JPS6153775B2 - - Google Patents

Info

Publication number
JPS6153775B2
JPS6153775B2 JP54074664A JP7466479A JPS6153775B2 JP S6153775 B2 JPS6153775 B2 JP S6153775B2 JP 54074664 A JP54074664 A JP 54074664A JP 7466479 A JP7466479 A JP 7466479A JP S6153775 B2 JPS6153775 B2 JP S6153775B2
Authority
JP
Japan
Prior art keywords
prism
light
semiconductor laser
laser element
light beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54074664A
Other languages
Japanese (ja)
Other versions
JPS5641A (en
Inventor
Seiji Yonezawa
Toshio Sugyama
Masahiro Oshima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7466479A priority Critical patent/JPS5641A/en
Priority to US06/152,297 priority patent/US4333173A/en
Priority to FR8013059A priority patent/FR2459513B1/en
Priority to NL8003411A priority patent/NL8003411A/en
Priority to GB8019469A priority patent/GB2053553B/en
Priority to DE3022299A priority patent/DE3022299C2/en
Priority to CA000353936A priority patent/CA1136273A/en
Publication of JPS5641A publication Critical patent/JPS5641A/en
Publication of JPS6153775B2 publication Critical patent/JPS6153775B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/08Anamorphotic objectives
    • G02B13/10Anamorphotic objectives involving prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0028Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0052Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a laser diode
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0972Prisms
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0908Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for focusing only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0908Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for focusing only
    • G11B7/0917Focus-error methods other than those covered by G11B7/0909 - G11B7/0916
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/13Optical detectors therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1359Single prisms
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1398Means for shaping the cross-section of the beam, e.g. into circular or elliptical cross-section

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Head (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は光情報処理装置、特に半導体レーザ素
子を光源に用いた光情報処理装置に関する。 近年、ガスレーザに代わつて、半導体レーザ素
子を光源に用いた光情報処理装置の開発が盛んに
なつてきた。光デイスクはその一例である。光デ
イスクとは、半導体レーザ素子を用いて円盤(デ
イスク)に記録されている情報信号を再生した
り、又はデイスクに情報を高密度に記録するもの
である。すなわち、半導体レーザを用いてデイス
ク上に情報信号を記録したり再生するためには、
半導体レーザ素子から出たビームを光学系を構成
する結合レンズ及び対物レンズを用いてデイスク
上に直径1μm程度の円形状の光スポツトとして
形成しなければならない。 一般に、半導体レーザ素子は、その発光領域の
縦横比が異なるため、ビームの拡がり角が非常方
的である。この半導体レーザビームの拡がり角
は、半導体レーザ素子の構造によつて異なつてい
る。即ち、第1図に示す如く半導体レーザ素子か
らのビームの遠視野像における出射光分布の水平
方向及び垂直方向のe-2での角度をそれぞれθ
、θ⊥とすると、例えば CSP型半導体レーザでは θ=8゜、θ⊥=24゜及びθ⊥/θ=3
…(1) となる。また、BH型半導体レーザでは θ=16゜、θ⊥=32゜及びθ⊥/θ=2
…(2) であり、BH型レーザではビーム拡がり角の比θ
⊥/θは2、CSP型レーザでは3となつてい
る。なお、第1図の横軸は広がり角、その縦軸は
光強度である。第2図は上述した半導体レーザ素
子のビーム拡がり角が等方的でない場合に、デイ
スク上に直径1μmφ程度の等方的スポツトを形
成するための従来の光情報処理装置の一例を示し
ている。 第2図において、半導体レーザ素子1の一方の
端面から出た等方でない拡がり角をもつたビーム
は結合レンズ2、対物レンズ3によつてデイスク
4上に光スポツト5が形成される。光検出器6は
半導体レーザ素子1の光出力を検出する手段であ
る。なお、Aは光軸である。第2図において、結
合レンズ2の開口数NAは、半導体レーザ1とレ
ンズ2とのなす半画角をθとすると、 NA=sinθ ……(3) の関係がある。また半導体レーザ素子1のビーム
拡がり角について、上述したように水平方向及び
垂直方向のe-2での大きさをθ及びθ⊥とする
と、このような半導体レーザ素子を用いてデイス
ク4上に等方的なスポツト5を形成するために
は、 θ<θ<θ⊥ ……(4) となるように結合レンズ2の開口数NAをを選ば
なければならない。すなわち、結合レンズ2の開
口数を小さくし、軸外の光線を遮断して、光軸A
(θ=0)付近のみのビームを用いて、結合レン
ズ2から出た光の強度分布を等方的にさせる必要
がある。第1図に示すビームの広がり角と第(1),
(3)及び(4)式より、CSP型レーザでは NA=0.1 θ=5.7゜(θ<θ⊥) ……(5) とすると、結合レンズ2を通つた後のビームはほ
ぼ等方的になり、したがつて、デイスク4上に等
方的なスポツト5が形成される。 しかし、かかる構成では半導体レーザ素子から
出射された光線の一部しかデイスク上に照射され
ないので、レーザ素子の光利用効率が悪いという
欠点がある。特に、記録を行なうような場合に
は、デイスクに設けられた金属薄膜を溶解し、穴
を形成しなければならないので、再生を行なう場
合より数倍の光量を必要とする。また、半導体レ
ーザ素子は、ある一定以上の光量をだすと寿命が
短かくなる。従つて、半導体レーザ素子を用いた
光情報処理装置においては、レーザ素子の光利用
効率を高め、できるだけ光出力を少なくおさえる
ことが、寿命及び信頼性の面からぜひ必要なので
ある。 また、通常、デイスクは約1mm程度の上下ぶれ
をしながら回転している。この回転デイスクの上
下ぶれにかかわらず、スポツトの径が変化しない
ためには、焦点ずれの信号を光学的に検出して自
動焦点を行なう必要がある。 さて、第2図に示す構成において、半導体レー
ザ素子1にデイスク4からの反射光が帰還すると
デイスクからの反射光の強弱に応じて半導体レー
ザ1の出力が増減するので、デイスク4の情報を
光検出器6の出力によつて再生できる。この技術
は特開昭49―69008号公報に記載されている。 一方、光ビームのデイスク上からの焦点のずれ
を検出するため、光源あるいはレンズをその光軸
方向に微小振動させ、レーザ出力を同期検波す
る。ことで、焦点ずれを検出する技術が特開昭53
―17706号公報で提案されている。しかし、この
技術による自動焦点制御引き込み範囲は狭いとい
う欠点がある。第3図は第2図に示す構成におい
て、結合レンズ2の開口数NAが0.1のとき、デイ
スク4を光軸方向に沿つて微少に移動したときの
半導体レーザ素子1からの出力変化を示したもの
である。第3図から明らかなように結合レンズ2
の開口数NAが0.1と非常に小さいときは、自動焦
点引き込み範囲は10μmしかないことがわかる。
これはデイスクの変位によつて、レーザ素子端面
附近の反射戻り光スポツト焦点位置が大きく変化
してしまうためである。すわち、焦点ずれによる
レーザ素子端面上の反射戻り光スポツトのぼけが
著しく、このために自動焦点引き込み範囲が10μ
mという小さな数になつてしまうのである。この
ように半導体レーザ素子にデイスクからの反射光
を復帰させる光情報処理装置では上述したように
引き込み範囲が小さいという欠点をもつている。
このため、自動焦点制御が困難であり、上下ぶれ
の大きなデイスクからの情報再生はできないとい
う欠点があつた。 一方、デイスク上に絞りこんだスポツトを円形
状に近づけるために円筒レンズを用いることが考
えられている。しかし、円筒レンンズは工作上の
精度が出にくく、高価であること光学系の配置が
複雑になることの欠点があり、また、光スポツト
を1μmの円形状スポツトに収束することは、円
筒レンズを使用しているために非点収差が大きく
影響して、困難である。更に光学系の効率を上げ
るためには円筒レンズの透過率を上げなければな
らず、無反射コーテイングなどが必要である。 本発明は、出力光ビームが非等方である半導体
レーザを用い、光の利用効率にすぐれ、簡単な光
学系で記録媒体上に等方的なスポツトを形成する
ことが可能な光情報処理装置を提供することを目
的とする。 かる目的を達成するために、本発明において
は、半導体レーザ素子からのビームを情報記録媒
体に導く光学系中にプリズムを具備せしめたこと
を特徴とする。即ち、本発明はデイスク上の光ス
ポツトが等方形状になるという結合レンズの条件
である第(4)式を無視して、結合レンズの開口数を
大きくすることによつて半導体レーザ素子からの
非等方形状のビームを殆んどすべて結合レンズに
入射させると共に、結合レンズの後段にプリズム
を配置することにより、結合レンズを通過した等
方的でないビームを等方的形状のビームに変換せ
しめるものである。また、本発明では半導体レー
ザの偏光が接合面に水平な方向であることに着目
して、この半導体レーザ光がP偏光で入射し、か
つ半導体レーザ光の水平方向の分布を拡大するよ
うプリズムを配置し、しかも該ビームがこのプリ
ズムの出射端面から垂直に出力されるようにし、
プリズムへの入出射に際して反射損失がほとんど
なく、光ビームの利用効率を格段に高めたことを
特徴とする。 以下、図面により本発明を説明する。 第4図は、デイスクの位置と光出力との関係を
示す図である。即ち、第2図に示した構成におい
て、デイスク4上の光スポツト5が等方形状にな
るという結合レンズの条件である第(4)式を無視し
て、結合レンズ2の開口数NAを大きく(NA=
0.5)し、デイスク4を光軸方向に沿つて微小に
移動したときの半導体レーザ素子からの光出力の
変化を示したものである。第4図から明らかなよ
うに引き込み範囲は100μmとなつている。 即ち、結合レンズの開口数を大きくすることに
より、デイスクの変位による反射戻り光スポツト
焦点位置の変化が小さくなり、自動焦点の引き込
み範囲が、拡大されているのである。 而して、結合レンズは、開口数が大きいほど自
動焦点引き込み範囲が大きくなり、デイスクの上
下ぶれに対して完全な自動焦点が実現できること
となる。しかも、結合レンズの開口数が大きくな
ると、半導体レーザ素子からのビームがそれだけ
多く結合レンズに入射されるので、レーザ素子の
光の利用効率が高くなる。しかし、結合レンズの
開口数NAがほぼ第1図に示す遠視野像のe- 2での
垂直方向の拡がり角度θ⊥を満足すれば実質的に
半導体レーザ素子からのビームを殆んど結合レン
ズに入射させることとなる。したがつて、実質的
には、 θ<θ≦θ⊥ ……(6) を満足すればよいのである。 しかし、第(6)式を満足する結合レンズ2を通過
した光ビームは等方的でないので光スポツト5も
等方的でなくなつてしまう。そこで、本発明にお
いてはこれを解決するために、第5図に示すよう
に、結合レンズ2の後段にプリズム7を配置す
る。第9図は上記プリズム7の形状を示す。第9
図において、プリズムはその頂角をθα、屈折率
をNとする直角プリズムとし、入射角をθi、入
射ビーム径Iと、屈折ビーム径Oの比をm=O/Iと すると、これらは、それぞれ次式で与えられる。 ここでR11はプリズムの入射面における反射率
である。プリズム7は半導体レーザ素子からのビ
ームの拡がりの水平方向を伸長せしめてその垂直
方向と一致させて、等方的なビームに変換する。
したがつて、半導体レーザ素子からのビームを殆
んど結合レンズに入射させた場合等方的なビーム
を得るためには、mをビームの拡がり角の比θ
⊥/θと一致させる必要がある。例えば、BH
型半導体レーザ素子をを用いる場合は第(2)式によ
りm=2である。プリズムの屈折率N=1.7636と
すると、反射率R11ができるだけ小さくなるよう
にθi,θ〓を選ぶと式(7)式より
The present invention relates to an optical information processing device, and particularly to an optical information processing device using a semiconductor laser element as a light source. In recent years, development of optical information processing devices that use semiconductor laser elements as light sources in place of gas lasers has become active. Optical disks are one example. An optical disk uses a semiconductor laser element to reproduce information signals recorded on a disk (disc) or to record information on the disk at high density. In other words, in order to record and reproduce information signals on a disk using a semiconductor laser,
The beam emitted from the semiconductor laser element must be formed into a circular light spot with a diameter of about 1 μm on the disk using a coupling lens and an objective lens that constitute an optical system. In general, semiconductor laser devices have different aspect ratios of their light emitting regions, so the beam divergence angle is extremely irregular. The divergence angle of this semiconductor laser beam differs depending on the structure of the semiconductor laser element. That is, as shown in FIG. 1, the angles at e -2 in the horizontal and vertical directions of the output light distribution in the far-field image of the beam from the semiconductor laser device are respectively θ.
, θ⊥, for example, in a CSP type semiconductor laser, θ=8°, θ⊥=24°, and θ⊥/θ=3
…(1) becomes. In addition, for the BH type semiconductor laser, θ=16°, θ⊥=32°, and θ⊥/θ=2
…(2), and in the BH type laser, the beam divergence angle ratio θ
⊥/θ is 2, and 3 for CSP type lasers. Note that the horizontal axis in FIG. 1 is the spread angle, and the vertical axis is the light intensity. FIG. 2 shows an example of a conventional optical information processing apparatus for forming an isotropic spot with a diameter of about 1 μmφ on a disk when the beam divergence angle of the semiconductor laser device described above is not isotropic. In FIG. 2, a beam having a non-isotropic divergence angle emitted from one end face of the semiconductor laser element 1 is formed into a light spot 5 on a disk 4 by a coupling lens 2 and an objective lens 3. The photodetector 6 is a means for detecting the optical output of the semiconductor laser element 1. Note that A is the optical axis. In FIG. 2, the numerical aperture NA of the coupling lens 2 has the relationship NA=sinθ (3) where θ is the half angle of view formed by the semiconductor laser 1 and the lens 2. Regarding the beam divergence angle of the semiconductor laser element 1, if the magnitudes at e -2 in the horizontal and vertical directions are θ and θ⊥ as described above, then using such a semiconductor laser element In order to form a square spot 5, the numerical aperture NA of the coupling lens 2 must be selected so that θ<θ<θ⊥ (4). That is, by reducing the numerical aperture of the coupling lens 2 and blocking off-axis rays, the optical axis A is
It is necessary to make the intensity distribution of the light emitted from the coupling lens 2 isotropic by using only the beam around (θ=0). The divergence angle of the beam shown in Fig. 1 and (1),
From equations (3) and (4), for a CSP type laser, NA = 0.1 θ = 5.7° (θ < θ⊥) ... (5), then the beam after passing through the coupling lens 2 is almost isotropic. Therefore, an isotropic spot 5 is formed on the disk 4. However, in this configuration, only a portion of the light beam emitted from the semiconductor laser element is irradiated onto the disk, so there is a drawback that the light utilization efficiency of the laser element is poor. In particular, when recording, it is necessary to melt the thin metal film provided on the disk and form holes, which requires several times the amount of light compared to when reproducing. Furthermore, when a semiconductor laser element emits a certain amount of light or more, its lifetime becomes short. Therefore, in an optical information processing device using a semiconductor laser element, it is absolutely necessary to increase the light utilization efficiency of the laser element and to suppress the optical output as much as possible from the viewpoint of lifespan and reliability. Further, normally, the disk rotates with a vertical deviation of about 1 mm. In order to prevent the diameter of the spot from changing regardless of the vertical movement of the rotary disk, it is necessary to optically detect a defocus signal and perform automatic focusing. Now, in the configuration shown in FIG. 2, when the reflected light from the disk 4 returns to the semiconductor laser element 1, the output of the semiconductor laser 1 increases or decreases depending on the strength of the reflected light from the disk. It can be reproduced by the output of the detector 6. This technique is described in Japanese Patent Application Laid-Open No. 49-69008. On the other hand, in order to detect the deviation of the focus of the light beam from the disk, the light source or lens is slightly vibrated in the direction of its optical axis, and the laser output is synchronously detected. As a result, the technology for detecting defocus was developed in Japanese Patent Application Laid-Open No. 53
- Proposed in Publication No. 17706. However, this technique has the disadvantage that the automatic focus control pull-in range is narrow. Figure 3 shows the change in output from the semiconductor laser element 1 when the disk 4 is slightly moved along the optical axis direction in the configuration shown in Figure 2, when the numerical aperture NA of the coupling lens 2 is 0.1. It is something. As is clear from Fig. 3, the coupling lens 2
It can be seen that when the numerical aperture NA of 0.1 is very small, the automatic focusing range is only 10 μm.
This is because the focal position of the reflected return light spot near the end face of the laser element changes greatly due to the displacement of the disk. In other words, the reflected return light spot on the end face of the laser element is significantly blurred due to the focus shift, and as a result, the automatic focus pull-in range is 10 μm.
This results in a small number called m. The optical information processing apparatus that returns the reflected light from the disk to the semiconductor laser element as described above has the disadvantage that the pull-in range is small, as described above.
For this reason, automatic focus control was difficult and information could not be reproduced from a disk with large vertical shake. On the other hand, it has been considered to use a cylindrical lens to make the narrowed spot on the disk closer to a circular shape. However, cylindrical lenses have the drawbacks of being difficult to produce with precision in machining, being expensive, and complicating the arrangement of the optical system; This is difficult because astigmatism has a large effect on the lens used. Furthermore, in order to increase the efficiency of the optical system, it is necessary to increase the transmittance of the cylindrical lens, and anti-reflection coating is required. The present invention is an optical information processing device that uses a semiconductor laser whose output light beam is anisotropic, has excellent light utilization efficiency, and is capable of forming an isotropic spot on a recording medium with a simple optical system. The purpose is to provide In order to achieve this object, the present invention is characterized in that a prism is provided in the optical system that guides the beam from the semiconductor laser element to the information recording medium. That is, the present invention ignores equation (4), which is the condition of the coupling lens that the light spot on the disk has an isotropic shape, and increases the numerical aperture of the coupling lens to increase the light output from the semiconductor laser element. By making almost all of the non-isotropic beam incident on the coupling lens and placing a prism after the coupling lens, the non-isotropic beam that has passed through the coupling lens is converted into an isotropic beam. It is something. In addition, in the present invention, focusing on the fact that the polarized light of the semiconductor laser is horizontal to the junction surface, the prism is designed so that the semiconductor laser light enters as P-polarized light and expands the horizontal distribution of the semiconductor laser light. and arranged so that the beam is output perpendicularly from the exit end face of this prism,
It is characterized by almost no reflection loss when entering and exiting the prism, and the efficiency of using the light beam is greatly increased. The present invention will be explained below with reference to the drawings. FIG. 4 is a diagram showing the relationship between the position of the disk and the optical output. That is, in the configuration shown in FIG. 2, the numerical aperture NA of the coupling lens 2 is increased by ignoring equation (4), which is the condition for the coupling lens that the optical spot 5 on the disk 4 has an isotropic shape. (NA=
0.5) and shows the change in the optical output from the semiconductor laser element when the disk 4 is slightly moved along the optical axis direction. As is clear from FIG. 4, the pull-in range is 100 μm. That is, by increasing the numerical aperture of the coupling lens, the change in the focal position of the reflected return light spot due to the displacement of the disk is reduced, and the automatic focusing range is expanded. Thus, the larger the numerical aperture of the coupling lens, the wider the automatic focus pull-in range, and complete automatic focus can be achieved against vertical movement of the disk. Furthermore, as the numerical aperture of the coupling lens increases, more beams from the semiconductor laser element are incident on the coupling lens, and the efficiency of using light from the laser element increases. However, if the numerical aperture NA of the coupling lens approximately satisfies the vertical divergence angle θ⊥ at e - 2 of the far-field pattern shown in Figure 1, most of the beam from the semiconductor laser element can be effectively absorbed by the coupling lens. It will be made to be incident on. Therefore, in reality, it is sufficient to satisfy θ<θ≦θ⊥ (6). However, since the light beam passing through the coupling lens 2 that satisfies equation (6) is not isotropic, the light spot 5 is also not isotropic. Therefore, in the present invention, in order to solve this problem, a prism 7 is arranged after the coupling lens 2, as shown in FIG. FIG. 9 shows the shape of the prism 7 mentioned above. 9th
In the figure, the prism is a right-angle prism with an apex angle of θα and a refractive index of N, the incident angle is θi, and the ratio of the incident beam diameter I to the refracted beam diameter O is m=O/I, then these are as follows. Each is given by the following formula. Here, R 11 is the reflectance at the entrance surface of the prism. The prism 7 extends the horizontal direction of the spread of the beam from the semiconductor laser element so that it coincides with the vertical direction, thereby converting the beam into an isotropic beam.
Therefore, in order to obtain an isotropic beam when most of the beam from the semiconductor laser device is incident on the coupling lens, m must be set as the beam divergence angle ratio θ.
It is necessary to match ⊥/θ. For example, BH
When using a type semiconductor laser element, m=2 according to equation (2). Assuming that the refractive index of the prism N=1.7636, if θ i and θ〓 are selected so that the reflectance R 11 is as small as possible, then from equation (7),

【表】 したがつて、第(2)式で表わされるビーム拡がり
角をもつBH型半導体レーザについては第(8)式で
表わされるプリズム7を第5図において、結合レ
ンズ2の直後に挿入することによつて、等方的な
ビームに変換することが可能となる。この等方に
なつた光ビームは対物レンズ3によつてデイスク
4上に等方なスポツトとして照射される。しかし
て、縦、横比の異なる発光領域を有する半導体レ
ーザ素子からのビームの一部を遮断することな
く、デイスク上に等方的なスポツトとして照射す
ることが可能となる。しかもプリズムを使用して
いるために、収差が生じない。本実施例の如く半
導体レーザ素子1の一方の端面から出たビームを
デイスクで反射させて、その反射光を上記端面に
帰還させる構成においては、結合レンズ2の開口
数を第(6)式にしたがつて大きくしている為に第4
図に示すように自動焦点の引き込み範囲は拡大さ
れている。 なお、第5図において、半導体レーザ素子1か
らのビームは、図の矢印で示すようにP偏光(偏
光面が紙面に平行行に振動している)に設定され
ている。このように本実施例では、半導体レーザ
光がプリズムにP偏光で入射されるため、プリズ
ムへの入射に際して反射損失がほとんどない。例
えばS偏光で入射させた場合、その反射率Rsは Rs=sin2(θi−θ〓) /sin2(θi+θ〓) となるため、上述のBH型半導体レーザの場合で
はRs=0.32となり、入射に際しての反射損失が
大きく光の利用効率が格段に悪くなる。 第6図は、本発明の参考例の構成を示す図であ
り、第5図と同一符号は同一又は均等部分を示
す。第6図では、第5図の実施例と異なり、ビー
ムの拡がりの垂直方向を縮少して、その水平方向
と一致するようにした場合であり、プリズム7の
入射面が、第5図の実施例とは逆に配置されてい
る。即ち、半導体レーザ素子1からのビームは、
図の黒丸で示す如くS偏光(偏光面が紙面に垂直
に振動している)に設定され、これが1/2波長板1 1によつてP偏光に変換されて、プリズム7に入
射されるのである。かくすることにより、対物レ
ンズ3の小型化が可能となる。 以上のことから、ビームの偏光は、第7図に示
す如く、垂直方向ではS偏光であり、水平方向で
はP偏光である。 以上の説明においては、半導体レーザ素子の一
方の端面から出たビームをデイスクで反射させて
その反射光を上記端面に帰還させることにより、
所定情報を記録・再生する光情報処理装置につい
てのみ説明したが、本発明はかかる光情報処理装
置に限定されるものではなく、半導体レーザ素子
からのビームをデイスクに導く光学系中にプリズ
ムを設け、このプリズムでデイスクからの反射光
を取り出し、その反射光の変化を光検出器で検出
することにより、所定情報を記録・再生する光情
報処理装置にも適用できる。 第8図は、かかる光情報処理装置に本発明を適
用した場合の一実施例の構成を示す図である。本
実施例では、第5図に示す実施例の構成におい
て、プリズム7と対物レンズ3との間にプリズム
9及び1/4波長板8を配置している。かかる構成に よりデイスク4からの反射光を上記プリズム9で
取り出し、その反射光の変化を光検出器10で検
出することが可能となる。なお、第8図の実施例
において、光検出器6はレーザ光出力を一定に保
つ、所謂光出力安定化自動制御のためのレーザ光
出力モニターとして用いられる。 以上説明した如く、本発明によれば光源として
等方的な拡がり角をもたない半導体レーザ素子を
用いても、デイスクに等方的な(円形状)スポツ
トを効率よく形成でき、しかも半導体レーザ光を
P偏光で入射し、かつその水平方向の分布を拡大
するようプリズムが配置されるため、プリズムへ
の入射に際して反射損失がほとんどなく、またプ
リズムの出射端面が屈折光に対して垂直となるよ
う配置されるため、プリズムからの出射に際して
反射損失が少なく、光ビームの利用効率にすぐれ
るという利点がある。 なお、上述の説明においては、デイスクからの
反射光の光量の変化を半導体レーザの他方向から
のレーザ光の変化として検出する場合について述
べたが、反射光の変化を半導体レーザ1の駆動電
流の変化として検出する場合に於ても、本発明が
適用できるのは勿論のことである。
[Table] Therefore, for a BH type semiconductor laser having a beam divergence angle expressed by equation (2), the prism 7 expressed by equation (8) is inserted immediately after the coupling lens 2 in FIG. This makes it possible to convert the beam into an isotropic beam. This isotropic light beam is irradiated onto the disk 4 by the objective lens 3 as an isotropic spot. Therefore, it becomes possible to irradiate a beam as an isotropic spot onto the disk without blocking a portion of the beam from the semiconductor laser device having light emitting regions with different vertical and horizontal ratios. Moreover, since a prism is used, no aberration occurs. In a configuration in which the beam emitted from one end face of the semiconductor laser device 1 is reflected by a disk and the reflected light is returned to the end face as in this embodiment, the numerical aperture of the coupling lens 2 is determined by equation (6). Therefore, in order to make it larger, the fourth
As shown in the figure, the autofocus pull-in range has been expanded. In FIG. 5, the beam from the semiconductor laser element 1 is set to be P-polarized light (the plane of polarization vibrates parallel to the plane of the paper) as indicated by the arrow in the figure. As described above, in this embodiment, since the semiconductor laser light is incident on the prism as P-polarized light, there is almost no reflection loss when the semiconductor laser light is incident on the prism. For example, when S-polarized light is incident, its reflectance R s is R s = sin 2i - θ〓) / sin 2i + θ〓), so in the case of the above-mentioned BH type semiconductor laser, R s = 0.32, and the reflection loss at the time of incidence is large, and the efficiency of light utilization is significantly reduced. FIG. 6 is a diagram showing the configuration of a reference example of the present invention, and the same reference numerals as in FIG. 5 indicate the same or equivalent parts. In FIG. 6, unlike the embodiment shown in FIG. 5, the vertical direction of the beam spread is reduced so that it coincides with the horizontal direction, and the incident surface of the prism 7 is It is placed opposite to the example. That is, the beam from the semiconductor laser element 1 is
As shown by the black circle in the figure, the S-polarized light (the plane of polarization vibrates perpendicular to the plane of the paper) is set, and this is converted to P-polarized light by the 1/2 wavelength plate 11, and then enters the prism 7. be. By doing so, the objective lens 3 can be made smaller. From the above, the polarization of the beam is S-polarized in the vertical direction and P-polarized in the horizontal direction, as shown in FIG. In the above explanation, by reflecting the beam emitted from one end face of the semiconductor laser element on the disk and returning the reflected light to the end face,
Although only an optical information processing device for recording and reproducing predetermined information has been described, the present invention is not limited to such an optical information processing device. The present invention can also be applied to optical information processing devices that record and reproduce predetermined information by extracting reflected light from a disk using this prism and detecting changes in the reflected light using a photodetector. FIG. 8 is a diagram showing the configuration of an embodiment in which the present invention is applied to such an optical information processing device. In this embodiment, a prism 9 and a quarter-wave plate 8 are arranged between the prism 7 and the objective lens 3 in the configuration of the embodiment shown in FIG. With this configuration, it becomes possible to extract the reflected light from the disk 4 using the prism 9 and detect changes in the reflected light using the photodetector 10. In the embodiment shown in FIG. 8, the photodetector 6 is used as a laser light output monitor for so-called automatic light output stabilization control to keep the laser light output constant. As explained above, according to the present invention, it is possible to efficiently form an isotropic (circular) spot on a disk even if a semiconductor laser element having no isotropic divergence angle is used as a light source. Since the prism is arranged so that the light enters as P-polarized light and expands its horizontal distribution, there is almost no reflection loss when it enters the prism, and the output end face of the prism is perpendicular to the refracted light. Because of this arrangement, there is an advantage that there is little reflection loss when the light beam is emitted from the prism, and that the light beam is used efficiently. In the above explanation, a case was described in which a change in the amount of light reflected from the disk is detected as a change in laser light from the other direction of the semiconductor laser. Of course, the present invention is also applicable to detecting changes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、半導体レーザ光の遠視野像を示す
図、第2図は、従来の光情報処理装置を説明する
ための図、第3図は、従来の自動焦点の引込み範
囲を説明する図、第4図は、本発明による自動焦
点の引き込み範囲を説明する図、第5図は、本発
明の一実施例の構成を示す図、第6図は、本発明
の参考例の構成を示す図、第7図は、本発明の動
作を説明する図、第8図は、本発明の他の実施例
の構成を示す図、第9図は、本発明を説明するた
めの図、である。
FIG. 1 is a diagram showing a far-field image of a semiconductor laser beam, FIG. 2 is a diagram for explaining a conventional optical information processing device, and FIG. 3 is a diagram for explaining a conventional autofocus pull-in range. , FIG. 4 is a diagram explaining the automatic focusing range according to the present invention, FIG. 5 is a diagram showing the configuration of an embodiment of the present invention, and FIG. 6 is a diagram showing the configuration of a reference example of the present invention. FIG. 7 is a diagram for explaining the operation of the present invention, FIG. 8 is a diagram for explaining the configuration of another embodiment of the present invention, and FIG. 9 is a diagram for explaining the present invention. .

Claims (1)

【特許請求の範囲】 1 拡がり角が接合面に水平な方向と垂直な方向
とで異なり強度分布が光軸に関し非等方な発散ビ
ームであつて、該水平な方向に偏光された光ビー
ムを出力する半導体レーザ素子と、実質的にθ
<θ≦θ⊥(但しθは上記レーザ素子となす半
画角、θ及びθ⊥は上記レーザ素子からの光ビ
ームの水平方向及び垂直方向の拡がり角)を満た
し上記レーザ素子からの光ビームを平行化するレ
ンズと、該平行化された光ビームが入射される入
射端面と該光ビームが出力される出射端面とを有
するプリズムであつて、該入射端面が上記垂直方
向に平行となり、かつ該出射端面が該プリズムで
屈折された光ビームに対し垂直となるように配設
されたプリズムと、該プリズムから出力される光
ビームを情報記録媒体に集束させる対物レンズ
と、上記情報記録媒体からの光ビームの光量変化
を検出する手段とを具備することを特徴とする光
情報処理装置。 2 上記プリズムと上記対物レンズの間の光路中
に上記媒体からの反射ビームを取り出す光学手段
を設けると共に、上記検出手段が上記光学手段か
ら上記反射ビームを受光する光検出器からなるこ
とを特徴とする特許請求の範囲第1項記載の光情
報処理装置。
[Claims] 1. A diverging beam whose divergence angle is different in the horizontal direction and perpendicular direction to the joint surface and whose intensity distribution is anisotropic with respect to the optical axis, and which is polarized in the horizontal direction. The output semiconductor laser element and substantially θ
<θ≦θ⊥ (where θ is the half angle of view formed by the above laser element, and θ and θ⊥ are the horizontal and vertical spread angles of the light beam from the above laser element), and the light beam from the above laser element is A prism having a collimating lens, an entrance end surface into which the collimated light beam is incident, and an exit end surface through which the light beam is output, the entrance end surface being parallel to the perpendicular direction, and the prism comprising: a prism disposed such that its output end face is perpendicular to the light beam refracted by the prism; an objective lens that focuses the light beam output from the prism onto an information recording medium; 1. An optical information processing device comprising: means for detecting a change in the amount of light of a light beam. 2. An optical means for extracting the reflected beam from the medium is provided in the optical path between the prism and the objective lens, and the detecting means includes a photodetector that receives the reflected beam from the optical means. An optical information processing device according to claim 1.
JP7466479A 1979-06-15 1979-06-15 Processor for optical information Granted JPS5641A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP7466479A JPS5641A (en) 1979-06-15 1979-06-15 Processor for optical information
US06/152,297 US4333173A (en) 1979-06-15 1980-05-22 Optical information processor with prismatic correction of laser beam shape
FR8013059A FR2459513B1 (en) 1979-06-15 1980-06-12 OPTICAL INFORMATION PROCESSING UNIT
NL8003411A NL8003411A (en) 1979-06-15 1980-06-12 DEVICE FOR PROCESSING OPTICAL INFORMATION.
GB8019469A GB2053553B (en) 1979-06-15 1980-06-13 Optical information processor
DE3022299A DE3022299C2 (en) 1979-06-15 1980-06-13 Optical information processing device
CA000353936A CA1136273A (en) 1979-06-15 1980-06-13 Optical information processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7466479A JPS5641A (en) 1979-06-15 1979-06-15 Processor for optical information

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP60220061A Division JPS61216144A (en) 1985-10-04 1985-10-04 Optical information processor
JP60220062A Division JPS61216145A (en) 1985-10-04 1985-10-04 Optical information processor

Publications (2)

Publication Number Publication Date
JPS5641A JPS5641A (en) 1981-01-06
JPS6153775B2 true JPS6153775B2 (en) 1986-11-19

Family

ID=13553719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7466479A Granted JPS5641A (en) 1979-06-15 1979-06-15 Processor for optical information

Country Status (1)

Country Link
JP (1) JPS5641A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01267585A (en) * 1988-04-19 1989-10-25 Kazuhiro Hase Magnetic field distribution display tool

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58218906A (en) * 1982-06-15 1983-12-20 株式会社ダイキ Accessory producing apparatus
JPS59110048A (en) * 1982-12-15 1984-06-25 Hitachi Ltd Reproducing device for semiconductor laser information
JPS6289018A (en) * 1985-10-15 1987-04-23 Konishiroku Photo Ind Co Ltd Beam shaping optical system
JPS62298034A (en) * 1986-06-17 1987-12-25 Nec Corp Optical head
JP3058386B2 (en) * 1992-09-10 2000-07-04 株式会社東芝 Optical head device and optical disk device using the same
US5615200A (en) * 1992-09-10 1997-03-25 Kabushiki Kaisha Toshiba Light beam shaping device to change an anisotropic beam to an isotropic beam for reducing the size of an optical head

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50147341A (en) * 1974-05-15 1975-11-26
JPS5153833A (en) * 1974-11-06 1976-05-12 Nippon Selfoc Co Ltd HIKARIBIIMUHENKANBUNKATSUKI
JPS5184206A (en) * 1974-12-09 1976-07-23 Teletype Corp
JPS5224542A (en) * 1975-08-20 1977-02-24 Canon Inc Optical system for shaping a beam
JPS5265406A (en) * 1975-11-27 1977-05-30 Hitachi Ltd Inforamtion reproduction device
JPS5348504A (en) * 1976-10-13 1978-05-02 Matsushita Electric Ind Co Ltd Optical recorder/reproducer
JPS53100844A (en) * 1977-02-15 1978-09-02 Canon Inc Beam shaping optical system
JPS5455184A (en) * 1977-10-11 1979-05-02 Canon Inc Semiconductor laser light source unit

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50147341A (en) * 1974-05-15 1975-11-26
JPS5153833A (en) * 1974-11-06 1976-05-12 Nippon Selfoc Co Ltd HIKARIBIIMUHENKANBUNKATSUKI
JPS5184206A (en) * 1974-12-09 1976-07-23 Teletype Corp
JPS5224542A (en) * 1975-08-20 1977-02-24 Canon Inc Optical system for shaping a beam
JPS5265406A (en) * 1975-11-27 1977-05-30 Hitachi Ltd Inforamtion reproduction device
JPS5348504A (en) * 1976-10-13 1978-05-02 Matsushita Electric Ind Co Ltd Optical recorder/reproducer
JPS53100844A (en) * 1977-02-15 1978-09-02 Canon Inc Beam shaping optical system
JPS5455184A (en) * 1977-10-11 1979-05-02 Canon Inc Semiconductor laser light source unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01267585A (en) * 1988-04-19 1989-10-25 Kazuhiro Hase Magnetic field distribution display tool

Also Published As

Publication number Publication date
JPS5641A (en) 1981-01-06

Similar Documents

Publication Publication Date Title
EP0099123B1 (en) Optical recording and reproducing head
US4333173A (en) Optical information processor with prismatic correction of laser beam shape
JPS6227456B2 (en)
GB2057218A (en) Detecting focussing error
JPS60131648A (en) Optical head
KR100349271B1 (en) Optical pickup
JPS6153775B2 (en)
US5883874A (en) Optical pickup system for selectively reading a multiple number of optical disks
JPS598145A (en) Optical pickup
JPH0453008B2 (en)
JPS59121639A (en) Opto-magnetic optical device
JPS61216145A (en) Optical information processor
JPH065581B2 (en) Optical head
JPS5998329A (en) Optical information processing device
JPH05250694A (en) Optical head device
JPS59229753A (en) Processor of optical information
KR850002997Y1 (en) The detecting apparatus of collection condition in object lens
JP2578203B2 (en) Light head
KR850001652Y1 (en) A method for detecting a focussing error signal of an objective lens
JPS60106038A (en) Optical device
JPS5829151A (en) Focus error detector in optical recorder and reproducer
JPS5960743A (en) Optical pickup device
JPS59195345A (en) Optical head
JPH0636337A (en) Two-beam optical head
JPH07282459A (en) Optical head device