JPS6153622A - Photometric device of single-lens reflex camera - Google Patents

Photometric device of single-lens reflex camera

Info

Publication number
JPS6153622A
JPS6153622A JP59176463A JP17646384A JPS6153622A JP S6153622 A JPS6153622 A JP S6153622A JP 59176463 A JP59176463 A JP 59176463A JP 17646384 A JP17646384 A JP 17646384A JP S6153622 A JPS6153622 A JP S6153622A
Authority
JP
Japan
Prior art keywords
light
prism
reflected
reflective
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59176463A
Other languages
Japanese (ja)
Inventor
Masatake Katou
正猛 加藤
Hideo Yokota
秀夫 横田
Tetsuji Nishimura
西村 哲治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59176463A priority Critical patent/JPS6153622A/en
Priority to US06/729,293 priority patent/US4682237A/en
Publication of JPS6153622A publication Critical patent/JPS6153622A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure Control For Cameras (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To adjust a photmetric characteristic of a photometric element by constituting a titled device so that a reflected light quantity is varied successively along the prescribed direction on the light semi-transmitting surface, for instance, constituting said device of many reflecting areas by which the area is varied successively, and varying the area of the reflecting area. CONSTITUTION:A semi-tramsmitting part 9 is provided on one of an emitting surface S3 of the first prism 5 or an incident surface S4 of the second prism 6, and a part of a liminous flux reflected totally by the second reflecting surface S1' of the first prism is reflected in the direction of the second reflecting surface S1'. It is emitted from said part and led to a photodetector 10 provided in the vicinity of the second reflecting surface S1', and a photometry is executed. In order to eliminate an interference of the photodetector 10 and a focusing screen 4, the semi-transmitting part 9 is divided into rectangular reflecting areas extended in the horizontal direction and having each different area, so that the area becomes smaller toward the reflecting area being near the second reflecting area S1'. In this way, the reflected light quantity of the lower side part decreases gradually, a dense distribution of a light of lower part from the center of a picture is reduced, and the effect correspnding to a center priority average photometry can be obtained.

Description

【発明の詳細な説明】 若しくFi固体撮影素子を用い九電子カメラに適した装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus suitable for a nine-electron camera using an Fi solid-state photographing element.

従来より銀塩フィルムを用いた一眼レフレックスカメラ
はクステム展開をする上で最適な構造を持つとして大き
な発展を攬げてきた。その代表的な光学系としては、捉
影レンズの光路をクイックリターンミラーで分岐してフ
ァインダー光路とし、分岐された光路をペンタダハプリ
ズムに導いて光路の方向を変えるとともに両面月う の左右全反転し接眼レンズに導く秩l用である。
Single-lens reflex cameras that use silver halide film have achieved great development because they have the optimal structure for image development. A typical optical system is to split the optical path of the image capture lens using a quick return mirror to create a finder optical path, and guide the split optical path to a penta roof prism to change the direction of the optical path and completely invert the left and right sides of the double-sided moonlight. This is for guiding the eyepiece to the eyepiece.

そしてfriz @レンズを通過し7’(光束を測光す
るいわゆる°I’TL側光を行う為の測光装置は多くの
場合ペンタダハプリズムの底面若しくは射出面等に配置
されている。
A photometry device for measuring the light beam passing through the friz@lens and performing so-called °I'TL side light is often placed on the bottom surface or exit surface of the pentagonal roof prism.

しかしながら最近のCOD等の撮像体を用いt所謂電子
カメラにおけるファインダー光学系においては上述の様
なファインダー光学系は光学性能及び構成上あま9好ま
しいものとは言えなくなってき九〇それは主に次のよう
な理由による。
However, in the viewfinder optical systems of so-called electronic cameras using recent imaging bodies such as COD, the above-mentioned finder optical systems are no longer desirable in terms of optical performance and configuration.90 This is mainly due to the following reasons. Due to reasons.

(イ)例えば215インチの撮像体の有効画面は対角線
長比で55間フィルムに比べて174と小さい為、所定
の視野率及び視野倍率を得る(は従来のペンタダハプリ
ズムを用い九のでは達成が難しくkる。
(b) For example, the effective screen of a 215-inch image pickup body has a diagonal length ratio of 174, which is smaller than that of a 55-inch film. It's difficult.

(ロ)撮像体の後部に電気的処理回路を配置する為の空
間を設けなければならず撮影レンズの像面からカメラの
最後端までの距離が長くなってくる。この為ファインダ
ー光学系の観察用の瞳位置をカメラ側後方に延長して設
定しなくてはならず、このような構成は光学性能を維持
するうえで難しい。            、11前
述した(イ)、(ロ)の光学性能上、特に重要なのに、
視野倍率で、これについて述べる。一般に視野倍率は大
きい程ファインダー光学系としてRyeI2やすいので
好寸しい。視野倍率γは撮影レンズの標I■の焦点距離
をfOs接眼レンズの焦点距fり ち′Lをfeとするとr=、r:、−で表わされる視野
1音率rを大きくするには、焦点距#fθを小さくする
必要がある。接眼レンズはファインダー光学系の結イ9
固近傍に、その前側焦点が位匝するように配置されるの
で、視野倍率rの高倍率イLを図るには、ファインダー
光学系のフォーカシングスクリーンから接眼レンズまで
のいわゆる正立正像を得る為の光学系のブ0路長をなる
べく小さくする8塵がある。今仮りに撮影レンズの焦点
距離foを2/3インチ撮像体に対して標準レンズに相
当するようfO= 12.5 mmとし、視野倍率rを
0.6とすると、接眼レンズの焦点距離feは20、F
3piとな そこでペンタダハプリズムを用い九従来のファインダー
光学系において視野倍率γ=0.6以上を得るには、フ
ォーカシングスクリーンから開眼レンズまでの光路長を
接眼レンズの焦点距離と格等しく20.8rym程度に
しなければならない。このととはペンタダハプリズムの
射出面に可能なかぎり近接して接眼レンズを配置しなく
てはならないことを意味し、かつ前述した仲)の条件よ
り明察用のIll’llをカメラの最後端よりも後方に
設定したいという仁とと相反し、笑際には困難である。
(b) A space must be provided at the rear of the image pickup body for arranging the electrical processing circuit, which increases the distance from the image plane of the photographic lens to the rearmost end of the camera. For this reason, the observation pupil position of the finder optical system must be extended to the rear of the camera side, and such a configuration is difficult to maintain optical performance. , 11Although (a) and (b) mentioned above are particularly important in terms of optical performance,
This will be discussed in terms of visual field magnification. In general, the larger the field of view magnification is, the easier it is to use RyeI2 as a finder optical system, so it is better. The field of view magnification γ is the focal length of the mark I of the photographic lens as fOs.If the focal length of the eyepiece lens is fe, then the field of view is represented by r=, r:, -.To increase the sound rate r, It is necessary to reduce the focal length #fθ. The eyepiece is a finder optical system connection 9
Since the front focal point is placed in the fixed vicinity, in order to achieve a high magnification of field of view r, it is necessary to obtain a so-called erect normal image from the focusing screen of the finder optical system to the eyepiece lens. There are eight factors that reduce the path length of the optical system as much as possible. Assuming that the focal length fo of the photographic lens is fO = 12.5 mm, which is equivalent to a standard lens for a 2/3-inch image pickup body, and the field magnification r is 0.6, the focal length fe of the eyepiece lens is 20, F
Therefore, in order to obtain a field magnification of γ = 0.6 or more using a penta roof prism and a conventional finder optical system, the optical path length from the focusing screen to the eye opening lens must be approximately 20.8 rym, which is equal to the focal length of the eyepiece lens. must be done. This means that the eyepiece must be placed as close as possible to the exit surface of the pentagonal roof prism, and due to the condition mentioned above, the Ill'll for clear observation must be placed from the rear end of the camera. It is difficult to laugh at this because it conflicts with Jin who wants to set it at the back.

本特許出顯人は先に特凡昭59−126825号で、フ
ァインダーの視野倍率の高倍率化を図ると共に畏扁用の
瞳をカメラの最後ジ・イより後方に設定したファインダ
ー光学系で、且つ測光素子へファインダー光束の一部を
導く装置について述べている。しかしながらファインダ
ー光学系の構成自体が困すな要求に答える4A造になっ
ているため別の塾求を満足するための余裕に乏しく、こ
こでは沖1元特性を自由に選択することが難しくなって
いる。
This patent was first published in Tokubon Sho 59-126825, which is a finder optical system that aims to increase the field of view magnification of the finder and sets the pupil for focusing at the rear of the camera's end. It also describes a device that guides a portion of the finder light flux to a photometric element. However, since the finder optical system itself is a 4A structure that meets the requirements of a non-trivial system, there is not enough room to satisfy other school requirements, making it difficult to freely select the Oki 1-element characteristic. There is.

(目的) 本発明の目的は、−眼しフレンクスカメラのファインダ
ー光学系の光路を分岐して測光素子に導光する装置〒、
測光特性を所望の形)1に成し得る様にしたことである
(Objective) The object of the present invention is to provide a device for branching the optical path of the viewfinder optical system of an optical reflex camera and guiding the light to a photometric element;
The photometric characteristics can be made into the desired shape (1).

ま−7j m 2σ)目的は、視野倍率を拡大すると共
に11カをカメラ本体後方へ8動させtファインダーの
光路を分岐して’K11l光を達成した際に測光素子の
泣謹に係わらず測光特性を中央重点平均測光となる様に
したことである。
The purpose is to expand the field of view magnification and move the 11 lenses 8 to the rear of the camera body to branch the optical path of the viewfinder and achieve photometry regardless of the problems with the photometering element. The characteristics were changed to center-weighted average photometry.

以上の目的を達成するために本発明は、投像体上に被写
体像を形成する撮影レンズと、撮影レンズに光学的に結
合され、復敬回の内面反射で元ft導くプリズムを具え
るファインダーと、プリズム中の光路を分岐する光半透
過面と、分岐さnた光P3を通る光束を受光する測光素
子とで構成しでfl「記反射域の面積のj〈化によシ前
記測光素子の1tlll ’jt、%性全調−、徒する
ものである。
In order to achieve the above objects, the present invention includes a photographic lens that forms a subject image on a projection body, and a finder that includes a prism that is optically coupled to the photographic lens and that guides the object by internal reflection during a return look. , a light semi-transmissive surface that branches the optical path in the prism, and a photometric element that receives the light beam passing through the branched light P3. The element's 1tllll'jt, %sexual complete tone, is a waste.

を窺後述する実施例は、撮影レンズの元軸上にあり、撮
影)f、路とファインダー光路を分割する定めの反射膜
をそなえ、前記反射角からの反射光を垂直入射せしめる
為の入射面S1と前記入射面S1よ、り入射した元を、
前記入射面S1と同一なる而(第2反射面B1′ )で
反射する様に偏向するための第1反射面S、と、前記第
2反射面S’tf反射した)tを、射出させる為の射出
面S、を有する281プリズムと前記筆1プリズムの射
出面Ssから射出し九九を入射させる為の入射面S4と
前記入射面S4と同一なるTri:J(M 5反射面S
−)で再び反射する様(て(扁向させ、かつ左右像を反
転させる為の2つの反射面(第5反射面8う、第4反射
面S′、)を有するダハ面と、前記@5反射面S−で反
射した元を射出させる為の射出面S6を有する第2プリ
ズム?有した物体ρを観察するtめのファインダー光学
系でろって、前記第1プリズムの射出面S8、もしくは
第2プリズムの入射面S4上に光半透過面を設け、前記
第1プリズムの第2反射面S1′で反射した元の一部を
前記第2反反射面1′方向に反射     lさせ、こ
れエリ射出せしめて測光するNl?成であり、さらには
、前記半透過部は面積の異なる多数の反射域より成り、
それぞれの反射域は、前記第2反射面B 、/ に近い
ほど面費が小なるようにしている。
The embodiment to be described later is located on the original axis of the photographing lens, and is provided with a reflective film that divides the photographing path and the viewfinder optical path, and has an incident surface for vertically injecting the reflected light from the reflection angle. The incident element from S1 and the incident surface S1 is
A first reflecting surface S for deflecting so as to be reflected at the same surface (second reflecting surface B1') as the incident surface S1, and a second reflecting surface S'tf for emitting the reflected light t. 281 prism having an exit surface S, and an entrance surface S4 for making the multiplication table incident from the exit surface Ss of the brush 1 prism, and a Tri:J (M 5 reflection surface S) which is the same as the entrance surface S4.
A roof surface having two reflective surfaces (fifth reflective surface 8, fourth reflective surface S') for reversing the left and right images and reflecting the image again at (-); 5. A second prism having an exit surface S6 for exiting the source reflected by the reflecting surface S-?A t-th finder optical system for observing an object ρ having an exit surface S8 of the first prism, or A light semi-transmissive surface is provided on the incident surface S4 of the second prism, and a part of the light reflected by the second reflective surface S1' of the first prism is reflected in the direction of the second anti-reflective surface 1'. The semi-transmissive part is composed of a large number of reflective regions having different areas,
The surface cost of each reflective area is made smaller as it approaches the second reflective surface B,/.

(実施例) 以下、第1図に従って本発明の詳細な説明する。丙申、
1#−j撮影レンズで被写体の像を形成する機能を待つ
。2はクイックリターン・ミラーで、ビューファインダ
へ導光する機1r弓を持つ。ミラー2は半透鏡であって
も良い。5は固体操像南子の撮像面である。4はフォー
カシングスクリーンで、例えば中央部にスプリットプリ
ズムを、周辺にマット面を有し、ミラー2に関して撮影
面5と略くφしい位置:(配する。撮影レンズ1で結像
作用を受け7を光束はミラー2で反射してフォーカシン
グスクリーン4上又はその近傍に像を形成する。
(Example) The present invention will be described in detail below with reference to FIG. Heishin,
1#-j Wait for the function to form an image of the subject with the photographing lens. 2 is a quick return mirror and has a 1r bow that guides light to the viewfinder. The mirror 2 may be a semi-transparent mirror. 5 is the imaging plane of the solid body image Nanko. Reference numeral 4 denotes a focusing screen, which has, for example, a split prism in the center and a matte surface around the periphery. The light beam is reflected by the mirror 2 and forms an image on or near the focusing screen 4.

5と6は組合せプリズムで、光路の方向を替エルト共に
撮影レンズ10光軸と接眼レンズ7の光軸との位置関係
を定め、″!7?:両面の左右を逆転する機能を持つ、
、5け第1プリズムは三角性状を成し、m示の面は断面
に当る。s、H入射面、s、 H鏝面処理の施された第
1反射面、Bl、は第2反射面で全反射又は鏡面反射す
るものとし、入射面Slを延長した面であるつ又S、は
出射面である。6は第2プリズムで、S、が入射面、S
II ’ S5’は第1反射面〒、鏡面処理されたダハ
面である。13iは第2反吋面で全反対又は鏡面反射す
るものとし、入射面S4を蝉長した面である。S6け出
射面である。さらにフォーカシングスクリーン4から出
た光は笛1プリズム50入射面S、に垂直に入射し、反
射膜の黄燐され几A1反射面S、で反射し九後、入射面
S1と同一面なる第2反射面S、′に工って全反射若し
くは鏡面反射音し、射出面S、より第1プリズム5から
射出する。その後元綜は第2ブリスム6の入射面S4よ
り入射し反射膜の蒸着さjた2つの第3反射面S3、第
4反射@S、′より成るダハ面で反射し更に入射1nn
s、と同一面なる第5反射面S;で反射した仮封出而S
、より略垂直に射出する。そして射出面S6  より射
出した光束は接眼レンズ7を通って観察R:18に達す
る。尚 r、z1ブリズム5゛と箒2プリズム6は貼合
わせても良い1−1わずかの隙間を隔てて1配置しても
良い。
5 and 6 are combination prisms that change the direction of the optical path, together determine the positional relationship between the optical axis of the photographing lens 10 and the optical axis of the eyepiece lens 7, and have the function of reversing the left and right sides of both sides.
, the 5-digit first prism has a triangular shape, and the surface indicated by m corresponds to the cross section. The first reflecting surface Bl, which has been subjected to the trowel surface treatment, has a total reflection or specular reflection, and the second reflecting surface S, which is an extension of the incident surface Sl, , is the exit surface. 6 is the second prism, S is the incident surface, and S
II'S5' is the first reflective surface (〒), which is a mirror-treated roof surface. Reference numeral 13i is a second rear surface that is completely opposite or mirror-reflective, and is a surface that is longer than the entrance surface S4. S6 is the exit surface. Furthermore, the light emitted from the focusing screen 4 is perpendicularly incident on the incident surface S of the flute 1 prism 50, reflected by the yellow phosphorus A1 reflective surface S of the reflective film, and then reflected at the second reflection surface, which is the same surface as the incident surface S1. The sound is totally reflected or specularly reflected by the surfaces S and ′, and is emitted from the first prism 5 through the exit surface S. After that, the original beam enters from the entrance surface S4 of the second beam 6, is reflected by the roof surface consisting of the two third reflection surfaces S3 and the fourth reflection @S,' on which the reflection film is deposited, and is further reflected by the incident surface 1nn.
The temporary seal S reflected on the fifth reflecting surface S, which is the same surface as s.
, ejects more nearly vertically. The light beam emitted from the exit surface S6 passes through the eyepiece lens 7 and reaches observation R:18. Incidentally, the r, z1 prism 5' and the broom 2 prism 6 may be attached to each other, or they may be arranged as one with a slight gap between them.

次に、かかる溝底において、測光を行う為の方法につい
て1況明する。
Next, a method for performing photometry at the groove bottom will be explained in detail.

図において、第1プリズムの射出面”S、若しくは91
x 2プリズムの入射面S4のいずれかに半透過部9を
設け、前記a′!1プリズムの第2反射面S1で全反射
した光束の一部を、前記第2反射面B1′方向に反射さ
せ、これより射出せしめて、前記第2反射面S1近傍に
配設し几受光素子10に導き、測光する。しかしながら
受光素子10とフォーカシングスクリーン4とが近接し
て置かれるために、それらの保持部材のメカンカルな干
渉をなくすように配慮すると、受光素子の位置はあまり
フォーカシングスクリーンに近づけられない。これによ
って生じる問題点を第2図によって説明すると、受光素
子10の中心が接眼レンズ寄りに位置する几め、フォー
カシングスクリーン上での測光感度分布にかたよりが生
じることである。同時においては便宜上、受光素子の中
心点から様々な方向に射出するtSが、逆にフォーカシ
ングスクリーン4でどの様に分布するかを示しており、
これよりjlll光感度分布は画面中心より下に密な分
布を示す、下部重点平均測光となる。これを第3図に示
す。
In the figure, the exit surface of the first prism is "S" or "91".
A semi-transparent part 9 is provided on either of the entrance surfaces S4 of the x2 prism, and the a'! A part of the luminous flux totally reflected by the second reflecting surface S1 of the first prism is reflected in the direction of the second reflecting surface B1' and emitted from the second reflecting surface B1', and a light receiving element disposed near the second reflecting surface S1 is provided. 10 and measure the light. However, since the light receiving element 10 and the focusing screen 4 are placed close to each other, if consideration is given to eliminating mechanical interference between the holding members, the position of the light receiving element cannot be moved very close to the focusing screen. The problem caused by this will be explained with reference to FIG. 2. The center of the light receiving element 10 is located closer to the eyepiece, and the photometric sensitivity distribution on the focusing screen becomes biased. At the same time, for convenience, it shows how the tS emitted from the center point of the light receiving element in various directions is distributed on the focusing screen 4.
From this, the jllll light sensitivity distribution becomes lower-weighted average photometry, which shows a dense distribution below the center of the screen. This is shown in FIG.

同図に示し九様な測光感度分布であると、通Meも一般
的な人物のバストショットのシーンでは人物の顔が画面
中心よりやや上方にあるために、黒服を着ている場合は
顔部分が極端にオーバーとなり、白服を着ている場合は
逆にアンダーとなり最5廊露出が得にくい。
With the nine different photometric sensitivity distributions shown in the same figure, it can be seen that in a typical bust shot scene of a person, the person's face is slightly above the center of the screen, so if the person is wearing black clothes, the person's face will be The part will be extremely over-exposed, and if you are wearing white clothes, it will be under-exposed, making it difficult to get the maximum exposure.

この様な事態に対処するtめ第1図の半透過部9を、第
4図に描く様に水平方向へ延びt面積の異なる長方形の
反射域に分割し、第2反射面S4′に近い反射域はど面
積が小さくなる様にしている。この構成により下(u1
部分の反射光量は徐′に減少し・測光感就分布上画面中
心1り下   、i方の光線の密なる分布を@減〒きる
から、中央重点平均側光に相当する効果を与えられるも
のである。第4図では上下方向に反射域のビンチカ;変
化しているが、用途に応じて左右方向にも等ピッチある
いは可変ピッチの面積分割を行っても良く、また寸法が
異なる斑点を並ベアを溝底でも良く、更には反射ホが徐
々に変化する様に蒸着し九半透反射膜に替えても良い。
To deal with this situation, the semi-transparent section 9 in Fig. 1 is divided into rectangular reflecting areas extending horizontally and having different areas as shown in Fig. The area of the reflection area is made small. This configuration allows lower (u1
The amount of reflected light in the area gradually decreases, and the dense distribution of rays in the i direction can be reduced by one point below the center of the screen on the photometric sensitivity distribution, so it can provide an effect equivalent to center-weighted average side light. It is. In Fig. 4, the reflective area changes in the vertical direction; however, depending on the application, it is also possible to divide the area with equal pitch or variable pitch in the left and right directions. It may be used on the bottom, or it may be replaced with a semi-transparent reflective film deposited so that the reflection value gradually changes.

尚、面精分割された反射域はそれ自体半透過鏡であって
も良いし、全反射鏡であっても良い。
Note that the surface-precision divided reflection area itself may be a semi-transmissive mirror or a total reflection mirror.

(効果) 以上述ベアj 7Mり本発明は測光分布を所望の形dに
変形させられるから、ファインダー中のプリズムを掃影
系およびカメラ自体の配置と適合させt際に測光分布が
初期の目的と異なっていてもそれを自在にA整し得る効
果がある。
(Effects) Since the present invention can transform the photometric distribution into a desired shape, the prism in the finder can be adapted to the scanning system and the arrangement of the camera itself, so that the photometric distribution can be adjusted to the initial purpose. Even if it differs from the above, it has the effect of allowing you to adjust it freely.

さらに本発明による効果は、接眼レンズ細工す入射する
通入y0に対して測)1g子の受ける彩りが少ない点で
ある。通盾これを防ぐ手段として接眼レンズ近傍に配さ
れtアイピースシャッター等により、逆入光により測光
エラーを解決しているが、装置が複雑化したす、操作が
しにくいといつt欠点を有してい九〇 本発明による測光方式では、接眼レンズ側より入射した
逆入光の多くは、ファインダー元学系の正規光路を逆行
する光格子とる定め、第1プリズムの入射面S3より入
射した光束は、前記第2反射面S1′で全反射し、受光
測子10にはとどかず、したがって露出エラーを生じな
い利点がある。
A further advantageous effect of the present invention is that less color is received by the eyepiece (measured with respect to the incident light y0). As a means to prevent this, an eyepiece shutter placed near the eyepiece lens or the like is used to solve photometry errors due to the incoming light. 90 In the photometry method according to the present invention, most of the reverse incident light incident from the eyepiece side is determined to be a light grating that travels backward through the normal optical path of the finder element system, and the light flux incident from the incident surface S3 of the first prism is , the light is totally reflected by the second reflecting surface S1' and does not reach the light receiving sensor 10, so there is an advantage that no exposure error occurs.

4更面の簡単な説明 第1因は本発明の実施例を示す光学断面図、第2図はプ
リズムの形状(依存する測光分布を説明するtめの光学
断面−で、第′5囚はその測光分布間。第4図は実施例
に係る半透過部を示す斜視図。
4 Brief explanation of further aspects The first factor is an optical cross-sectional diagram showing an embodiment of the present invention, FIG. FIG. 4 is a perspective view showing a semi-transparent part according to an embodiment.

図中 1は撮影レンズ 2はクイックリターンミラー 4はフォーカシングスクリーン 5は第1プリズム 6J−1第2プリズム 7は接眼レンズ 9は半辺過部 10は受)°e素子 である。In the diagram 1 is the photographic lens 2 is quick return mirror 4 is focusing screen 5 is the first prism 6J-1 2nd prism 7 is the eyepiece 9 is a half-sided part 10 is receiving) °e element It is.

Claims (3)

【特許請求の範囲】[Claims] (1)撮像体上に被写体像を形成する撮影レンズと、撮
影レンズに光学的に結合され、複数回の内面反射で光を
導くプリズムを具えるファインダーと、プリズム中の光
路を分岐する光半透過面と、分岐された光路を通る光束
を受光する測光素子とを有し、前記光半透過面を所定方
向に沿つて反射光量が変化する構成として前記測光素子
の側光特性を調整することを特徴とする一眼レフレック
スカメラの測光装置。
(1) A photographic lens that forms a subject image on an imaging body, a finder that is optically coupled to the photographic lens and includes a prism that guides light through multiple internal reflections, and an optical half that branches the optical path in the prism. It has a transmitting surface and a photometric element that receives a light beam passing through a branched optical path, and the side light characteristic of the photometric element is adjusted by configuring the semi-transparent surface to change the amount of reflected light along a predetermined direction. A photometric device for single-lens reflex cameras featuring:
(2)前記半透過面は順々面積の変化する反射域を有す
る特許請求の範囲第1項記載の一眼レフレックスカメラ
の測光装置。
(2) A photometric device for a single-lens reflex camera according to claim 1, wherein the semi-transparent surface has a reflective area whose area changes in sequence.
(3)前記ファインダーを前記撮影レンズに光学的に結
合させるために反射鏡を使用し、又前記プリズムは前記
反射鏡からの反射光を垂直入射せしめる為の入射面S_
1と、前記入射面S_1より入射した光を前記入射面S
_1と同一なる面(第2反射面S_1′)で全反射する
様に偏向するための第1反射面S_2と、前記第2反射
面S_1′で全反射した光を射出させる為の射出面S_
3を有する第1プリズムと、前記第1プリズムの射出面
S_3から射出した光を入射させる為の入射面S_4と
前記入射面S_4と同一なる面(第5反射面S_4′)
で再び反射する様に偏向させ、かつ左右像を反転偏向さ
せる為の2つの反射面(第5反射面S_5、第4反射面
S_5′)を有するダハ面と、前記第5反射面S_4′
で反射した光を射出させる為の射出面S_6を有する第
2プリズムから成り、前記光半透過面は前記第1プリズ
ムの射出面S_3もしくは前記第2プリズムの入射面S
_4上に在つて前記第1プリズムの第2反射面S_1′
で反射した光の一部を該第2反射面S_1′の方向へ反
射させるものであり、更に前記光半透過面を構成する反
射域は、該第2反射面に近づく程面積が小さくなる特許
請求の範囲第1及び第2項記載の一眼レフレックスカメ
ラの測光装置。
(3) A reflecting mirror is used to optically couple the finder to the photographing lens, and the prism has an entrance surface S_ for vertically entering the reflected light from the reflecting mirror.
1, and the light incident from the incident surface S_1 is transmitted to the incident surface S_1.
A first reflective surface S_2 for deflecting the light so that it is totally reflected on the same surface as _1 (second reflective surface S_1'), and an exit surface S_2 for emitting the light totally reflected on the second reflective surface S_1'.
3, an entrance surface S_4 for allowing the light emitted from the exit surface S_3 of the first prism to enter, and a surface that is the same as the entrance surface S_4 (fifth reflective surface S_4').
a roof surface having two reflective surfaces (fifth reflective surface S_5, fourth reflective surface S_5') for deflecting the surface so as to be reflected again at the center and inverting the left and right images; and the fifth reflective surface S_4'.
The second prism has an exit surface S_6 for exiting the light reflected by the light beam, and the light semi-transparent surface is the exit surface S_3 of the first prism or the entrance surface S_6 of the second prism.
The second reflective surface S_1' of the first prism is located on the
A part of the light reflected by the light is reflected in the direction of the second reflective surface S_1', and furthermore, the area of the reflective area forming the light semi-transparent surface becomes smaller as it approaches the second reflective surface. A photometric device for a single-lens reflex camera according to claims 1 and 2.
JP59176463A 1984-05-07 1984-08-24 Photometric device of single-lens reflex camera Pending JPS6153622A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59176463A JPS6153622A (en) 1984-08-24 1984-08-24 Photometric device of single-lens reflex camera
US06/729,293 US4682237A (en) 1984-05-07 1985-05-01 Photographic optical apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59176463A JPS6153622A (en) 1984-08-24 1984-08-24 Photometric device of single-lens reflex camera

Publications (1)

Publication Number Publication Date
JPS6153622A true JPS6153622A (en) 1986-03-17

Family

ID=16014126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59176463A Pending JPS6153622A (en) 1984-05-07 1984-08-24 Photometric device of single-lens reflex camera

Country Status (1)

Country Link
JP (1) JPS6153622A (en)

Similar Documents

Publication Publication Date Title
JPS6145212B2 (en)
US4565433A (en) Viewfinder for camera
JPS61114217A (en) Photographic optical system
US20040114231A1 (en) Improved 3D Imaging System using Reflectors
JPS6153622A (en) Photometric device of single-lens reflex camera
US4005447A (en) Dual beam rangefinder
JPS6255769B2 (en)
JPS6155633A (en) Photometric device of single-lens reflex camera
JPS6197633A (en) Optical system of finder
JP2656046B2 (en) Metering system for electronic cameras
JP2556553B2 (en) Compact single-lens reflex camera
JPS60233628A (en) Finder optical system
JP2663862B2 (en) Camera photometer
JPH01101530A (en) Finder optical system
JPH01227134A (en) Optical finder system with photometric means
US3343471A (en) Camera viewfinder
JPS58178332A (en) Range finding and photometric device of single-lens reflex camera
JPH01101533A (en) Finder optical system having photometric means
JPH01200239A (en) Photographing system for single-lens reflex camera
JPH01101535A (en) Finder optical system having photometric means
JPS6115105A (en) Finder optical system
JPH08160495A (en) Finder device
JPS61109030A (en) Finder optical system
JPS60209121A (en) External photometry optical system
JPH03172827A (en) Camera