JPS59121639A - Opto-magnetic optical device - Google Patents

Opto-magnetic optical device

Info

Publication number
JPS59121639A
JPS59121639A JP57231345A JP23134582A JPS59121639A JP S59121639 A JPS59121639 A JP S59121639A JP 57231345 A JP57231345 A JP 57231345A JP 23134582 A JP23134582 A JP 23134582A JP S59121639 A JPS59121639 A JP S59121639A
Authority
JP
Japan
Prior art keywords
light beam
analyzer
light
magneto
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57231345A
Other languages
Japanese (ja)
Inventor
Tsuneo Yanagida
柳田 恒男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp, Olympus Optical Co Ltd filed Critical Olympus Corp
Priority to JP57231345A priority Critical patent/JPS59121639A/en
Publication of JPS59121639A publication Critical patent/JPS59121639A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10532Heads
    • G11B11/10541Heads for reproducing
    • G11B11/10543Heads for reproducing using optical beam of radiation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/1055Disposition or mounting of transducers relative to record carriers
    • G11B11/10576Disposition or mounting of transducers relative to record carriers with provision for moving the transducers for maintaining alignment or spacing relative to the carrier

Landscapes

  • Automatic Focus Adjustment (AREA)
  • Optical Head (AREA)

Abstract

PURPOSE:To omit a beam splitter to be used for guiding light to an error signal detector and to improve SN in a reproduced signal by adjusting a relative angle made by the polarizing surface of reflected light from a medium and the polarizing surface of an analyzer by a wavelength plate and fixing the analyzer. CONSTITUTION:Light beams projected from a laser diode 1 are made into parallel light by a colimate lens 2 and then reflected by a beam splitter 3 to guide the optical path in the direction of a magneto-optical recording medium 4. An objective lens 5 converges the light beam guided in the medium 4 direction on the medium 4. The medium 4 turns the polarizing surface of the light beam by a fixed angle (angle of Kerr rotation) on the basis of magnetic Kerr effect. The reflected light beam is made into parallel light again by the objective lens 5 and reaches a half-wave length plate 24 through the beam splitter 3. The half- wave length plate 24 turns the polarizing surface of the light beam by a precribed angle and sends the light to an analyser 21. The analyser 21 detects the component of the light beam to the polarizing surface as a reproduced signal component and sends the component to a reproduced signal detecting device 23 and reflects other components in the direction of a focusing/tracking error signal detecting device 22.

Description

【発明の詳細な説明】 本発明は磁気光学記録媒体におけるカー(Kerr) 
 効果を利用して記録の再生等を行なう光磁気光学装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to
The present invention relates to a magneto-optical device that performs recording and reproduction using effects.

従来のこの種の光磁気光学装置には第1図に示す如き構
成のものがある。すなわち、図において1はレーザダイ
オードであり、2はレーザダイオードから発射された光
ビームを平行光にするだめのコリメートレンズである。
A conventional magneto-optical device of this type has a configuration as shown in FIG. That is, in the figure, 1 is a laser diode, and 2 is a collimating lens for collimating the light beam emitted from the laser diode.

3は上記コリメートレンズ2により平行光となった光ビ
ームの一部を磁気光学記録媒体4の方向へ反射きせるだ
めの第1のビームスプリッタである。
Reference numeral 3 designates a first beam splitter for reflecting a part of the light beam, which has been made into parallel light by the collimating lens 2, toward the magneto-optical recording medium 4.

5は上記第1のビームスプリッタ3で反射された光ビー
ムを磁気光学記録媒体4上に収束させるだめの対物レン
ズである。さらに6は上記磁気光学記録媒体4で反射き
れ、かつ上記対物レンズ5で再び平行光となった光ビー
ムの一部を4分割ディテクタ7の方向に反射きせると共
に、他の光ビームを透過させる第2のビームスプリッタ
である。8は上記第2のビームスプリッタ6で反射され
た光ビームの光路上でかつ上記4分割ディテクタ7の前
方に設置された円筒レンズである。上記4分割ディテク
タ7および円筒レンズ8は7オーカシング、トラッキン
グエラー信号を検出するための装置を構成している。
Reference numeral 5 denotes an objective lens for converging the light beam reflected by the first beam splitter 3 onto the magneto-optical recording medium 4. Furthermore, a numeral 6 reflects a part of the light beam that has been completely reflected by the magneto-optical recording medium 4 and has become parallel light again by the objective lens 5 in the direction of the 4-split detector 7, and transmits other light beams. 2 beam splitter. A cylindrical lens 8 is installed on the optical path of the light beam reflected by the second beam splitter 6 and in front of the four-split detector 7. The four-part detector 7 and the cylindrical lens 8 constitute a device for detecting seven tracking error signals.

一方、9は上記第26ビームスプリツタを透過した光ビ
ームから再生信号成分を分解して検出するための検光子
であシ、一般に偏光ビームスプリッタ、グラントムソン
プリズム、ポラロイド板等が使用されている。この検光
子9は光軸を中心に回転調整可能な状態で設けられてい
る。
On the other hand, 9 is an analyzer for decomposing and detecting reproduced signal components from the light beam transmitted through the 26th beam splitter, and generally a polarizing beam splitter, Glan-Thompson prism, Polaroid plate, etc. are used. . This analyzer 9 is provided so as to be rotatable and adjustable around the optical axis.

10は上2記検光子9を透過した光ビームを再生信号検
出のためのディテクタll上に収束させるためのレンズ
である。上記ディテクタ11としては、旨い信号対雑音
比(S/N比)を得るタメに、一般にAPD(アバラン
シェ・フォトダイオード)が使用されている。
Reference numeral 10 denotes a lens for converging the light beam transmitted through the above-mentioned two analyzers 9 onto a detector 11 for detecting a reproduced signal. As the detector 11, an APD (avalanche photodiode) is generally used in order to obtain a good signal-to-noise ratio (S/N ratio).

このような構成をなす従来の光磁気光学装置において、
磁気光学記録媒体4に入射した光ビームは偏光面を、磁
気記録信号に応じていわゆるカー(Ke r r )効
果によυ一定角度(カー回転角)だけ回転させられて反
射する。そして、この偏光面が回転した光ビームは第2
のビームスプリッタ6において、一部が反射して円筒レ
ンズ8に入光し、4分割ディテクタ7にてフォカシング
、トラッキングエラー信号に変換される。
In a conventional magneto-optical device having such a configuration,
The plane of polarization of the light beam incident on the magneto-optical recording medium 4 is rotated by a fixed angle υ (Kerr rotation angle) according to the magnetic recording signal due to the so-called Kerr effect, and then reflected. The light beam with the rotated plane of polarization is then
A part of the light is reflected by the beam splitter 6 and enters the cylindrical lens 8, and is converted into a focusing and tracking error signal by the 4-split detector 7.

−75、上記第2のビームスグリツタ6に入光したその
他の光ビームはそのまま通過して検光子9に至る。検光
子9はその偏光面に対する元ビームの再生信号成分を検
出する。上記検光子9で検出された再生信号成分である
光ビームはレンズ10で収束され、ディテクタ11に至
り再生信号に変換される。
-75, the other light beams that entered the second beam sinter 6 pass through as they are and reach the analyzer 9. The analyzer 9 detects the reproduced signal component of the original beam for that plane of polarization. The light beam, which is a reproduced signal component detected by the analyzer 9, is converged by a lens 10, reaches a detector 11, and is converted into a reproduced signal.

ところで、以上のように動作する従来の光磁気光学装置
は次のような問題を有していた。すなわち、ディテクタ
11によりh出される再生信号の8/N比は、磁気光学
記録媒体4において反射した光ビームのディテクタ11
への入射光量に依存するが、前述した従来の光磁気光学
装置では光ビームが第2のビームスプリッタ6で分割さ
れ、さら(1検光子9において分割されるため、ディテ
クタ11への入射光量は著しく減少することになる。そ
の結果、ディテクタ1)により検出される再生信号のS
/N比が悪く、再生精度上問題があった。
By the way, the conventional magneto-optical device that operates as described above has the following problems. That is, the 8/N ratio of the reproduced signal h output by the detector 11 is the
In the conventional magneto-optical device described above, the light beam is split by the second beam splitter 6 and further split by the analyzer 9, so the amount of light incident on the detector 11 is As a result, the S of the reproduced signal detected by the detector 1)
/N ratio was poor, causing problems in terms of reproduction accuracy.

上記第2のビームスプリッタ6を取り除き、検光子9で
反射する光線を利用してフォーカシング、トラッキング
エラー慴号を検出する構成も考えられる。しかるにこの
場合、媒体4で反射した光ビームの偏光面と検光子9の
偏光面とのなす相対角度を検光子9を回転して調整する
毎に、検光子9で反射する光線の反射方向が縫動してし
まい、その変動に伴ってフォーカシング、トラッキング
エラー信号検出装置の位置な調整しなければならない。
It is also possible to consider a configuration in which the second beam splitter 6 is removed and focusing and tracking errors are detected using the light beam reflected by the analyzer 9. However, in this case, each time the relative angle between the polarization plane of the light beam reflected by the medium 4 and the polarization plane of the analyzer 9 is adjusted by rotating the analyzer 9, the direction of reflection of the light beam reflected by the analyzer 9 changes. The position of the focusing and tracking error signal detection device must be adjusted accordingly.

したがって、実施化には析めて大きな困難性がある。Therefore, there is considerable difficulty in implementing it.

また、一般にビームスグリツタは直角プリズム上に誘電
体膜を多層コートし、さらにこの多層コート面にもう一
つの直角プリズムを接合して形成されているため、この
プリズム自体が高価格なものとなる。したがって、前述
した従来装置のようにビームスグリツタを2@所におい
てイ更用している装置では製造コストが極めで茜いもの
になるという問題があった。
Additionally, beam sintering is generally formed by coating a rectangular prism with multiple layers of dielectric film, and then bonding another rectangular prism to this multilayer coated surface, which makes the prism itself expensive. . Therefore, in an apparatus in which the beam sinter is used in two places like the conventional apparatus described above, there is a problem in that the manufacturing cost is extremely high and expensive.

本発明は上述した開動な解決するためになされたもので
あり、その目的は再生信号(二おけるS/N比が向上す
ると共に、低価格化を実現し得る光磁気光学装置を提供
することである。
The present invention has been made to solve the above-mentioned problems, and its purpose is to provide a magneto-optical device that can improve the S/N ratio of reproduced signals (two signals) and reduce the cost. be.

以下、本発明を図面に示す冥施例に基いて説明する。Hereinafter, the present invention will be explained based on examples shown in the drawings.

第2図以下は本発明の実施例の構成を示す図である。な
お、先に示した第一図と同一部分又は相当する部分には
同一符号を符し、その部分の詳細な説明は省略する。
FIG. 2 and subsequent figures are diagrams showing the configuration of an embodiment of the present invention. Note that the same parts or corresponding parts as shown in FIG.

第2図は本発明の第1の実施例の構成を示す図である。FIG. 2 is a diagram showing the configuration of the first embodiment of the present invention.

図において21は偏光ビームスプリッタ、グラントムソ
ンプリズム等からなる検光子である。この検光子21は
磁気光学記録媒体4で反射した光ビームの光路上で、か
つビームスプリッタ3とレンズ10との間に偏光面を固
定した状態で設けられている。この検光子2ノでは入射
した光ビームのうち検光子2ノの偏光面に対する成分の
みが透過し、他の成分は反射することになる。この検光
子2ノにおいて反射した光ビームの光路上には円筒レン
ズ8および4分割ディテクタ7からなるフォーカシング
In the figure, 21 is an analyzer consisting of a polarizing beam splitter, a Glan-Thompson prism, etc. The analyzer 21 is provided on the optical path of the light beam reflected by the magneto-optic recording medium 4 and between the beam splitter 3 and the lens 10 with the plane of polarization fixed. In this analyzer 2, of the incident light beam, only the component corresponding to the polarization plane of the analyzer 2 is transmitted, and the other components are reflected. A focusing system consisting of a cylindrical lens 8 and a 4-split detector 7 is placed on the optical path of the light beam reflected by the analyzer 2.

トラッキングエラー信号検出装置22が設けられている
。上記フォーカシング、トラッキングエラー信号検出装
置22は、フォーカシングエラー信号の検出をいわゆる
非点収差法により行なうと共に、トラッキングエラー信
号の検出を4分割ディテクタ7における光ビームヌポッ
トの光強度分布の変化によシ行なうものである。
A tracking error signal detection device 22 is provided. The focusing/tracking error signal detection device 22 detects the focusing error signal by a so-called astigmatism method, and also detects the tracking error signal by changing the light intensity distribution of the light beam in the four-split detector 7. It is.

−万、上記検光子21を透過した光ビームの光路上には
レンズ10およびディテクタ11からなる再生信号検出
装置23が設けられている。
- On the optical path of the light beam transmitted through the analyzer 21, a reproduced signal detection device 23 consisting of a lens 10 and a detector 11 is provided.

1だ、磁気光学記録媒体4で反射した光ビームの光路上
で、かつ前記検光子21とビームスプリッタ3との間に
は%波長板24が光軸を中心に回転可能な状態で設けら
れている。
1. On the optical path of the light beam reflected by the magneto-optical recording medium 4 and between the analyzer 21 and the beam splitter 3, a % wavelength plate 24 is provided so as to be rotatable around the optical axis. There is.

次に上記の如く構成した本実施例の動作を説明する。す
なわち、レーザダイオード1から発射された光ビームな
コリメートレンズ2で平行光にし、さらにビームスプリ
ッタ3で反射して光路を磁気光学記録媒体4の方向に導
く。対物レンズ5は上記媒体4の方向に導かれた光ビー
ムを媒体4の上に収束させる。媒体4では磁気記録信号
に応じていわゆるカー(Kerr)効果により、光ビー
ムの偏光面を一定の角度(カー回転角)だけ回転さると
共に、光ビームを対物レンズ5に向って反射させる。こ
のように反射された光ビームは対物レンズ5にて再び平
行光にされ、ビームスプリッタ3を透過してiAm長板
24に至る。この%波長板24は光ビームの偏゛光面を
所定の角度だけ回転して検光子2ノに送出する。検光子
21はその偏光面に対する光ビームの成分を再生信号成
分として検出して再生信号検出装置23へ送シ、その他
の成分をフォーカシング、トラッキングエラー信号検出
装置22の方向へと反射させる。
Next, the operation of this embodiment configured as described above will be explained. That is, a light beam emitted from a laser diode 1 is converted into parallel light by a collimating lens 2, and further reflected by a beam splitter 3 to guide the optical path toward a magneto-optic recording medium 4. The objective lens 5 focuses the light beam directed toward the medium 4 onto the medium 4 . In the medium 4, the plane of polarization of the light beam is rotated by a certain angle (Kerr rotation angle) by a so-called Kerr effect in response to the magnetic recording signal, and the light beam is reflected toward the objective lens 5. The light beam reflected in this way is made into parallel light again by the objective lens 5, passes through the beam splitter 3, and reaches the iAm long plate 24. This % wavelength plate 24 rotates the polarization plane of the light beam by a predetermined angle and sends it to the analyzer 2. The analyzer 21 detects the components of the light beam corresponding to the polarization plane as reproduced signal components and sends them to the reproduced signal detection device 23, and reflects the other components in the direction of the focusing and tracking error signal detection device 22.

再生信号検出装置23では、レンズ10にょ力収束され
てディテクタll上に入射した光ビームにより再生信号
を検出する。一方、フォーカシング、トラッキングエラ
ー信号検出装置22では、円筒レンズ8を通過した光ビ
ームの4分割ディテクタ7におけるスポットが焦、欝の
ずれに応じて変形することを利用した、いわゆる非点収
差法によりフォーカシングエラー信号を検出する。また
それと同時に4分割ディテクタ7における光ビームスポ
ットの光強度分布がトラッキングエラーによシ変化する
ことを利用してトラッキングエラー信号を検出する。
The reproduced signal detection device 23 detects a reproduced signal using a light beam that is focused by the lens 10 and is incident on the detector 11. On the other hand, the focusing/tracking error signal detection device 22 performs focusing using the so-called astigmatism method, which utilizes the fact that the spot on the four-split detector 7 of the light beam that has passed through the cylindrical lens 8 is deformed according to the shift in focus and depression. Detect error signals. At the same time, a tracking error signal is detected by utilizing the fact that the light intensity distribution of the light beam spot on the four-division detector 7 changes due to tracking error.

上述した如く動作する本実施例において、検光子2ノが
入射した光ビームからよシ多く再生信号成分を検出する
なめには、検光子2ノの偏光面と光ビームの偏光面との
相対角度を2°〜20°程度に設定する必要があるが、
この角度設定は前記%波長板24を光軸を中心にして回
転することにより行ない得る。す々わち、鎚波長板24
を同転させた場合、その回転に伴って光ビームの偏光面
も回転するので、検光子2ノに対して所定の設定角度を
得ることができる。このように本実施例においては、検
光子2ノの偏光面と光ビームの偏光面との相対角度の設
定を3A波長板24により行ない得るので、検光子21
は固定したままでよい。したがって、フォーカシング、
トラッキングエラー信号検出装置22を定位置に配設し
た葦まで、容易に検光子2ノで反射した光成分からフォ
ーカシング、トラッキングエラー信号を検出でき、その
結果、ディテクタ11への入射光量が増加して再生信号
のS/N比を向上させることができる。また第1図に示
した従来装置におけるビームスプリッタ6が不要となシ
低価格化を実現できる″。
In this embodiment, which operates as described above, in order for the analyzer 2 to detect more reproduced signal components from the incident light beam, it is necessary to adjust the relative angle between the polarization plane of the analyzer 2 and the polarization plane of the light beam. It is necessary to set the angle between 2° and 20°,
This angle setting can be performed by rotating the wavelength plate 24 about the optical axis. Suwachi, hammer wave plate 24
When rotated simultaneously, the polarization plane of the light beam also rotates with the rotation, so that a predetermined set angle can be obtained with respect to the analyzer 2. In this embodiment, the relative angle between the polarization plane of the analyzer 2 and the polarization plane of the light beam can be set by the 3A wavelength plate 24.
can remain fixed. Therefore, focusing,
Focusing and tracking error signals can be easily detected from the light components reflected by the analyzer 2 up to the reed where the tracking error signal detection device 22 is placed at a fixed position, and as a result, the amount of light incident on the detector 11 increases. The S/N ratio of the reproduced signal can be improved. In addition, the beam splitter 6 in the conventional device shown in FIG. 1 is not required, making it possible to reduce the cost.

第3図は本発明の第2の実施例の構成を示す図である。FIG. 3 is a diagram showing the configuration of a second embodiment of the present invention.

すなわち、本実施例は前述した第1の実施例における検
光子2ノで反射した光ビームの光路上に前記再生信号検
出装置23を配設し、−万、検光子2ノを透過した光ビ
ームの光路上に前記フォーカシング、トラッキングエラ
ー信号検出装置22を配設したものである。この場合、
検光子21の偏光面と光ビームの偏光面とがなす相対角
度を70°〜88°程度に前記%波長板24により設定
し、光ビームの再生信号成分を検光子21において反射
させる。
That is, in this embodiment, the reproduced signal detection device 23 is disposed on the optical path of the light beam reflected by the analyzer 2 in the first embodiment, and the light beam transmitted through the analyzer 2 is The focusing and tracking error signal detection device 22 is disposed on the optical path of the optical system. in this case,
The relative angle between the polarization plane of the analyzer 21 and the polarization plane of the light beam is set to about 70° to 88° by the % wavelength plate 24, and the reproduced signal component of the light beam is reflected at the analyzer 21.

このような構成の本実施例においても前述した第1の実
施例と同様の作用効果を奏する。
This embodiment with such a configuration also provides the same effects as the first embodiment described above.

第4図は本発明の第3の実施例の構成を示す図である。FIG. 4 is a diagram showing the configuration of a third embodiment of the present invention.

すなわち、本実施例は前述した第1の実施例におけるフ
ォーカシングエラー信号の検出をいわゆる臨界角法によ
り行なったものである。この臨界角法によるフォーカシ
ングエラー信号の検出手段は特開昭56−7246号に
詳細に示されているものである。すなわち、この臨界角
法な用いた本実施例は、検光子2ノで反射した光ビーム
の光路上に臨界角プリズム25をその反射面が、合焦状
態で入射した光ビームに対してほぼ臨界角をとるように
配設し、この臨界角プリズム25を通過した光ビームの
光路上に4分割ディテクタ26を配設したものである。
That is, in this embodiment, the focusing error signal in the first embodiment described above is detected using the so-called critical angle method. This focusing error signal detection means based on the critical angle method is disclosed in detail in Japanese Patent Application Laid-open No. 7246/1983. That is, in this embodiment using the critical angle method, the critical angle prism 25 is placed on the optical path of the light beam reflected by the analyzer 2 so that its reflective surface is almost critical to the incident light beam in a focused state. It is arranged so as to take a corner, and a four-split detector 26 is arranged on the optical path of the light beam that passes through the critical angle prism 25.

なお上記臨界角プリズム25と検光子2ノとの間には3
A波長板27を介在させている。
It should be noted that there are 3
A wavelength plate 27 is interposed.

このような構成の本実施例では、前記第1の実施例のと
きと同様の経路で検光子21において反射した光ビーム
ネが、3A波長板27によりP偏光に修正されて臨界角
プリズム25へ入射する。臨界角プリズム25では、光
ビーム学が合焦状態で反射面に入射した場合は、その光
ビームが全反射し、光ビームが合焦状態からずれて反射
面に入射した場合には、その光ビームの反射強度が光軸
の左右で極端に変化する。この光ビームの反射強度の変
化を4分割ディテクタ26で検知してフォーカシングエ
ラー信号を検出することができる。なお、上記4分割デ
ィテクタ26では上記フォーカシングエラー信号の検出
と共に、トラッキングエラー信号をもトラッキングエラ
ーに対する光強度分布の変化によシ検出できる。
In this embodiment with such a configuration, the light beam reflected by the analyzer 21 along the same path as in the first embodiment is modified into P-polarized light by the 3A wavelength plate 27 and then enters the critical angle prism 25. do. In the critical angle prism 25, if the light beam is incident on the reflective surface in a focused state, the light beam will be totally reflected, and if the light beam is out of focus and incident on the reflective surface, the light beam will be totally reflected. The reflected intensity of the beam changes drastically on the left and right sides of the optical axis. A focusing error signal can be detected by detecting a change in the reflected intensity of this light beam with the four-division detector 26. In addition to detecting the focusing error signal, the four-division detector 26 can also detect a tracking error signal based on a change in the light intensity distribution with respect to the tracking error.

第5図は本発明の第4の実施例の構成を示す図でおる。FIG. 5 is a diagram showing the configuration of a fourth embodiment of the present invention.

すなわち、本実施例は前述した第1前述した第1の実施
例では光ビームが%波長板24を通過した際、%波長板
24の精度等によ漫多少楕円偏光化し再生信号の8 ’
/ N比を低下させる場合がある。そこで、本実施例に
おいては検光子21と匙波長板24との間に介在させた
174波長板28によシ、上記光ビームの楕円偏光化を
修正し得る構成となし、再生信号のS/N比を一層向上
させている。
That is, in this embodiment, when the light beam passes through the % wavelength plate 24, it becomes elliptically polarized to some extent depending on the accuracy of the % wavelength plate 24, etc.
/ It may reduce the N ratio. Therefore, in this embodiment, the 174 wavelength plate 28 interposed between the analyzer 21 and the spoon wave plate 24 is used to correct the elliptical polarization of the light beam, and the S/ This further improves the N ratio.

なお、本発明は上述した各実施例に限定されるものでは
なく、本発明の要旨を逸脱しない範囲で棹々変形実施可
能であるのは勿論である。
It should be noted that the present invention is not limited to the above-mentioned embodiments, and it goes without saying that various modifications can be made without departing from the gist of the present invention.

以上説明したように本発明(二よれば、媒体からの反射
光線の偏些面と検光子の偏光面とのなす相対角度を波長
板によシ調整することとし、検光子は固定したままの構
成としたので、検光子で二つに分解された光線の一方を
定位置に設けられた再生信号検出装置(二導くことがで
きると共に、他方を定位置に設けられたフォーカシング
、トラッキングエラー信号検出装置に導くことができる
。その結果、フォーカシング、トラッキングエラー信号
検出装置に光線を導くためのピームスプ、リッタが不要
となり、再生信号におけるS/N比が向上すると共に、
低価格化を冥現し得る光磁気光学装置を提供することが
できる。
As explained above, according to the present invention (2), the relative angle between the polarization plane of the reflected light beam from the medium and the polarization plane of the analyzer is adjusted by the wave plate, and the analyzer remains fixed. With this configuration, one of the light beams split into two by the analyzer can be guided by a reproduction signal detection device (two) installed at a fixed position, and the other can be guided by a focusing and tracking error signal detection device installed at a fixed position. As a result, a beam splitter and a ritter for guiding the beam to the focusing and tracking error signal detection device are no longer necessary, and the S/N ratio of the reproduced signal is improved.
It is possible to provide a magneto-optical device that can realize a reduction in price.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光磁気光学装置の構成を示す構成図、第
2図以下は本発明の実施例を示す図は第3の実施例の構
成を示す構成図、第5図は第4の実施例の構成を示す構
成図である。 l・・・レーザダイオード、2・・・コリメートレンズ
、3・・・第1のビームスプリッタ、4・・・磁気光学
記録媒体、5・・・対物レンズ、6・・・第2のビーム
スプリッタ、7・・・4分割ディテクタ、8・・・円筒
レンズ、9・・・検光子、10・・・レンズ、1ノ・・
・ディテクタ、21・・・検光子、22・・・フォーカ
シング、トラッキングエラー信号検出装置、23・・・
再生信号検出装置、24・・・3A波長板、25・・・
臨界角プリズム、26・・・4分割ディテクタ、27・
・・3A波長板、28・・・]/4波長板。 出願人代理人 弁理士 鈴 江 武 彦(第4図 第5図 手続補正書 昭和58手121月2 日 特許庁長官 若杉和夫  殿 1、事件の表示 特願昭57”−’231345号 3、補正をする者 事件との関係 特許出願人 (037)オリンパス光学工業株式会社4、代理人 5、自発補正
FIG. 1 is a block diagram showing the structure of a conventional magneto-optical device, FIG. 2 and the following figures show embodiments of the present invention, and FIG. FIG. 2 is a configuration diagram showing the configuration of an example. 1... Laser diode, 2... Collimating lens, 3... First beam splitter, 4... Magneto-optical recording medium, 5... Objective lens, 6... Second beam splitter, 7...4-split detector, 8...Cylindrical lens, 9...Analyzer, 10...Lens, 1...
・Detector, 21... Analyzer, 22... Focusing and tracking error signal detection device, 23...
Reproduction signal detection device, 24...3A wavelength plate, 25...
Critical angle prism, 26... 4-segment detector, 27.
...3A wave plate, 28...]/4 wave plate. Applicant's representative Patent attorney Takehiko Suzue (Figure 4 Figure 5 Procedural amendments filed on December 2, 1982 by Kazuo Wakasugi, Commissioner of the Japan Patent Office 1, Patent Application for Indication of Case 1982-'231345 No. 3, Amendments Relationship with the case of a person who does

Claims (3)

【特許請求の範囲】[Claims] (1)磁気光学記録媒体における磁気光学効果を利用し
て記録再生を行なう光磁気光学装置において、前記媒体
からの反射光線の光路上に光学軸を中心に回転調整用能
な状態で設けられた少々くとも一つの波長板と、この波
長板を透過した光線の光路上に偏光面を固定した状態で
設けられた検光子と、この検光子で二つに分解された光
線の一部の光路上に設けられたフォーカシングおよびト
ラッキングエラー信号検出装置と、前記検光子で二つに
分解された光線の他方の光路上に設けられた再生信号検
出装置とを具備したことを特徴とする光磁気光学装置。
(1) In a magneto-optical device that performs recording and reproduction using the magneto-optic effect in a magneto-optic recording medium, a magneto-optical device is provided on the optical path of the reflected light beam from the medium so as to be rotatable and adjustable about the optical axis. At least one wavelength plate, an analyzer with the plane of polarization fixed on the optical path of the light beam that has passed through the wave plate, and a portion of the light beam that is split into two by this analyzer. Magneto-optical optics, characterized by comprising a focusing and tracking error signal detection device provided on the road, and a reproduced signal detection device provided on the other optical path of the light beam split into two by the analyzer. Device.
(2)媒体からの反射光線の光路上に光学軸を中心に回
転調整可能な状態で設けられた波長板は、%波長板であ
ることを特徴とする特許請求の範囲第(1)項記載の光
磁気光学装置。
(2) The wavelength plate provided on the optical path of the reflected light beam from the medium in a rotatable manner around the optical axis is a % wavelength plate. magneto-optical device.
(3)媒体からの反射光線の光路上に光学軸を中心に回
転調整用能外状態で設けられた波長板は、%波長板とこ
の3A波長板を透過した光線を入射する174波長板と
であることを特徴とする特許請求の範囲第fil 11
光磁気光学装置。
(3) The wavelength plate provided on the optical path of the reflected light beam from the medium for rotational adjustment around the optical axis is a % wavelength plate and a 174 wavelength plate into which the light beam transmitted through the 3A wavelength plate is incident. Claim No. fil 11 is characterized in that
Magneto-optical device.
JP57231345A 1982-12-28 1982-12-28 Opto-magnetic optical device Pending JPS59121639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57231345A JPS59121639A (en) 1982-12-28 1982-12-28 Opto-magnetic optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57231345A JPS59121639A (en) 1982-12-28 1982-12-28 Opto-magnetic optical device

Publications (1)

Publication Number Publication Date
JPS59121639A true JPS59121639A (en) 1984-07-13

Family

ID=16922170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57231345A Pending JPS59121639A (en) 1982-12-28 1982-12-28 Opto-magnetic optical device

Country Status (1)

Country Link
JP (1) JPS59121639A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6278742A (en) * 1985-10-02 1987-04-11 Seiko Instr & Electronics Ltd Optical information detector
JPS6282525A (en) * 1985-10-08 1987-04-16 Toshiba Corp Optical head
JPS63113837A (en) * 1986-10-30 1988-05-18 Nec Corp Magneto-optical recording and reproducing head
JPS63138771U (en) * 1987-03-05 1988-09-13
US4797868A (en) * 1985-05-15 1989-01-10 Kabushiki Kaisha Toshiba Optical system employing a laser beam for focusing, tracking and transferring information signals with respect to a magneto-optical memory

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4797868A (en) * 1985-05-15 1989-01-10 Kabushiki Kaisha Toshiba Optical system employing a laser beam for focusing, tracking and transferring information signals with respect to a magneto-optical memory
JPS6278742A (en) * 1985-10-02 1987-04-11 Seiko Instr & Electronics Ltd Optical information detector
JPS6282525A (en) * 1985-10-08 1987-04-16 Toshiba Corp Optical head
JPS63113837A (en) * 1986-10-30 1988-05-18 Nec Corp Magneto-optical recording and reproducing head
JPS63138771U (en) * 1987-03-05 1988-09-13
JPH0546385Y2 (en) * 1987-03-05 1993-12-03

Similar Documents

Publication Publication Date Title
KR930000040B1 (en) Optical head device
JPS59121639A (en) Opto-magnetic optical device
US4954702A (en) Process for detecting a focal point in an optical head
JPS62129944A (en) Optical head
US5939710A (en) Optical pickup system incorporating therein a beam splitter having a phase layer
GB2315910A (en) Optical pickup system for reading information recorded on an optical disk
JPH0264917A (en) Optical head structure for magneto-optical recorder
US5905254A (en) Compact sized optical pickup system
JP3211483B2 (en) Optical pickup device
KR850000421B1 (en) Forcus detecting method
JPS62124641A (en) Optical magnetic information recording and reproducing device
JPH0242647A (en) Optical pick-up device
JPH0677348B2 (en) Magneto-optical pickup device
JPH04170724A (en) Optical pickup device
JPH0120498B2 (en)
JPH01285046A (en) Magneto-optical head for magneto-optical recording and reproducing device
JPH01176348A (en) Optical system for magneto-optical recording and reproducing device
JPS6350942A (en) Magneto-optical recording and reproducing device
JPH0249227A (en) Structure of optical head
JPH05234173A (en) Optical disk device
JPH0573985A (en) Light pickup device
JPH10134393A (en) Optical pickup system
JPS63225947A (en) Optical system for information recording and reproducing device for magneto-optical disk
JPS5848233A (en) Optical information reader
JPH08203150A (en) Polarization component detector