JPH065581B2 - Optical head - Google Patents

Optical head

Info

Publication number
JPH065581B2
JPH065581B2 JP58070327A JP7032783A JPH065581B2 JP H065581 B2 JPH065581 B2 JP H065581B2 JP 58070327 A JP58070327 A JP 58070327A JP 7032783 A JP7032783 A JP 7032783A JP H065581 B2 JPH065581 B2 JP H065581B2
Authority
JP
Japan
Prior art keywords
light
reflected light
disk
reflected
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58070327A
Other languages
Japanese (ja)
Other versions
JPS59195344A (en
Inventor
俊次 大原
勲 佐藤
富夫 吉田
健二 小石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58070327A priority Critical patent/JPH065581B2/en
Publication of JPS59195344A publication Critical patent/JPS59195344A/en
Publication of JPH065581B2 publication Critical patent/JPH065581B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0908Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for focusing only

Landscapes

  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)
  • Automatic Focus Adjustment (AREA)
  • Moving Of The Head For Recording And Reproducing By Optical Means (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ビデオディスク等のようにディスク上に記録
された情報を光学的に読み取る光学的再生装置、あるい
はディスクに情報を光学的に記録再生しようとする光学
的記録再生装置に係り、特に記録再生およびサーボのた
めの光学系に関する。
The present invention relates to an optical reproducing device for optically reading information recorded on a disc such as a video disc, or an optical reproducing device for optically recording and reproducing information on the disc. And an optical system for recording / reproducing and servo.

従来例の構成とその問題点 近年ガスレーザに代って、半導体レーザを用いた光情報
処理装置の開発が盛んになってきた。光ディスク装置は
その1例である。光ディスク装置とは半導体レーザの光
を情報記録媒体であるディスク上でφ1μm以下の微小
スポット光に絞り、ディスクに記録されている信号を再
生したり、又はディスクに情報を高密度に記録再生する
ものである。
Configuration of Conventional Example and Problems Thereof In recent years, an optical information processing apparatus using a semiconductor laser has been actively developed in place of the gas laser. The optical disk device is one example. An optical disk device is a device that narrows the light of a semiconductor laser into a minute spot light of φ1 μm or less on a disk which is an information recording medium, and reproduces a signal recorded on the disk or records and reproduces information on the disk at high density. Is.

記録再生可能な光ディスク装置に用いられる半導体レー
ザは高出力の光パワーが出力できるものが要望される。
一般に高出力でCW(定常)発振可能な半導体レーザ
は、その発光領域の縦・横比が異なるため、ビームの拡
り角が非等方的である。
A semiconductor laser used in a recordable / reproducible optical disk device is required to be capable of outputting a high output optical power.
In general, a semiconductor laser capable of high-power CW (steady-state) oscillation has an anisotropic beam divergence angle because its light emitting region has different aspect ratios.

例えば第1図に高出力で、CW発振可能な半導体レーザ
の遠視野像における平行と垂直方向の出射光分布の1例
を示したが、光強度がピークの半分になる各々の方向の
半値角をθ11,θιとすると、 θ11=5゜,θι=12.5゜,θι/θ11=2.5…(1) となる。なお第1図で縦軸は光強度、横軸は拡り角であ
る。このように高出力半導体レーザのビーム拡り角の比
θι/θ11は約2.5倍程度である。
For example, FIG. 1 shows an example of the emitted light distribution in the parallel and vertical directions in the far-field image of a semiconductor laser capable of high-power CW oscillation. The half-value angle in each direction where the light intensity is half the peak is shown. Where θ 11 and θ ι , θ 11 = 5 °, θ ι = 12.5 °, θ ι / θ 11 = 2.5 (1). In FIG. 1, the vertical axis represents the light intensity and the horizontal axis represents the spread angle. Thus high-power semiconductor laser beam拡Ri angle ratio θ ι / θ 11 is about 2.5 times.

このような非等方的な拡り角を有する半導体レーザの光
を、ディスク上で円い、等方的な微小スポット光に絞り
込めための光ディスク装置の1例が特開昭55−108
612号公報で提案されている。第2図にその概略を示
した。すなわち半導体レーザ1から出た光ビームを集光
レンズ2で集め平行光に直し、半導体レーザ1の接合面
に対して平行方向のみレンズ作用を持ち、かつアフォー
カルに配置された凹と凸のシリンドリカルレンズ3,4
により半導体レーザの接合面に平行方向のみの平行ビー
ムを拡げ、垂直方向とほぼ同等な幅のビーム径にして絞
りレンズ5でディスク6上に絞り込む構成であり、ディ
スク上で等方的な微小スポット光が得られる。しかし、
この方法は(1)光学系が大きくなる欠点を有している。
また、かかる装置においては少なくとも2つのサーボ技
術が必要である。1つはディスクの回転に伴い回転方向
と垂直な方向にディスクが面ブレをおこすが、前記面ブ
レに対し前記φ1μm以下に絞られた微小スポット光が
常にディスク上に照射できるように光学系を追従させる
サーボで、このサーボはフォーカスサーボと呼ばれてい
る。他方はディスクの回転に伴い前記トラックが偏心等
によりディスクの半径方向に移動するが、これに対し常
に前記微小スポット光が前記トラック上を照射するよう
に光学系を追従させるサーボで、このサーボはトラッキ
ングサーボと呼ばれている。
An example of an optical disk device for narrowing the light of a semiconductor laser having such an anisotropic divergence angle to a minute isotropic spot light that is round on the disk is disclosed in JP-A-55-108.
Proposed in Japanese Patent No. 612. The outline is shown in FIG. That is, the light beam emitted from the semiconductor laser 1 is collected by the condenser lens 2 to be converted into parallel light, which has a lens action only in the direction parallel to the cemented surface of the semiconductor laser 1 and has a concave and convex cylindrical arrangement. Lens 3, 4
With this configuration, a parallel beam is expanded only in the parallel direction to the bonding surface of the semiconductor laser, and the beam diameter is made almost equal to that in the vertical direction. Light is obtained. But,
This method has the drawback that (1) the optical system becomes large.
Also, at least two servo technologies are required in such a device. One is that the disk causes surface wobbling in a direction perpendicular to the rotating direction of the disk as it rotates, and an optical system is provided so that a minute spot light of φ1 μm or less with respect to the surface wobbling can always be irradiated onto the disk. This servo is made to follow, and this servo is called focus servo. On the other hand, the track moves in the radial direction of the disk due to eccentricity or the like with the rotation of the disk, but in response to this, the optical system always follows so that the minute spot light irradiates the track. It is called a tracking servo.

前記フォーカスサーボおよびトラッキングサーボを行う
ためのサーボ信号(誤差信号)はディスクの反射光より
得ており、具体的な従来の光学系を同様に第2図に示し
た。
The servo signal (error signal) for performing the focus servo and the tracking servo is obtained from the reflected light of the disk, and a concrete conventional optical system is also shown in FIG.

第2図において、7は偏光ビームスプリッタでレーザの
偏光方向に応じて透過あるいは反射する。8はλ/4板
で、ディスク6よりの反射光はλ/4板8を再び通り、
その偏光方向が変えられ偏光ビームスプリッタ7で反射
される。9は凸レンズ、10は分割ミラーで、この分割
ミラーにより光ビームは2分割され、かつ方向を変えら
れ11,12の光検出器にそれぞれ導かれる。光検出器
11はその光入射方向からみると11a,11bに示す
ように2分割されており、2分割された各光検出器11
a,11bの出力の差より前記フォーカスサーボのため
のフォーカス誤差信号を得ている。また光検出器12は
その光入射面からみると12a,12bに示すように2
分割されており、2分割された各光検出器12a,12
bの出力の差より前記トラッキングサーボのためのトラ
ッキング誤差信号を得、前記4ケの各光検出器の出力の
緩和よりディスク上に記録された情報を読み出す再生信
号を得ている。
In FIG. 2, a polarizing beam splitter 7 transmits or reflects light depending on the polarization direction of the laser. 8 is a λ / 4 plate, and the reflected light from the disk 6 passes through the λ / 4 plate 8 again,
The polarization direction is changed and reflected by the polarization beam splitter 7. Reference numeral 9 is a convex lens, and 10 is a splitting mirror. The splitting mirror splits the light beam into two parts, and the direction of the light beam is changed to be guided to photodetectors 11 and 12, respectively. The photodetector 11 is divided into two as shown in 11a and 11b when viewed from the light incident direction.
The focus error signal for the focus servo is obtained from the difference between the outputs of a and 11b. Also, the photodetector 12 has a 2
The photodetectors 12a and 12 are divided into two parts.
The tracking error signal for the tracking servo is obtained from the difference in the output of b, and the reproduction signal for reading the information recorded on the disk is obtained from the relaxation of the outputs of the four photodetectors.

第2図に示す従来の光学系では、前述した2つの欠点の
外、以下に示す欠点も有している。
The conventional optical system shown in FIG. 2 has the following drawbacks in addition to the above-mentioned two drawbacks.

(2)反射光を2分割するために、分割ミラーから成る光
学素子を必要とし、このミラーの経時変化、例えば表面
に付着するゴミあるいは温度変動,振動等による分割ミ
ラーの位置ずれ等が両サーボ信号を乱し、制御成能を悪
くする。
(2) An optical element consisting of a split mirror is required to split the reflected light into two, and changes in the mirror over time, such as dust adhering to the surface or temperature fluctuations, displacement of the split mirror due to vibration, etc. Disturbs signals and impairs control performance.

(4)偏光ビームスプリッタ,λ/4板,凸レンズ,ミラ
ー等の光学部品が全て空間的に離れてバラバラに配置さ
れているため、光学系全体として大きくなる上に、各光
学部品での光反射損失あるいは光透過損失が大きくな
り、レーザ光を有効に利用できない。
(4) The optical components such as the polarization beam splitter, λ / 4 plate, convex lens, and mirror are all spatially separated and scattered, so that the optical system as a whole is large and the light reflection at each optical component is large. The loss or the light transmission loss becomes large, and the laser light cannot be effectively used.

発明の目的 本発明は主に上記欠点に鑑みてなされた発明であり、記
録再生のための光学系をより小さくし、光損失および経
時変化の少ない光学プリズムを用いた新規な光学ヘッド
を提供することを目的とする。
OBJECT OF THE INVENTION The present invention has been made mainly in view of the above-mentioned drawbacks, and provides a novel optical head using an optical prism having a smaller recording / reproducing optical system and having less optical loss and aging. The purpose is to

発明の構成 本発明では、ディスク上に微小スポットを照射するため
の光源である半導体レーザーからの出射光を集め平行光
に直す集光レンズと、前記平行光の光束幅の一方を拡大
する拡大手段と、前記拡大された平行光光路中に置か
れ、入射される光ビームを反射光または透過光に偏光方
向に応じて分離する偏光ビームスプリッタと、前記反射
光および透過光の光路中に置かれたλ/4板と、前記λ
/4板を透過した前記反射光を前記ディスク上に絞り込
む絞りレンズとを備える光学ヘッドにおいて、 前記絞りレンズ、前記λ/4板および前記偏光ビームス
プリッタを透過した前記ディスクからの反射光の一部を
略直角に反射させる全反射面と、前記ディスクからの反
射光の他の部分を透過させる透過面と、前記全反射面で
略直角に反射された反射光を絞るための半凸レンズとを
有した分割プリズムと、 前記半凸レンズにより絞られた反射光のほぼ結像位置に
置かれ2分割された第1の光検出器と、 前記分割プリズムの透過面を透過した光を受光する2分
割された第2の光検出器とを備えることにより、従来の
光学系より小さく、経時変化および光損失の少ない光学
系を実現している。
According to the present invention, a condensing lens that collects light emitted from a semiconductor laser, which is a light source for irradiating a minute spot on a disc, and converts the light into parallel light, and an enlarging means for enlarging one of the luminous flux widths of the parallel light. And a polarizing beam splitter which is placed in the expanded parallel light path and splits an incident light beam into reflected light or transmitted light according to the polarization direction, and placed in the optical paths of the reflected light and the transmitted light. Λ / 4 plate and the λ
A part of the reflected light from the disc that has passed through the aperture lens, the λ / 4 plate and the polarization beam splitter, and an aperture lens that narrows the reflected light that has passed through a / 4 plate onto the disc. With a total reflection surface that reflects the light at a substantially right angle, a transmission surface that transmits the other part of the reflected light from the disk, and a semi-convex lens for narrowing the reflected light reflected at a substantially right angle on the total reflection surface. Divided prism, a first photodetector which is placed at approximately the image forming position of the reflected light narrowed down by the semi-convex lens and is divided into two, and two divided light which receives the light transmitted through the transmission surface of the divided prism. By including the second photodetector, an optical system that is smaller than the conventional optical system and has less change over time and light loss is realized.

実施例の説明 以下図面に従い本発明を詳しく説明する。第3図は本発
明の一実施例を示した図である。第2図と同じ構成要素
については同一の番号を付した。第3図において、集光
レンズにてコリメートされた光束幅I1の平行ビームPは
拡大プリズム13のa面から入射し、光束幅I2の平行光
に拡大されb面で全反射し、c面から光束幅I2の平行ビ
ームQとなって出力される。この時、入射光Pの光軸X
−X′と出射光Qの光軸Y−Y′とは略直交している。
Description of Embodiments The present invention will be described in detail below with reference to the drawings. FIG. 3 is a diagram showing an embodiment of the present invention. The same components as those in FIG. 2 are designated by the same reference numerals. In FIG. 3, a collimated beam P having a luminous flux width I 1 collimated by a condenser lens enters from the a surface of the expanding prism 13, is expanded into parallel light having a luminous flux width I 2 , and is totally reflected on the b surface, c A parallel beam Q having a luminous flux width I 2 is output from the surface. At this time, the optical axis X of the incident light P
-X 'and the optical axis YY' of the emitted light Q are substantially orthogonal to each other.

以下、この拡大プリズム13について詳しく述べる。Hereinafter, the magnifying prism 13 will be described in detail.

入射光P(平行光)は、拡大プリズム13の端面aに入
射し屈折してプリズムの中に入る。この時の条件は、ス
ネルの法則から(2)式で与えられる。n0sinθ1=n1sinθ
2…………(2) ただし、 n(≒1):空気の屈折率 n :プリズムの屈折率 θ :入射角 θ :屈折角 端面aにて平行光束幅I1はI2に拡大されるが、その比m
=I2/I1は(3)式で与えられる。
Incident light P (parallel light) enters the end face a of the magnifying prism 13, is refracted, and enters the prism. The condition at this time is given by Equation (2) from Snell's law. n 0 sin θ 1 = n 1 sin θ
2 ………… (2) where n 0 (≈1): Refractive index of air n 1 : Refractive index of prism θ 1 : Incident angle θ 2 : Refraction angle Parallel light flux width I 1 at the end face a is I 2 But the ratio m
= I 2 / I 1 is given by equation (3).

m=I2/I1=cosθ/cosθ………(3) つぎに入射光Pと出射光Qとの光軸X−X′とY−Y′
を略直交させるため、拡大プリズム13の端面bにて全
反射させる。この時の入射角θは(4)式で与えられ
る。
m = I 2 / I 1 = cos θ 2 / cos θ 1 (3) Next, the optical axes XX ′ and YY ′ of the incident light P and the outgoing light Q.
To be substantially orthogonal to each other, the light is totally reflected by the end surface b of the magnifying prism 13. The incident angle θ 3 at this time is given by the equation (4).

θ≒(90+θ−θ)/2………(4) 端面bにて入射角θで全反射させ、かつ端面cにてそ
の反射光が略垂直入射して出射するためのプリズムの各
頂角は、 θ≒θ+θ …………(5) θ≒θ …………(6) となる。
θ 3 ≈ (90 + θ 1 −θ 2 ) / 2 (4) A prism for totally reflecting the light at the incident angle θ 3 on the end face b and for causing the reflected light to be substantially vertically incident on the end face c. The respective vertex angles of θ 4 ≈θ 2 + θ 3 (5) θ 5 ≈θ 3 (6)

以上の条件を満足するプリズムを製作すれば、入射光束
I1がm倍の出射光束I2となり、入射光Pの光軸X−X′
と出射光Qの光軸Y−Y′は略直交する。
If a prism satisfying the above conditions is manufactured, the incident light flux
I 1 becomes the m-fold output light flux I 2 , and the optical axis XX ′ of the incident light P
And the optical axis Y-Y 'of the emitted light Q are substantially orthogonal to each other.

具体的に前記第(1)式の条件である半導体レーザの拡り
角比2.5からm=2.5,屈折率n0=1,n1=1.51とすると
各頂角は以下の様に求まる。
Specifically, assuming that the divergence angle ratio of the semiconductor laser is 2.5, which is the condition of the expression (1), and m = 2.5 and the refractive indices are n 0 = 1 and n 1 = 1.51, the respective apex angles are obtained as follows.

θ=72゜,θ=39゜,θ≒61.5゜,θ≒100.5゜ なお端面aに入る光ビームの偏光方向は、端面aに対し
てP偏向になっていることが望ましい。何故なら、一般
に半導体レーザは接合面に平行方向に偏向しており、か
つ第1図に示すようにθ11<θιとなっているため、
平行方向のビーム径を拡大する必要があるためである。
また光入射角もθ=72゜と大きく、P偏向の方がより
端面aを透過しやすくなる。なお、端面aに対しては使
用する特定のレーザ波長と特定の入射角度θの条件で
その時の反射損失が最も少なくなるような反射防止膜を
蒸着している。このように拡大プリズム13で半導体レ
ーザの接合面に平行方向のみビーク径を拡げ、半導体レ
ーザをほぼ円形の平行光にした後全反射させている。そ
して偏光ビームスプリッタ7で反射、λ/4板8を通過
後、絞りレンズ5にてディスク6上でほぼ円形の等方的
な微小スポット光が得られることとなる。
θ 1 = 72 °, θ 2 = 39 °, θ 5 ≈61.5 °, θ 4 ≈100.5 ° The polarization direction of the light beam entering the end face a is preferably P-polarized with respect to the end face a. This is because the semiconductor laser is generally deflected in the direction parallel to the bonding surface, and θ 11ι as shown in FIG.
This is because it is necessary to expand the beam diameter in the parallel direction.
Further, the incident angle of light is as large as θ 1 = 72 °, and the P deflection is more likely to pass through the end face a. An antireflection film is vapor-deposited on the end face a so that the reflection loss at that time is minimized under the conditions of a specific laser wavelength to be used and a specific incident angle θ 1 . In this way, the beak diameter is expanded by the magnifying prism 13 only in the direction parallel to the junction surface of the semiconductor laser, and the semiconductor laser is converted into substantially circular parallel light and then totally reflected. Then, after being reflected by the polarization beam splitter 7 and passing through the λ / 4 plate 8, a substantially circular isotropic minute spot light is obtained on the disk 6 by the diaphragm lens 5.

一方、ディスク6よりの反射光は偏光ビームスプリッタ
7を透過しディスク7上に記録された信号を再生し、か
つフォーカストラッキング制御をかけるための分割プリ
ズム14に導かれる。
On the other hand, the reflected light from the disk 6 passes through the polarization beam splitter 7 and is guided to a split prism 14 for reproducing the signal recorded on the disk 7 and for performing focus tracking control.

以下、この分割プリズムについて詳しく説明する。Hereinafter, this split prism will be described in detail.

第4図に分割プリズム14の斜示図を示す。すなわち、
反射光路中にて前記ディスクよりの反射光の空間的に約
半分は全反射面dで全反射され、凸レンズをその光軸方
向と略平行にほぼ半分に割った半凸レンズ15に導かれ
る。凸レンズの光軸中心とレーザ中心はほぼ一致してい
る。
FIG. 4 shows an oblique view of the split prism 14. That is,
In the reflected light path, spatially about half of the light reflected from the disk is totally reflected by the total reflection surface d, and is guided to the half-convex lens 15 which is formed by dividing the convex lens into about half parallel to the optical axis direction. The optical axis center of the convex lens and the laser center are almost coincident with each other.

従って反射光の約半分は半凸レンズ15で絞られ、その
結像位置に置かれた光検出器に照射される。光検出器1
1は、その光入射面からみると、11a,11bに示す
2分割の構造をしており、前記11a,11bの各光検
出器の出力差よりフォーカス誤差信号が得られる。
Therefore, about half of the reflected light is focused by the semi-convex lens 15 and is applied to the photodetector placed at the image forming position. Photo detector 1
Seen from the light incident surface, 1 has a two-divided structure shown by 11a and 11b, and a focus error signal can be obtained from the output difference of each photodetector of 11a and 11b.

一方、前記反射光の残り半分は透過面eを通過し、光検
出器12に導びかれる。光検出器12はその光入射面か
らみると12a,12bに示す2分割の構造をしてお
り、前記12,12の各光検出器の出力差よりトラ
ッキング誤差信号は得られる。いわゆる遠視野像の動き
からトラッキング誤差信号は得られる。
On the other hand, the other half of the reflected light passes through the transmission surface e and is guided to the photodetector 12. When the light detector 12 is viewed from the light incident surface 12a, it has a two-piece structure shown in 12b, a tracking error signal from the output difference of each photodetector of the 12 a, 12 b is obtained. The tracking error signal is obtained from the movement of the so-called far-field image.

またディスクよりの再生信号は例えば前記11,12の
両光検出器の出力の緩和から得られる。
The reproduction signal from the disk is obtained, for example, by relaxing the outputs of both the photodetectors 11 and 12.

第3図の構成でフォーカス誤差信号を得る原理について
詳しく説明する。
The principle of obtaining the focus error signal with the configuration of FIG. 3 will be described in detail.

第5図はフォーカス誤差信号を得る方法についてのみ説
明するために第3図を簡略化して示した図であり、第3
図と同様の構成要素については同一の付合を付した。第
5図においてaは絞りレンズ5とディスク6間が所望の
距離より近づきすぎた場合、bは丁度所望の距離、すな
わちディスク面上に入射光がフォーカスされた場合、c
は前記所望の距離より長くなった場合をそれぞれ示して
いる。
FIG. 5 is a simplified diagram of FIG. 3 for explaining only the method of obtaining the focus error signal.
The same components as those in the figure are designated by the same reference numerals. In FIG. 5, a is a distance between the aperture lens 5 and the disc 6 that is too close to the desired distance, b is a desired distance, that is, c when the incident light is focused on the disc surface, and
Indicates the case where the distance is longer than the desired distance.

まず、第5図aに示したように絞りレンズ5とディスク
6とが前記所望の距離より近づきすぎると、半凸レンズ
11により絞られる反射光の結像位置A1は、光検出器1
1より遠くなる。従って、この場合、光検出器11b上
受光される光量より光検出器11aに受光される光量の
方が多くなる。逆に第5図cに示すように絞りレンズ5
とディスク6とが前記所望の距離よりも遠ざかると、光
検出器11aに受光される光量より光検出器11bに受
光される光量の方が多くなる(反射光の結像位置A3が凸
レンズ側に近づく)。
First, as shown in FIG. 5A, when the diaphragm lens 5 and the disk 6 are too close to each other than the desired distance, the image forming position A 1 of the reflected light focused by the semi-convex lens 11 is set to the photodetector 1.
Farther than 1. Therefore, in this case, the amount of light received by the photodetector 11a is larger than the amount of light received by the photodetector 11b. On the contrary, as shown in FIG.
If the disk 6 and the disk 6 are further apart than the desired distance, the amount of light received by the photodetector 11b becomes larger than the amount of light received by the photodetector 11a (the image forming position A 3 of the reflected light is on the convex lens side). Approach).

また第5図bに示すようにディスク6上に入射光がフォ
ーカスされた場合は、光検出器11上に半凸レンズによ
り結像された反射光A2が照射されるため、光検出器11
a,11bの受光量は等しくなる。
Further, when the incident light is focused on the disk 6 as shown in FIG. 5B, the reflected light A 2 imaged by the semi-convex lens is irradiated onto the photodetector 11, so that the photodetector 11
The light receiving amounts of a and 11b are equal.

従って、前記両者の光検出器11a,11bの受光量が
等しくなるようにサーボをかければフォーカスサーボが
実現できる。
Therefore, focus servo can be realized by performing servo so that the light receiving amounts of the two photodetectors 11a and 11b become equal.

なお第3図に示すように拡大プリズムと分割プリズムは
λ/4板とともに偏光ビームスプリッタに接着し1体構
造となっている。
As shown in FIG. 3, the magnifying prism and the split prism are bonded together with the λ / 4 plate to the polarization beam splitter to form a one-piece structure.

ただしλ/4板については細かく回転調整を行う必要が
あるためλ/4板のみ分離して構成することも可能であ
る。
However, since it is necessary to finely adjust the rotation of the λ / 4 plate, it is possible to configure only the λ / 4 plate separately.

発明の効果 以上のように、本発明の構成によれば、分割ミラーを用
いず分割プリズムにより反射光を2分しているため、分
割ミラーの特性の経時変化,位置ズレれも無い。
EFFECTS OF THE INVENTION As described above, according to the configuration of the present invention, since the reflected light is divided into two by the split prism without using the split mirror, there is no change in the characteristics of the split mirror with time and positional deviation.

また光学系全体としても各プリズム,偏光ビームスプリ
ッタとが1体構造となっているため、光入射面,出射面
が少なく光学部品の各端面での反射損失が少なくなり有
効にレーザ光が利用でき、かつ光学系の大きさも従来に
比べ著しく小さくすることができる等の効果がある。
In addition, since each prism and polarization beam splitter have a one-piece structure in the entire optical system, there are few light entrance and exit surfaces and reflection loss at each end surface of the optical component is reduced, so that laser light can be effectively used. Moreover, there is an effect that the size of the optical system can be significantly reduced as compared with the conventional one.

【図面の簡単な説明】[Brief description of drawings]

第1図は半導体レーザの遠視野像の光強度分布特性図、
第2図は従来の光ディスク装置の構成を示す図、第3図
aは本発明の一実施例における光学ヘッドの正面図、b
は同側面図、cは同平面図、第4図は同実施例における
分割プリズムの斜視図、第5図a,b,cはフォーカス
誤差信号を得る方法を説明するための図である。 1……半導体レーザ、2……集光レンズ、5……絞りレ
ンズ、6……ディスク、7……偏光ビームスプリッタ、
8……λ/4板、11……第1の光検出器、12……第
2の光検出器、13……拡大プリズム、14……分割プ
リズム、15……半凸レンズ、I1……短かい方の平行光
幅、a……拡大プリズムの光入射面、b……拡大プリズ
ムの全反射面、d……分割プリズムの全反射面、e……
分割プリズムの透過面。
FIG. 1 is a light intensity distribution characteristic diagram of a far-field image of a semiconductor laser,
FIG. 2 is a diagram showing a configuration of a conventional optical disk device, FIG. 3a is a front view of an optical head in one embodiment of the present invention, and b.
Is a side view, c is a plan view, FIG. 4 is a perspective view of a split prism in the embodiment, and FIGS. 5a, 5b, and 5c are views for explaining a method of obtaining a focus error signal. 1 ... Semiconductor laser, 2 ... Focusing lens, 5 ... Aperture lens, 6 ... Disk, 7 ... Polarizing beam splitter,
8 ... λ / 4 plate, 11 ... First photodetector, 12 ... Second photodetector, 13 ... Enlarging prism, 14 ... Dividing prism, 15 ... Semi-convex lens, I 1 ... Shorter parallel light width, a: light incident surface of the expanding prism, b: total reflection surface of the expanding prism, d: total reflection surface of the split prism, e ......
Transmission surface of the split prism.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小石 健二 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (56)参考文献 実開 昭58−14234(JP,U) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Kenji Koishi 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ディスク上に微少スポットを照射するため
の光源である半導体レーザーからの出射光を集め平行光
に直す集光レンズと、前記平行光の光束幅の一方を拡大
する拡大手段と、前記拡大された平行光光路中に置か
れ、入射される光ビームを反射光または透過光に偏光方
向に応じて分離する偏光ビームスプリッタと、前記反射
光および透過光の光路中に置かれたλ/4板と、前記λ
/4板を透過した前記反射光を前記ディスク上に絞り込
む絞りレンズとを備える光学ヘッドにおいて、 前記絞りレンズ、前記λ/4板および前記偏光ビームス
ピリッタを透過した前記ディスクからの反射光の一部を
略直角に反射させる全反射面と、前記ディスクからの反
射光の他の部分を透過させる透過面と、前記全反射面で
略直角に反射された反射光を絞るための半凸レンズとを
有した分割プリズムと、 前記半凸レンズにより絞られた反射光のほぼ結像位置に
置かれ2分割された第1の光検出器と、 前記分割プリズムの透過面を透過した光を受光する2分
割された第2の光検出器とを備えたことを特徴とする光
学ヘッド。
1. A condenser lens for collecting emitted light from a semiconductor laser, which is a light source for irradiating a minute spot on a disc, and converting it into parallel light, and enlarging means for enlarging one of the luminous flux widths of the parallel light. A polarization beam splitter placed in the expanded parallel light path and splitting an incident light beam into reflected light or transmitted light according to a polarization direction, and λ placed in the optical paths of the reflected light and the transmitted light. / 4 plate and the λ
In an optical head including a diaphragm lens that narrows the reflected light that has passed through a / 4 plate onto the disk, one of reflected light from the disk that has passed through the diaphragm lens, the λ / 4 plate, and the polarization beam splitter. A total reflection surface that reflects a portion substantially at a right angle, a transmission surface that transmits the other portion of the reflected light from the disk, and a semi-convex lens for narrowing the reflected light reflected at a substantially right angle on the total reflection surface. And a first photodetector, which is placed at approximately the image forming position of the reflected light focused by the semi-convex lens and is split into two, and two splits that receive the light transmitted through the transmission surface of the split prism. Optical head provided with a second photodetector.
【請求項2】拡大手段と偏光ビームスプリッタとλ/4
板と分割プリズムとを一体構造にしたことを特徴とする
特許請求の範囲第1項記載の光学ヘッド。
2. A magnifying means, a polarization beam splitter, and λ / 4.
The optical head according to claim 1, wherein the plate and the split prism are integrally structured.
JP58070327A 1983-04-20 1983-04-20 Optical head Expired - Lifetime JPH065581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58070327A JPH065581B2 (en) 1983-04-20 1983-04-20 Optical head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58070327A JPH065581B2 (en) 1983-04-20 1983-04-20 Optical head

Publications (2)

Publication Number Publication Date
JPS59195344A JPS59195344A (en) 1984-11-06
JPH065581B2 true JPH065581B2 (en) 1994-01-19

Family

ID=13428230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58070327A Expired - Lifetime JPH065581B2 (en) 1983-04-20 1983-04-20 Optical head

Country Status (1)

Country Link
JP (1) JPH065581B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6289018A (en) * 1985-10-15 1987-04-23 Konishiroku Photo Ind Co Ltd Beam shaping optical system
JPH0280318U (en) * 1988-12-02 1990-06-20
US5544144A (en) * 1990-11-14 1996-08-06 Asahi Kogaku Kogyo Kabushiki Kaisha Optical head structure having compactly arranged parts

Also Published As

Publication number Publication date
JPS59195344A (en) 1984-11-06

Similar Documents

Publication Publication Date Title
US4689780A (en) Optical recording and reproducing head
JPS6227456B2 (en)
JPS6334532B2 (en)
JPH02246030A (en) Optical information recording and reproducing device
JPH065581B2 (en) Optical head
JPH07121899A (en) Optical pickup device
JPS6153775B2 (en)
JPS6123575B2 (en)
JPS59195345A (en) Optical head
JP2758232B2 (en) Optical pickup device and optical information recording / reproducing device using the same
JP2857245B2 (en) Optical pickup device
JP2886230B2 (en) Optical head and focus error detecting device using the same
JPH0670681B2 (en) Optical disk device
JP2766348B2 (en) Optical head
JP2578203B2 (en) Light head
JPH0636337A (en) Two-beam optical head
JPH0227736B2 (en)
JPH051532B2 (en)
JPH01287830A (en) Optical recording and reproducing device
JPH05250694A (en) Optical head device
JP2502484B2 (en) Optical head device
JPS61216145A (en) Optical information processor
JPS58133646A (en) Optical disc device
JPH05347029A (en) Polarization beam splitter
JPS62125549A (en) Optical head