JPS6154193B2 - - Google Patents

Info

Publication number
JPS6154193B2
JPS6154193B2 JP55041578A JP4157880A JPS6154193B2 JP S6154193 B2 JPS6154193 B2 JP S6154193B2 JP 55041578 A JP55041578 A JP 55041578A JP 4157880 A JP4157880 A JP 4157880A JP S6154193 B2 JPS6154193 B2 JP S6154193B2
Authority
JP
Japan
Prior art keywords
reactor vessel
liquid metal
reactor
radiation prevention
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55041578A
Other languages
Japanese (ja)
Other versions
JPS56138281A (en
Inventor
Yukio Ugawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP4157880A priority Critical patent/JPS56138281A/en
Publication of JPS56138281A publication Critical patent/JPS56138281A/en
Publication of JPS6154193B2 publication Critical patent/JPS6154193B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 本発明は冷却材に液体金属を用いた原子炉に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a nuclear reactor using liquid metal as a coolant.

一般にたとえば高速増殖炉等では冷却材として
液体ナトリウム等の液体金属が用いられている。
そして、この液体金属は原子炉容器内に収容さ
れ、この原子炉容器内の液体金属の液面より上方
の空間にはアルゴン等のカバーガスが封入されて
いる。ところで、上記原子炉容器壁のうち液体金
属に接している部分は液体金属から略均一に熱が
伝わり、その温度分布は略平均化されるが、液体
金属の液面より上方の部分では表面からの輻射に
よつて放熱がなされる。そして、上記液体金属中
に浸漬されている原子炉容器壁から液面上に露出
している部分に熱が流れ、この結果原子炉容器壁
の液体金属の液面近傍には温度勾配を生じるが、
上記液体金属は熱伝導が良好なため大量の熱が流
れ、この液面近傍の温度勾配はきわめて大きくな
り、この部分に大きな熱応力が生じ原子炉容器の
健全性維持に問題を生じる。またこのような熱応
力は原子炉容器内に収容されている炉心上部機構
等においても同様に生じるものであつた。
Generally, a liquid metal such as liquid sodium is used as a coolant in, for example, a fast breeder reactor.
This liquid metal is housed in a reactor vessel, and a cover gas such as argon is filled in a space above the liquid level of the liquid metal in the reactor vessel. By the way, heat is transmitted from the liquid metal almost uniformly to the part of the reactor vessel wall that is in contact with the liquid metal, and the temperature distribution is approximately averaged, but in the part above the liquid metal surface, heat is transmitted from the liquid metal to the surface. Heat is dissipated by radiation. Then, heat flows from the reactor vessel wall immersed in the liquid metal to the part exposed above the liquid surface, resulting in a temperature gradient near the liquid metal surface on the reactor vessel wall. ,
Since the liquid metal has good thermal conductivity, a large amount of heat flows through it, and the temperature gradient near the liquid surface becomes extremely large, creating a large thermal stress in this area, causing problems in maintaining the integrity of the reactor vessel. In addition, such thermal stress also occurs in the upper core mechanism and the like housed within the reactor vessel.

本発明は以上の事情にもとづいてなされたもの
で、その目的とするところは原子炉容器や内部に
収容されている部材の液体金属の液面近傍に生じ
る熱応力を低減し、これら部材の健全性を向上す
ることのできる原子炉を得ることにある。
The present invention has been made based on the above circumstances, and its purpose is to reduce the thermal stress generated near the liquid metal surface of the reactor vessel and the members housed therein, and to improve the health of these members. The goal is to obtain a nuclear reactor that can improve performance.

以下本発明を図面に示す一実施例にしたがつて
説明する。この一実施例はナトリウム冷却形高速
増殖炉であつて、図中1はステンレス鋼製の原子
炉容器、2は炉心である。そして、この原子炉容
器1はペデスタル3から吊り下げられており、そ
の外面には保温材4が取付けられている。また、
この原子炉容器1の上端には遮蔽プラグ5が設け
られ、この遮蔽プラグ5からは炉心上部機構6が
吊り下げられている。この炉心上部機構6は各部
品がステンレス鋼で形成されている。そして、上
記原子炉容器1内には液体ナトリウム等の液体金
属7が収容され、その液面8より上方の空間には
アルゴン等のカバーガスが封入されている。そし
て、上記炉心2および炉心上部機構6の下部はこ
の液体金属7中に浸漬されている。そして、上記
原子炉容器1の内面および炉心上部機構6の表面
の液体金属7の液面8近傍にはそれぞれ輻射防止
板9……が取付けられている。これら輻射防止板
9……は原子炉容器1および炉心上部機構6を形
成しているステンレス鋼材料の輻射率(約0.5以
上)より充分に低い輻射率たとえば輻射率が約
0.1以下である材料たとえばアルミニウム、ニツ
ケル、銅等の材料から構成され、その表面は平滑
に研摩仕上されている。そして、これら輻射防止
板9……はこれと同材質のスタツド10……を介
して原子炉容器1の内面または炉心上部機構6の
表面に取付けられており、これらの表面との間に
微小間隙11……が形成されている。
The present invention will be described below with reference to an embodiment shown in the drawings. This embodiment is a sodium-cooled fast breeder reactor, in which 1 is a stainless steel reactor vessel and 2 is a reactor core. The reactor vessel 1 is suspended from a pedestal 3, and a heat insulator 4 is attached to its outer surface. Also,
A shielding plug 5 is provided at the upper end of the reactor vessel 1, and a core upper mechanism 6 is suspended from the shielding plug 5. Each part of this core upper mechanism 6 is made of stainless steel. A liquid metal 7 such as liquid sodium is contained within the reactor vessel 1, and a space above the liquid level 8 is filled with a cover gas such as argon. The core 2 and the lower part of the core upper mechanism 6 are immersed in this liquid metal 7. Radiation prevention plates 9 are attached to the inner surface of the reactor vessel 1 and near the liquid level 8 of the liquid metal 7 on the surface of the upper core mechanism 6, respectively. These radiation prevention plates 9... have an emissivity sufficiently lower than the emissivity (approximately 0.5 or more) of the stainless steel material forming the reactor vessel 1 and the upper core mechanism 6, for example, an emissivity of approximately
0.1 or less, such as aluminum, nickel, copper, etc., and its surface is polished to a smooth finish. These radiation prevention plates 9 are attached to the inner surface of the reactor vessel 1 or the surface of the upper core mechanism 6 via studs 10 made of the same material, and there is a small gap between them and these surfaces. 11... are formed.

以上の如く構成された本発明の一実施例は原子
炉容器1および炉心上部機構6の液体金属7中に
浸漬されている部分はこの液体金属7から熱が伝
えられ、この熱は液面8上に露出している部分に
伝えられて外部に放射される。ところで、この液
面8近傍にある原子炉容器1の内面および炉心上
部機構6の表面にはそれぞれ輻射防止板9……が
取付けられているので、輻射熱はこれら輻射防止
板9……に当る。そして、これら輻射防止板9…
…は輻射率の低い材料換言すれば反射率の高い材
料で形成されているので、輻射熱はこれら輻射防
止板9……で反射されて原子炉容器1または炉心
上部機構6に戻される。そして、この輻射防止板
9……との間で反射を繰返しているうちに輻射熱
の大部分は輻射率の大きな原子炉容器1または炉
心上部機構6側に吸収され、結局これからの熱輻
射が防止される。よつてこの液面8上にある原子
炉容器1および炉心上部機構6からの熱輻射は減
少し、液面近傍に生じる温度勾配は小さくなり、
熱応力は緩和される。なお、この効果を確認する
ためにおこなつた実験の結果を第3図に示す。第
3図中曲線Aはこの一実施例のものの温度勾配を
示し、曲線Bは輻射防止板9……を設けていない
従来のものである。この結果から明らかなように
輻射防止板9……を設けることにより液面8近傍
の温度勾配がきわめてゆるやかとなり、その分だ
け熱応力も緩和されるものである。また、上記輻
射防止板9……は微小間隙11……を存して取付
けられているので、原子炉容器1や炉心上部機構
6からこの輻射防止板9………に熱が直接伝わる
のが防止される。
In one embodiment of the present invention constructed as described above, heat is transferred from the liquid metal 7 to the parts of the reactor vessel 1 and the upper core mechanism 6 that are immersed in the liquid metal 7, and this heat is transferred to the liquid surface 8. It is transmitted to the upper exposed part and radiated to the outside. Incidentally, since radiation prevention plates 9 are attached to the inner surface of the reactor vessel 1 and the surface of the upper core mechanism 6 near the liquid level 8, the radiant heat hits these radiation prevention plates 9. And these radiation prevention plates 9...
... are made of a material with low emissivity, in other words, a material with high reflectance, so the radiant heat is reflected by these radiation prevention plates 9 and returned to the reactor vessel 1 or the upper core mechanism 6. As it is repeatedly reflected between the radiation prevention plates 9..., most of the radiant heat is absorbed into the reactor vessel 1 or core upper mechanism 6 side, which has a high emissivity, and eventually prevents future heat radiation. be done. Therefore, the thermal radiation from the reactor vessel 1 and the upper core mechanism 6 above the liquid level 8 decreases, and the temperature gradient generated near the liquid level becomes smaller.
Thermal stress is relieved. Incidentally, the results of an experiment conducted to confirm this effect are shown in FIG. In FIG. 3, curve A shows the temperature gradient of this embodiment, and curve B shows the conventional one in which the radiation prevention plate 9 is not provided. As is clear from this result, by providing the radiation prevention plates 9, the temperature gradient near the liquid surface 8 becomes extremely gentle, and the thermal stress is alleviated accordingly. In addition, since the radiation prevention plates 9 are installed with a small gap 11, heat is not directly transmitted from the reactor vessel 1 or core upper mechanism 6 to the radiation prevention plates 9. Prevented.

なお、本発明は上記の一実施例には限定されな
い。
Note that the present invention is not limited to the above embodiment.

たとえば輻射防止板は原子炉容器内面および炉
心上部機構のすべての全周にわたつて設ける必要
はなく、その一部に設けてもよく、またこれ以外
の他の部材に設けることもできる。
For example, the radiation prevention plate does not need to be provided all around the inner surface of the reactor vessel and the entire circumference of the core upper mechanism, but may be provided on a portion thereof, or may be provided on other members other than these.

また、輻射防止板は表面にのみ低輻射率の材料
をクラツドしたようなものでもよい。
Further, the radiation prevention plate may be one in which only the surface is covered with a material having a low emissivity.

上述の如く本発明は原子炉容器内面およびこの
原子炉容器内に収容される部材の表面の液体金属
の液面近傍に低輻射率の材料からなる輻射防止板
を取付けたものである。したがつて、液面より露
出している部分からの輻射が防止され、液面近傍
の部分における温度勾配が小さくなり、熱応力が
緩和されてこれらの部材の健全性が向上する等そ
の効果は大である。
As described above, in the present invention, a radiation prevention plate made of a material with a low emissivity is attached near the liquid metal surface on the inner surface of the reactor vessel and the surfaces of the members housed in the reactor vessel. Therefore, radiation from the parts exposed above the liquid surface is prevented, the temperature gradient in the parts near the liquid surface is reduced, thermal stress is alleviated, and the health of these parts is improved, among other effects. It's large.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示し、第1図は縦断
面図、第2図は要部を拡大して示す縦断面図、第
3図は液面近傍の温度勾配の特性図である。 1……原子炉容器、5……遮蔽プラグ、6……
炉心上部機構、7……液体金属、8……液面、9
……輻射防止板、11……間隙。
The drawings show an embodiment of the present invention; FIG. 1 is a longitudinal sectional view, FIG. 2 is a longitudinal sectional view showing an enlarged main part, and FIG. 3 is a characteristic diagram of the temperature gradient near the liquid surface. 1... Reactor vessel, 5... Shielding plug, 6...
Upper core mechanism, 7...Liquid metal, 8...Liquid level, 9
...Radiation prevention plate, 11...Gap.

Claims (1)

【特許請求の範囲】 1 冷却材に液体金属を用いるものにおいて、原
子炉容器内面およびこの原子炉容器内に収容され
た部材の表面の上記液体金属の液面近傍の少なく
とも一部にこの原子炉容器またはこの原子炉容器
内に収容された部材の材料よりも輻射率の低い材
料からなる輻射防止板を設けたことを特徴とする
原子炉。 2 前記輻射防止板は表面が平滑に仕上げられ、
前記原子炉容器内面またはこの原子炉容器内に収
容された部材の表面との間に微小間隙を存して取
付けられていることを特徴とする前記特許請求の
範囲第1項記載の原子炉。
[Scope of Claims] 1. In a system that uses a liquid metal as a coolant, at least a portion of the inner surface of the reactor vessel and the surface of the member housed in the reactor vessel near the surface of the liquid metal is provided with the reactor. A nuclear reactor characterized by being provided with a radiation prevention plate made of a material having a lower emissivity than the material of the vessel or the members housed in the reactor vessel. 2. The radiation prevention plate has a smooth surface,
2. The nuclear reactor according to claim 1, wherein the reactor is installed with a small gap between the inner surface of the reactor vessel or the surface of a member housed within the reactor vessel.
JP4157880A 1980-03-31 1980-03-31 Nuclear reactor Granted JPS56138281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4157880A JPS56138281A (en) 1980-03-31 1980-03-31 Nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4157880A JPS56138281A (en) 1980-03-31 1980-03-31 Nuclear reactor

Publications (2)

Publication Number Publication Date
JPS56138281A JPS56138281A (en) 1981-10-28
JPS6154193B2 true JPS6154193B2 (en) 1986-11-21

Family

ID=12612320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4157880A Granted JPS56138281A (en) 1980-03-31 1980-03-31 Nuclear reactor

Country Status (1)

Country Link
JP (1) JPS56138281A (en)

Also Published As

Publication number Publication date
JPS56138281A (en) 1981-10-28

Similar Documents

Publication Publication Date Title
US4655999A (en) Control rod for nuclear reactor
JPS6154193B2 (en)
US3108936A (en) Fuel element for nuclear reactor
US3118819A (en) Nuclear fuel cartridge
US3325375A (en) Fuel element for a water-cooled nuclear reactor
JPH0694879A (en) Nuclear reactor
BE867710A (en) CIRCULATION PUMP, ESPECIALLY FOR LIQUID METAL COOLING THE CORE OF A QUICK NEUTRON NUCLEAR REACTOR
US3322639A (en) Nuclear reactors
ES481819A1 (en) Liquid-metal cooled fast nuclear reactor.
US4198271A (en) Liquid metal cooled nuclear reactor constructions
RU2154312C1 (en) Nuclear reactor fuel element
JP2692215B2 (en) Storing method of fuel assembly in spent fuel cask
JP2725804B2 (en) Reactor vessel
JPH0155436B2 (en)
GB1441856A (en) Fast-neutron nuclear reactors
EP0075683B1 (en) Fast breeder nuclear reactor vessel
JPH026036B2 (en)
JPS5855896A (en) Vessel of fast breeder
JPS61180190A (en) Heat shielding device for fast breeder reactor
US4560530A (en) Device for providing protection against heat and radiation for an intermediate heat exchanger immersed in a nuclear reactor vessel
JPS6140589A (en) Lower structure of pressure vessel for nuclear reactor
JPS62245187A (en) Fast breeder reactor
JPH03189595A (en) Nuclear reactor container structure
Brown et al. MOLTEN ZIRCAL0Y-4/BALL00NED PRESSURE TUBE INTERACTION EXPERIMENTS
GB970687A (en) Improvements in fuel elements for nuclear reactors