device for fluorescence correlative spectroscopic analysis
CN220231488U (en) Imaging system and nucleic acid fragment analysis apparatus
JP2001194303A (en) Device for analyzing diffusion motion of fluorescent molecule
JPS6154428A (en) Densitometer
JP3729043B2 (en) Fluorescence image detection method, DNA inspection method and apparatus
JP2000121559A (en) Device for reading quantity of light of micro spot
JPH11108615A (en) Surface position detecting method and equipment for mirror surface material and translucent material
JPH09292335A (en) Surface plasmon sensor
JPH0325354A (en) Automatic fluorescent analyzing instrument
JPH03144347A (en) Fluorescence spectrophotometry and apparatus therefor
JP2841103B2 (en) Fluorescent pattern reading method and apparatus
JP3950075B2 (en) Two-dimensional time-resolved spectroscopic material detection method and apparatus
CN118150531A (en) Imaging system, nucleic acid fragment analysis apparatus, analysis method, and storage medium

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees