JPS6153722A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6153722A
JPS6153722A JP17400384A JP17400384A JPS6153722A JP S6153722 A JPS6153722 A JP S6153722A JP 17400384 A JP17400384 A JP 17400384A JP 17400384 A JP17400384 A JP 17400384A JP S6153722 A JPS6153722 A JP S6153722A
Authority
JP
Japan
Prior art keywords
layer
film
substrate
semiconductor substrate
sb2o3
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17400384A
Other languages
Japanese (ja)
Inventor
Kiyouichi Takaike
高池 匡一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP17400384A priority Critical patent/JPS6153722A/en
Publication of JPS6153722A publication Critical patent/JPS6153722A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2254Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
    • H01L21/2255Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer comprising oxides only, e.g. P2O5, PSG, H3BO3, doped oxides

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To prevent Sb2O3 from evaporating and to promote diffusion of Sb to a semiconductor substrate by covering an Sb2O3 layer with a protecting film in a thermal diffusion treatment of manufacturing of a semiconductor device. CONSTITUTION:After an oxide film 2 is formed on a semiconductor substrate 1 with the thermal oxidation method, a resist 3 is coated on the film 2 and the film 2 and the resist 3 are selectively etched, a scheduled pattern with openigs 4 and 5 is formed on the film 2. After Sb2O3 dessolved in organic solvent is coated on the film 2 and on the substrate 1 opened at the openigs 4 and 5 directly, an Sb2O3 layer 6 is formed through volatilizing the solvent. A protecting film 7 passing no oxygen is formed on this layer 6 with the chemical vapor phase growing method. After this substrate 1 is put into a furnace, given the thermal treatment in a predetermined temperature for a scheduled time and Sb is introduced into the substrate 1 from the layer 6 in contact with the substrate 1 in the openings 4 and 5, embedded collector layers 8 and 9 being Sb impurity introducing regions are formed in a predetermined concentration.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体装置の製造方法、よシ詳しく述べるな
らば、バイポーラトランジスタの埋込みコレクタ層の形
成方法に関するものでちる。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly, to a method of forming a buried collector layer of a bipolar transistor.

従来の技術 バイポーラトランジスタの製造においてはコレクタのシ
リーズ抵抗を下げるために埋込みコレクタ層が半導体基
板(すなわち、シリコンウェノ・)内に形成されて、こ
の半導体基板上にエピタキシャル層が形成されている。
In the manufacture of conventional bipolar transistors, a buried collector layer is formed in a semiconductor substrate (i.e., silicon wafer) to reduce the series resistance of the collector, and an epitaxial layer is formed on the semiconductor substrate.

埋込みコレクタ層を形成するためにはヒ素(A8)又は
アンチモン(sb)を選択的に基板内へ熱拡散又はイオ
ン注入によって導入しているわけであるが、エピタキシ
ャル層形成時での埋込み層からの不純物(As又はsb
)のオートドーピングはsbのほうがAsよりも小さい
ので、Sbが多く使用されている。
In order to form the buried collector layer, arsenic (A8) or antimony (sb) is selectively introduced into the substrate by thermal diffusion or ion implantation. Impurities (As or sb
) autodoping is smaller in sb than in arsenic, so Sb is used more often.

発明が解決しようとする問題点 sbの熱拡散による埋込み層の形成にはアンチモンシリ
ケートガラス(SbSG)を用いて行なわれているが、
半導体基板表面にロゼツトが発生することがある。この
ロゼツトとはシリコンリッチな5b−8i−o の化合
物であシ、不純物を含むS1酸化膜から不純物の熱拡散
を行なうと発生し通常のエツチング液であるIF液では
エツチング不可能であシ特別なエツチング液を必要とし
、さらに、このロゼツト上ではエビタシャル成長がうま
くいかない。そこで、ロゼツト発生を防止するためには
アンチモンシリケートカラスを用いずに、拡散ソースで
ある三酸化二ア/チモン(sb2o、)を半導体基板に
直接塗布しsb 1拡散させるのが望ましい。
Problem to be Solved by the Invention Antimony silicate glass (SbSG) is used to form a buried layer by thermal diffusion of sb.
Rosettes may appear on the surface of the semiconductor substrate. This rosette is a silicon-rich 5b-8i-o compound, which is generated when impurities are thermally diffused from the impurity-containing S1 oxide film, and cannot be etched with the IF solution, which is a normal etching solution. This method requires a suitable etching solution, and furthermore, the vitreous growth does not work well on this rosette. Therefore, in order to prevent the occurrence of rosettes, it is desirable to directly apply dia/thimonium trioxide (sb2o,) as a diffusion source to the semiconductor substrate and diffuse sb1 without using antimony silicate glass.

しかしながら、5b20.はその融点が656℃であり
、沸点が1425℃でおり、一方熱拡散温度が1200
ないし1250℃であるた、lQK、半導体基体中にs
bが十分に拡散されない。そのために、埋込み層の表面
抵抗が期待するほど低減されない、すなわち、コレクタ
のシリーズ抵抗が十分に下がらない。
However, 5b20. has a melting point of 656°C, a boiling point of 1425°C, and a thermal diffusion temperature of 1200°C.
to 1250°C, lQK, s in the semiconductor substrate
b is not sufficiently diffused. Therefore, the surface resistance of the buried layer is not reduced as expected, that is, the series resistance of the collector is not reduced sufficiently.

問題点を解決するための手段 本発明は、上記問題点を解消して5b2o、を用いて埋
込みコレクタ層を形成する方法を提供するもので、工程
(7)〜(6);(7)半導体基板上に所定・ぐターン
の酸化膜を形成する工程;(イ)半導体基板および酸化
膜上の全面に5b205層を形成する工程;(つ)Sb
205層上に保護膜を形成する工程;に)Sb2O2層
からsbを半導体基板内へ熱拡散させる工程;および(
4)保護膜、5b203層および酸化膜を除去する工程
;を含んでなる半導体装置の製造方法を提供する。
Means for Solving the Problems The present invention solves the above problems and provides a method of forming a buried collector layer using 5b2o. Step of forming an oxide film of a predetermined pattern on the substrate; (a) Step of forming a 5b205 layer on the entire surface of the semiconductor substrate and the oxide film; (1) Sb
Step of forming a protective film on the 205 layer; 2) Step of thermally diffusing sb from the Sb2O2 layer into the semiconductor substrate;
4) A method for manufacturing a semiconductor device is provided, which includes the step of removing the protective film, the 5b203 layer, and the oxide film.

作用 本発明に係る半導体装置の製造方法では熱拡散処理を行
なう際に5b203層が保護膜によりて覆われているの
で、5b203の蒸発が防止されてsbの半導体基板へ
の拡散が促進される。
Function: In the method for manufacturing a semiconductor device according to the present invention, the 5b203 layer is covered with a protective film during thermal diffusion treatment, so evaporation of 5b203 is prevented and diffusion of sb into the semiconductor substrate is promoted.

ハ 実施例 以下、添付図面を参照して本発明の好ましい実施態様例
によって本発明を説明する。
C. Examples Hereinafter, the present invention will be described by way of preferred embodiments of the present invention with reference to the accompanying drawings.

第1A図ないし第1E図は、本発明に係る半導体装置の
製造方法に従って埋込みコレクタ層を形成する工程を説
明する半導体基板の概略断面図でちる。
1A to 1E are schematic cross-sectional views of a semiconductor substrate illustrating the process of forming a buried collector layer according to the method of manufacturing a semiconductor device according to the present invention.

まず、半導体基板1としてpgシリコンウェノ・を用意
し、通常の熱酸化法によって、第1A図に示すように、
酸化膜2を形成する。この酸化膜2は二重化珪素(S 
r 02 )であシ、その厚さは、例えば、約400 
nmである。
First, a pg silicon wafer is prepared as a semiconductor substrate 1, and as shown in FIG. 1A, by a normal thermal oxidation method,
An oxide film 2 is formed. This oxide film 2 is made of double silicon (S
r 02 ), the thickness of which is, for example, about 400
It is nm.

次に、酸化膜2上にレジスト3と塗布し、露光現像によ
シ形成すべき埋込み層に相当する窓を有する所定・やタ
ーンにし、適切なエツチング剤、例えば、緩衝IF液に
よって酸化膜2を週択的にエツチングして拡散開口部4
および5を、第1B図のように形成する。したがって、
酸化膜2は開口部4および5と有する所定・々ターンと
なっている。
Next, a resist 3 is coated on the oxide film 2, formed into a predetermined turn having a window corresponding to a buried layer to be formed by exposure and development, and the oxide film 2 is etched with an appropriate etching agent such as a buffered IF solution. selectively etching the diffusion opening 4
and 5 are formed as shown in FIG. 1B. therefore,
The oxide film 2 has openings 4 and 5 in predetermined turns.

そして、レノストを除去する。Then, remove Renost.

有機溶剤に溶か己た5b20.を酸化膜2に開口部4お
よび5を開けた半導体基板に直接塗布し、溶剤を揮発さ
せて5b203層6を、第1C図に示すように、形成す
る。
5b20 dissolved in organic solvent. is applied directly to a semiconductor substrate with openings 4 and 5 in the oxide film 2, and the solvent is evaporated to form a 5b203 layer 6 as shown in FIG. 1C.

次に、5b2o3屡s上に酸素を通過させない保護膜7
(第1D図)を形成する。この保護膜7は、例えば、化
学的気相成長法(CVD法)による窒化珪素(Si3N
4)であシ、厚さは約100 nmでよい。
Next, a protective film 7 that does not allow oxygen to pass over 5b2o3
(Fig. 1D) is formed. This protective film 7 is made of, for example, silicon nitride (Si3N) formed by chemical vapor deposition (CVD).
4) The thickness may be about 100 nm.

そして、この半導体基板を加熱炉内に入れて1250℃
の温度に所定時間(例えば、1時帥保持することによっ
て酸化膜開穴部に於いて半導体基板lと接触している5
b203層6からsbを熱拡散で基板1内へ導入して、
Sb不純物導入領域である埋込みコレクタ層8および9
(第1D図)と形成する。
Then, this semiconductor substrate was placed in a heating furnace and heated to 1250°C.
5 which is in contact with the semiconductor substrate l at the oxide film opening by holding the temperature at
Introducing sb from the b203 layer 6 into the substrate 1 by thermal diffusion,
Buried collector layers 8 and 9 which are Sb impurity doped regions
(Fig. 1D).

熱拡散後に、保護膜7.5b203層6および酸化膜2
を適切な工、チング剤で除去して、半導体基板1を第1
E図のように露出させる。このように形成された埋込み
コレクタ層8および9は、例えば、その深さが約2.7
μmであり、その表面抵抗が約284/l]である。ま
た、半導体基板1の表面にロゼツトは発生していない。
After thermal diffusion, protective film 7.5b203 layer 6 and oxide film 2
is removed using an appropriate process or a quenching agent, and the semiconductor substrate 1 is removed as the first
Expose as shown in figure E. The buried collector layers 8 and 9 formed in this way have a depth of about 2.7 mm, for example.
[mu]m, and its surface resistance is approximately 284/l]. Furthermore, no rosettes were generated on the surface of the semiconductor substrate 1.

そして、通常のエピタキシャル成長法によりて半導体基
板1上にN型シリコンエピタキシャル層(図示せず)を
形成し、このエピタキシャル層に所定のペース領域。
Then, an N-type silicon epitaxial layer (not shown) is formed on the semiconductor substrate 1 by a normal epitaxial growth method, and a predetermined space region is formed on this epitaxial layer.

エミッタ領域、コレクタ・コンタクト領域などを公知の
バイポーラトランジスタ製造方法にしたがって形成する
ことになる。
The emitter region, collector contact region, etc. are formed according to a known bipolar transistor manufacturing method.

発明の効果 本発明の方法にしたがって埋込みコレクタ層を形成する
ならば、不純物を含むSt酸化膜を使用せずにSbを熱
拡散することが可能なので、ロゼツトを発生させること
なく所定濃度(すなわち、所定表面抵抗)の埋込みコレ
クタ層(不純物導入領域)が得られる。
Effects of the Invention If a buried collector layer is formed according to the method of the present invention, it is possible to thermally diffuse Sb without using a St oxide film containing impurities. A buried collector layer (impurity-introduced region) with a predetermined surface resistance is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1A図ないし第1E図は、本発明に係る半導体装置の
製造方法の工程を説明する半導体基板の概略断面図であ
る。 1・・・半導体基板、2・・・酸化膜、4.5・・・開
口部、6・・・5b203層、7・・・保護膜、8,9
・・・埋込みコレクタ層。
1A to 1E are schematic cross-sectional views of a semiconductor substrate for explaining the steps of the method for manufacturing a semiconductor device according to the present invention. DESCRIPTION OF SYMBOLS 1... Semiconductor substrate, 2... Oxide film, 4.5... Opening part, 6... 5b203 layer, 7... Protective film, 8, 9
...Embedded collector layer.

Claims (1)

【特許請求の範囲】 1、下記工程(ア)〜(オ): (ア)半導体基板上に所定パターンの酸化膜を形成する
工程; (イ)前記半導体基板および酸化膜上の全面に三酸化二
アンチモン層を形成する工程; (ウ)前記三酸化二アンチモン層上に保護膜を形成する
工程; (エ)前記三酸化二アンチモン層からアンチモンを前記
半導体基板内へ熱拡散させる工程;および(オ)前記保
護膜、三酸化二アンチモン層および酸化膜を除去する工
程; を含んでなる半導体装置の製造方法。 2、前記酸化膜がシリコン半導体基板の熱酸化による二
酸化珪素である特許請求の範囲第1項記載の方法。 3、前記保護膜が窒化珪素である特許請求の範囲第1項
記載の方法。
[Claims] 1. The following steps (a) to (e): (a) forming an oxide film in a predetermined pattern on the semiconductor substrate; (b) forming trioxide on the entire surface of the semiconductor substrate and the oxide film; (c) forming a protective film on the diantimony trioxide layer; (d) thermally diffusing antimony from the diantimony trioxide layer into the semiconductor substrate; and ( e) a step of removing the protective film, the diantimony trioxide layer, and the oxide film; a method for manufacturing a semiconductor device, comprising: 2. The method according to claim 1, wherein the oxide film is silicon dioxide formed by thermal oxidation of a silicon semiconductor substrate. 3. The method according to claim 1, wherein the protective film is silicon nitride.
JP17400384A 1984-08-23 1984-08-23 Manufacture of semiconductor device Pending JPS6153722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17400384A JPS6153722A (en) 1984-08-23 1984-08-23 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17400384A JPS6153722A (en) 1984-08-23 1984-08-23 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6153722A true JPS6153722A (en) 1986-03-17

Family

ID=15970946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17400384A Pending JPS6153722A (en) 1984-08-23 1984-08-23 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6153722A (en)

Similar Documents

Publication Publication Date Title
CA1050667A (en) Method of manufacturing semiconductor devices
US4274892A (en) Dopant diffusion method of making semiconductor products
US4351677A (en) Method of manufacturing semiconductor device having aluminum diffused semiconductor substrate
JPS6133253B2 (en)
JPS6153722A (en) Manufacture of semiconductor device
JPS6226573B2 (en)
JP2698585B2 (en) Method of forming polycide electrode
US3791884A (en) Method of producing a pnp silicon transistor
JP2550968B2 (en) Crystallization method of semiconductor thin film
JPH0291932A (en) Manufacture of semiconductor device
JPH0227769A (en) Semiconductor device
JP2519207B2 (en) Method for manufacturing semiconductor device
JPH01283821A (en) Manufacture of semiconductor device
JPH0122731B2 (en)
JP3067340B2 (en) Semiconductor device
JPH049371B2 (en)
JPS6153740A (en) Manufacture of semiconductor device
JPS5933271B2 (en) Manufacturing method of semiconductor device
JP2583962B2 (en) Method for manufacturing semiconductor device
JP3307362B2 (en) Method for manufacturing semiconductor device
KR100256246B1 (en) Method of forming gate electrode in semiconductor device
JPH08115865A (en) Method for forming alignment mark
JPS6074613A (en) Manufacture of semiconductor device
JPS6068656A (en) Manufacture of semiconductor device
JPH0330293B2 (en)