JPS6154249B2 - - Google Patents

Info

Publication number
JPS6154249B2
JPS6154249B2 JP54161039A JP16103979A JPS6154249B2 JP S6154249 B2 JPS6154249 B2 JP S6154249B2 JP 54161039 A JP54161039 A JP 54161039A JP 16103979 A JP16103979 A JP 16103979A JP S6154249 B2 JPS6154249 B2 JP S6154249B2
Authority
JP
Japan
Prior art keywords
polyimide resin
film
protective film
semiconductor element
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54161039A
Other languages
Japanese (ja)
Other versions
JPS5683945A (en
Inventor
Hiroshi Yano
Masanao Itoga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP16103979A priority Critical patent/JPS5683945A/en
Publication of JPS5683945A publication Critical patent/JPS5683945A/en
Publication of JPS6154249B2 publication Critical patent/JPS6154249B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Description

【発明の詳細な説明】 本発明は、トランジスタ、ダイオード、集積回
路IC、大規模集積回路LSI等の半導体素子の表面
保護膜をポリイミド樹脂をもつて形成する方法に
関するものであり、特に、酸化シリコン等の半導
体素子の表面材との密着性が良好で剥離しにくい
表面保護膜を、ポリイミド樹脂をもつて、半導体
素子の表面に、短時間に形成する方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming a surface protective film of semiconductor elements such as transistors, diodes, integrated circuit ICs, large-scale integrated circuit LSIs, etc. using polyimide resin. The present invention relates to a method for forming a surface protective film using polyimide resin on the surface of a semiconductor element in a short time, which has good adhesion to the surface material of the semiconductor element and is difficult to peel off.

半導体装置は、素子の固定、素子の外的雰囲気
からの保護、素子の放熱等の目的のために、その
表面を樹脂で封止して使用する場合がある。この
ような目的に使用される樹脂としては、物理的に
堅牢、化学的に安定であり、熱伝導率が大きく、
更に酸化シリコン等の半導体素子の表面材との密
着性が良好である等の特性を有する必要がある。
ポリイミド樹脂はこれらの特性を具備しており、
又、α線対策に効果があり、更に多層配線や段差
の埋め込みに好適であるので、半導体素子の表面
保護膜として、しばしば利用されている。
2. Description of the Related Art Semiconductor devices are sometimes used with their surfaces sealed with resin for purposes such as fixing the elements, protecting the elements from external atmosphere, and dissipating heat from the elements. Resins used for this purpose are physically robust, chemically stable, have high thermal conductivity, and
Furthermore, it is necessary to have characteristics such as good adhesion to the surface material of a semiconductor element such as silicon oxide.
Polyimide resin has these properties,
In addition, it is effective against alpha rays and is suitable for filling multilayer wiring and steps, so it is often used as a surface protection film for semiconductor devices.

ポリイミド樹脂は無水ピロメリト酸と芳香族ジ
アミンとの反応によつて作られる耐熱応力のすぐ
れた材料であることは周知であり、この材料を利
用して半導体装置の表面に保護膜を形成するとき
は、上記の二つの素材料をジメチルアセトアルデ
ヒド等の溶剤で稀釈して半導体装置の表面に塗布
し、これを数100℃に加熱して開環重附加反応を
行なわせる。
It is well known that polyimide resin is a material with excellent heat and stress resistance made by the reaction of pyromellitic anhydride and aromatic diamine, and when using this material to form a protective film on the surface of a semiconductor device, The above two materials are diluted with a solvent such as dimethylacetaldehyde, applied to the surface of a semiconductor device, and heated to several hundred degrees Celsius to carry out a ring-opening polyaddition reaction.

しかし、半導体装置は高温にさらされるとドナ
ーやアクセプターの拡散等により特性の悪化を来
す恐れがあるので、可及的低温で処理することが
是非必要であり、又、半導体装置の表面材と良好
な密着性を有し必要にして十分な厚さ、すなわち
数10ミクロンの厚さを有する被膜を形成すること
が必要であるから、従来は、第1工程において
0.3ミクロン厚程の被膜を作り、第2、第3工程
において夫々10ミクロン厚の被膜を作り、全体と
して約20ミクロン厚の被膜を作る総処理時間350
乃至400分を要する一連の工程をもつて、常圧の
下に最高450℃程度に加熱してなされていた。す
なわち、処理工程数が多く、連続処理をなす場合
は処理装置の所要規模や所要床面積が大きくな
り、長い処理時間を要するという欠点があつた。
However, if semiconductor devices are exposed to high temperatures, their characteristics may deteriorate due to diffusion of donors and acceptors, so it is absolutely necessary to process them at as low a temperature as possible. Since it is necessary to form a film with good adhesion and sufficient thickness, that is, several tens of microns thick, conventionally, in the first step,
A film with a thickness of about 0.3 microns is created, and a film with a thickness of 10 microns is created in the second and third steps, resulting in a film with a total thickness of about 20 microns.The total processing time is 350 yen.
It involved a series of steps that took from 400 minutes to 400 minutes, and was heated to a maximum of about 450°C under normal pressure. That is, the number of processing steps is large, and when continuous processing is performed, the required scale of processing equipment and floor area are large, and the processing time is long.

本発明は、半導体素子のポリイミド樹脂よりな
る表面保護膜形成方法において、処理工程数の減
少、処理時間の短縮を目的とし、ポリイミド樹脂
材料を半導体素子の表面に塗布した後、これに対
し、減圧した空気中でマイクロ波電力を利用して
なす誘電加熱を施すことにより、単一の工程で従
来の場合よりはるかに短い処理時間で、半導体装
置の表面材との密着性が良好であり、かつ必要に
して十分な厚さのポリイミド樹脂よりある表面保
護膜を半導体素子の表面に形成することを要旨と
する。
The present invention aims to reduce the number of processing steps and shorten processing time in a method for forming a surface protective film made of polyimide resin for a semiconductor element. By performing dielectric heating using microwave power in the heated air, it is possible to achieve good adhesion to the surface material of semiconductor devices in a single process in a much shorter processing time than conventional methods. The gist is to form a surface protection film made of polyimide resin with a necessary and sufficient thickness on the surface of a semiconductor element.

ポリイミド樹脂膜の形成機構が加熱に基く重附
加反応にある点に注目すると、反応前の素材料分
子と共振する周波数で誘電加熱を行えば、発熱が
吸熱反応の発生する部分でなされるため反応を促
進することになり、結果として最も短い時間で反
応を進行させることが可能である。かつ反応が終
了して材料の分子量が増加すれば、共振点からは
ずれるため発熱効率が低下し、半導体装置を不必
要に加熱する必要もなく有利と考えられる。次
に、良好な密着性を得るためには溶剤の放散を促
進することが有効と考えられるが、上記の誘電加
熱方式は溶剤分子の移動を助長すると考えられる
ので、溶剤の放散促進にも有効と考えられる。更
に、溶剤放散の促進のためには、周囲空気圧を減
圧することが有効であると考えられる。
Focusing on the fact that the formation mechanism of polyimide resin film is a heavy addition reaction based on heating, if dielectric heating is performed at a frequency that resonates with the material molecules before the reaction, the reaction will occur because heat is generated at the part where the endothermic reaction occurs. As a result, the reaction can proceed in the shortest time. Furthermore, once the reaction is completed and the molecular weight of the material increases, the resonance point is deviated from the material, so the heat generation efficiency decreases, and it is considered advantageous that there is no need to unnecessarily heat the semiconductor device. Next, in order to obtain good adhesion, it is considered effective to promote the dispersion of the solvent, and since the dielectric heating method described above is thought to promote the movement of solvent molecules, it is also effective in promoting the dispersion of the solvent. it is conceivable that. Furthermore, it is considered effective to reduce the ambient air pressure to promote solvent dissipation.

そこで、各種の周波数を利用してポリイミド樹
脂の誘電加熱を試みたところ、1乃至100GHzの
周波数範囲から選択した周波数が適当であり、厚
さ20ミクロンの場合約5分で反応が終了すること
を確認した。一方、周囲雰囲気の気圧について
は、0.1Torrを越えるとプラズマが発生して所期
の目的を達しえなかつたが、0.1Torr以下に減圧
した場合所期の目的を達し得ることを確認した。
すなわち、反応容器内の圧力(残留ガスの圧力)
が0.1Torrを越えると、酸素プラズマを含むプラ
ズマ雰囲気となり、該酸素プラズマがポリイミド
膜中の炭素と結合して二酸化炭素、一酸化炭素等
が生じる。このため、ポリイミド膜の膜厚減少を
招いてしまう。0.1Torr以下ではこのような酸素
プラズマの発生がない。
Therefore, we tried dielectric heating of polyimide resin using various frequencies, and found that a frequency selected from the frequency range of 1 to 100 GHz was appropriate, and that the reaction completed in about 5 minutes in the case of a thickness of 20 microns. confirmed. On the other hand, when the atmospheric pressure of the surrounding atmosphere exceeded 0.1 Torr, plasma was generated and the desired purpose could not be achieved, but it was confirmed that the desired purpose could be achieved if the pressure was reduced to 0.1 Torr or less.
In other words, the pressure inside the reaction vessel (pressure of residual gas)
When it exceeds 0.1 Torr, a plasma atmosphere containing oxygen plasma is created, and the oxygen plasma combines with carbon in the polyimide film to generate carbon dioxide, carbon monoxide, and the like. This results in a decrease in the thickness of the polyimide film. At 0.1 Torr or less, no such oxygen plasma is generated.

次に、上記の周波数と周囲空気圧との条件を保
持しながら、ポリイミド樹脂膜の厚さを1ミクロ
ンから20ミクロンの範囲で変化して試行を繰り返
し酸化シリコンとの密着性が変化するか否かを調
べたが、特別の変化を認めなかつた。従つて、こ
の発明にかかる方法においては工程を複数の工程
に分割する積極的必要性を認め得なかつた。
Next, while maintaining the above frequency and ambient air pressure conditions, we repeated trials by varying the thickness of the polyimide resin film in the range of 1 to 20 microns to see if the adhesion to silicon oxide changed. was investigated, but no particular changes were observed. Therefore, in the method according to the present invention, there was no positive need to divide the process into a plurality of steps.

以上に述べた個別的試行の結論を総合して、下
記の様な半導体装置の表面保護膜形成装置を製作
した。すなわち、ポリイミド樹脂の重合反応に必
要な数100℃の温度に耐え、かつマイクロ波を低
吸収率をもつて通過させる気密容器として石英ガ
ラス管よりなる気密容器を作り、これに0.1Torr
以下に減圧しうる真空装置を附加し、これをこの
目的に適当と確認された周波数範囲である1乃至
100GHzの範囲から選択した2.45GHzのマイクロ波
を利用するマイクロ波誘電加熱炉中に配置した。
そして、ジメチルアセトアルデヒドで稀釈した無
水ピロメリト酸と芳香族ジアミンとの混合物を半
導体装置の酸化シリコンよりなる表面に約20ミク
ロン厚さに塗布し、これを上記気密装置の中に入
れた後、該容器内の空気圧を0.1Torrに減圧し
て、その後で、2.45GHzの高周波電力を用いて誘
電加熱を加えて半導体装置の表面保護膜を形成し
た。
By integrating the conclusions of the individual trials described above, we manufactured the following surface protective film forming apparatus for semiconductor devices. In other words, an airtight container made of quartz glass tube was made as an airtight container that can withstand temperatures of several hundred degrees Celsius required for the polymerization reaction of polyimide resin and allows microwaves to pass through with a low absorption rate.
Add a vacuum device capable of reducing the pressure below, and use it at a frequency range of 1 to
It was placed in a microwave dielectric heating furnace using a 2.45 GHz microwave selected from the 100 GHz range.
Then, a mixture of pyromellitic anhydride diluted with dimethylacetaldehyde and an aromatic diamine is applied to a thickness of about 20 microns on the silicon oxide surface of the semiconductor device, and this is placed in the airtight device, and then the container is heated. The air pressure inside was reduced to 0.1 Torr, and then dielectric heating was applied using 2.45 GHz high frequency power to form a surface protective film for the semiconductor device.

この場合、加熱時間は5分であり、気密容器内
における最高温度は250℃であつた。
In this case, the heating time was 5 minutes, and the maximum temperature in the airtight container was 250°C.

又ポリイミド樹脂よりなる表面保護膜形成後端
子相当部分をエツチングしワイヤボンデイング完
了後保護膜の密着性を顕微鏡検査したが満足すべ
きものであつた。
Further, after forming a surface protective film made of polyimide resin, the portion corresponding to the terminal was etched, and after completion of wire bonding, the adhesion of the protective film was examined under a microscope and found to be satisfactory.

以上に説明した通り、この発明によれば、従来
の技術におけるように3層を累積して形成する必
要はなく、只1層の形成で約20ミクロンの保護膜
を形成することが出来、従つて処理工程を1/3に
減少し、連続処理をなす場合の処理装置の所要規
模や所要床面積を約1/3に減縮し、加熱処理時間
を約1/80と大幅に短縮することが出来る。又加熱
温度も250℃と低減して半導体装置の特性維持に
も有効である。更に結果としての密着性は従来の
技術と全く同等である。
As explained above, according to the present invention, it is not necessary to form three layers cumulatively as in the conventional technology, and it is possible to form a protective film of about 20 microns by forming just one layer. This reduces the processing steps to 1/3, reduces the required scale of processing equipment and floor area for continuous processing to about 1/3, and significantly shortens heat treatment time to about 1/80. I can do it. The heating temperature is also reduced to 250°C, which is effective in maintaining the characteristics of semiconductor devices. Moreover, the resulting adhesion is completely equivalent to that of the prior art.

図面に、本発明にかかるポリイミド樹脂の被着
された半導体装置の一部を示す。
The drawings show a part of a semiconductor device coated with a polyimide resin according to the present invention.

図において、11は例えばN型のシリコン基
板、12は該N型半導体基板11に選択的に設け
られたN+型基板コンタクト領域、13はフイー
ルド絶縁膜、14は電極配線層、15は電極端子
パツド、16は基板コンタクトパツド、17は燐
シリケートガラス層等からなる表面絶縁保護膜、
18はポリイミド樹脂膜である。
In the figure, 11 is, for example, an N type silicon substrate, 12 is an N+ type substrate contact region selectively provided on the N type semiconductor substrate 11, 13 is a field insulating film, 14 is an electrode wiring layer, and 15 is an electrode terminal pad. , 16 is a substrate contact pad, 17 is a surface insulating protective film made of a phosphorus silicate glass layer, etc.
18 is a polyimide resin film.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明にかかるポリイミド樹脂膜の被
着された半導体装置の一部を示す断面図である。 図において、18がポリイミド樹脂膜である。
The drawing is a sectional view showing a part of a semiconductor device coated with a polyimide resin film according to the present invention. In the figure, 18 is a polyimide resin film.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体素子の表面にポリイミド樹脂形成材料
を塗布する工程と、該半導体素子を気密容器の中
に入れる工程と、該容器内圧を0.1Torr以下とす
る工程と、該半導体素子に対し、1乃至100GHz
の範囲から選択された周波数を有する高周波電力
を用いた誘電加熱を施す工程とよりなる半導体素
子の表面保護膜形成方法。
1. A step of applying a polyimide resin forming material to the surface of a semiconductor element, a step of placing the semiconductor element in an airtight container, a step of reducing the internal pressure of the container to 0.1 Torr or less, and a step of applying a polyimide resin forming material to the surface of the semiconductor element at 1 to 100 GHz.
A method for forming a surface protective film on a semiconductor device, comprising the step of applying dielectric heating using high-frequency power having a frequency selected from the range of .
JP16103979A 1979-12-12 1979-12-12 Forming of surface protective film in semiconductor device Granted JPS5683945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16103979A JPS5683945A (en) 1979-12-12 1979-12-12 Forming of surface protective film in semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16103979A JPS5683945A (en) 1979-12-12 1979-12-12 Forming of surface protective film in semiconductor device

Publications (2)

Publication Number Publication Date
JPS5683945A JPS5683945A (en) 1981-07-08
JPS6154249B2 true JPS6154249B2 (en) 1986-11-21

Family

ID=15727428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16103979A Granted JPS5683945A (en) 1979-12-12 1979-12-12 Forming of surface protective film in semiconductor device

Country Status (1)

Country Link
JP (1) JPS5683945A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5121115B2 (en) * 2004-07-13 2013-01-16 日立化成デュポンマイクロシステムズ株式会社 Method for producing cured film and method for producing electronic device

Also Published As

Publication number Publication date
JPS5683945A (en) 1981-07-08

Similar Documents

Publication Publication Date Title
US5037876A (en) Planarizing dielectric
Diaham Chapter Polyimide in Electronics: Applications and Processability Overview
TW200428632A (en) Repair and restoration of damaged dielectric materials and films
EP0709882B1 (en) Semiconductor device with passivation layer made out of benzocyclobutene polymer and silicon powder
US5376586A (en) Method of curing thin films of organic dielectric material
US6764718B2 (en) Method for forming thin film from electrically insulating resin composition
Zelmat et al. Investigations on high temperature polyimide potentialities for silicon carbide power device passivation
JP4358563B2 (en) Method for forming low dielectric constant insulating film of semiconductor device
JP2012212706A (en) Method of manufacturing amorphous carbon film used in semiconductor device and method of manufacturing the semiconductor device
KR101242464B1 (en) Dry etching method
JPS6154249B2 (en)
EP0114106A2 (en) Method for manufacturing a semiconductor memory device having a high radiation resistance
McDonald et al. Techniques for fabrication of wafer scale interconnections in multichip packages
JP5278737B2 (en) Manufacturing method of heat dissipation material
JP3485425B2 (en) Method for forming low dielectric constant insulating film and semiconductor device using this film
JP4076245B2 (en) Low dielectric constant insulating film, method for forming the same, and interlayer insulating film
JPH0574960A (en) Manufacture of semiconductor device
WO2013125647A1 (en) Semiconductor-device manufacturing method and semiconductor device
JP3093224B2 (en) Semiconductor device
US20190276722A1 (en) Composite material and method of forming same, and electrical component including composite material
JP2001230244A (en) Method for forming insulating film and multilayer interconnection
Sharangpani et al. Importance of high energy photons in the curing of spin‐on low dielectric constant interconnect materials
JPH11162960A (en) Plasma film forming method
JPS59139641A (en) Electrostatic sucker
JPH04174520A (en) Stabilizing method for sog film