JPH03172827A - Camera - Google Patents

Camera

Info

Publication number
JPH03172827A
JPH03172827A JP31369289A JP31369289A JPH03172827A JP H03172827 A JPH03172827 A JP H03172827A JP 31369289 A JP31369289 A JP 31369289A JP 31369289 A JP31369289 A JP 31369289A JP H03172827 A JPH03172827 A JP H03172827A
Authority
JP
Japan
Prior art keywords
shutter
camera
lens
optical path
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31369289A
Other languages
Japanese (ja)
Inventor
Yoshinobu Kudo
工藤 吉信
Hiroshi Mukai
弘 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP31369289A priority Critical patent/JPH03172827A/en
Publication of JPH03172827A publication Critical patent/JPH03172827A/en
Pending legal-status Critical Current

Links

Landscapes

  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To miniaturize a camera in which a TTL system is adopted in a lens shutter type, to simplify a mechanism and to reduce the cost of the camera by bending a luminous flux passing through a photographing lens in the outside area of a photographing optical path at a position which is closer to an objective side than a shutter and guiding it to a focus detecting device. CONSTITUTION:An optical path bending means including a 1st mirror 3 and a 2nd mirror 4 is provided so that the luminous flux 7 passing through the photographing lens 1 in the outside area of the photographing optical path 8 is bent at the position which is closer to the objective side than the shutter 6 and bypasses the shutter 6 to be guided to the focus detecting device 2. The luminous flux passing between a broken line 7 and a continuous line 8 advances to the focus detecting device 2 as a luminous flux for range-finding but is not shielded by the shutter 6 because it advances in parallel with the shutter 6 after passing the 1st mirror 3. Therefore, autofocusing in a TTL system is always performed regardless of the action of the shutter 6. As to the action of the shutter 6, it is sufficient to execute an opening and closing action only for exposure and the camera is miniaturized and simplified like an ordinary compact camera.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明はカメラに係り、特にレンズシャッタタイプにし
てTTL方式の焦点検出装置を備えたカメラに関する。
The present invention relates to a camera, and more particularly to a lens-shutter type camera equipped with a TTL focus detection device.

【従来の技術】[Conventional technology]

一眼レフカメラにおいて、焦点検出装置を備えてオート
フォーカスを行うものは既に多数の例が知られている。 −眼レフカメラの焦点合わせは、従来から高い精度が要
求されており、焦点検出装置は撮影レンズを通過した光
によって検出を行う所謂TTL方式のものが採用されて
きた。 一方、一般にコンパクトカメラと呼ばれているレンズシ
ャッタを採用したカメラでは、小型化並びに低価格化の
要求が強(、そのためTTL方式の焦点検出装置は採用
されず、外光式の測距装置を用いてゾーンフォーカスを
行うものが普通であった。 ところが近年、コンパクトカメラにおいても高い焦点合
わせ精度に対する要求が高まり、レンズシャッタタイプ
でありながらTTL方式を採用したものが現れている。
Many examples of single-lens reflex cameras that are equipped with a focus detection device and perform autofocus are already known. - Focusing of an eye reflex camera has traditionally required high precision, and a so-called TTL type focus detection device has been adopted in which detection is performed using light that has passed through a photographic lens. On the other hand, there is a strong demand for smaller size and lower price for cameras that employ lens shutters, which are generally called compact cameras (for this reason, TTL focus detection devices are not used, and external light-type distance measuring devices are used). However, in recent years, there has been an increasing demand for high focusing accuracy even in compact cameras, and cameras that are lens shutter types but employ the TTL method have appeared.

【発明が解決しようとする課題] ところで、上述のようにレンズシャッタタイプでありな
がらTTL方式を採用するため、従来では測距のための
光を焦点検出装置へ導く反射鏡が、シャッタよりも後方
に設置されている。したがつて、非撮影時においても焦
点検出を行うためにシャッタが開かれており、このため
フィルムへの露光を遮断する遮光板が別に必要となって
いる。従来のこの種のカメラでは、撮影時にシャッタが
一旦閉じられ、続いて遮光板が開かれ、再びシャッタが
開かれて露光されることになる。また露光完了時には、
シャッタが閉じられ、遮光板が閉じられてから再びシャ
ッタが開かれるという極めて?111mな動作が行われ
る。このような複雑な動作を行うためには機構自体も複
雑かつ大型化を伴い、従来のこのようなカメラにあって
は、コンパクトカメラにおける本来の小型・低価格とい
う長所が損なわれるという結果を招来していた。 本発明は上述のような従来の技術的課題に鑑み、これを
有効に解決すべく創案されたものである。 したがって本発明の目的は、小型であって簡略化された
機構に伴う低価格というコンパクトカメラの本来の長所
を損なうことなくTTL方式のオートフォーカスが行え
るカメラを提供することにある。 【課題を解決するための手段】 本発明に係るカメラは、上述のごとき従来の技術的課題
を解決し、その目的を達成するために以下のような構成
を備えている。 即ち、請求項1の発明に係るカメラは、レンズシャッタ
を有するカメラにおいて、撮影光路の外側領域で撮影レ
ンズを通過する光束を、上記シャッタよりも対物側の位
置で屈曲させ、該シャッタを迂回させて該光束を焦点検
出装置へ導く光路屈曲手段を備えている。 また請求項2の発明に係るカメラは、請求項1のカメラ
の光路屈曲手段が全反射ミラーで構成されている。
[Problems to be Solved by the Invention] By the way, as mentioned above, since the TTL method is adopted even though it is a lens-shutter type, conventionally the reflector that guides the light for distance measurement to the focus detection device is located behind the shutter. It is installed in Therefore, the shutter is opened to perform focus detection even when not photographing, and therefore a separate light-shielding plate is required to block exposure of the film. In a conventional camera of this kind, the shutter is once closed when photographing, then the light shielding plate is opened, and the shutter is opened again to expose the photograph. Also, when the exposure is complete,
The extreme situation where the shutter is closed, the light blocking plate is closed, and then the shutter is opened again? A 111m movement is performed. In order to perform such complex operations, the mechanism itself has to become complex and large, which results in the loss of the original advantages of compact cameras, such as compactness and low cost, in conventional cameras of this type. Was. The present invention has been devised in view of the above-mentioned conventional technical problems and to effectively solve them. SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a camera that can perform TTL autofocus without sacrificing the original advantages of a compact camera, such as being small and inexpensive due to a simplified mechanism. [Means for Solving the Problems] A camera according to the present invention has the following configuration in order to solve the above-mentioned conventional technical problems and achieve the object. That is, the camera according to the invention of claim 1 is a camera having a lens shutter, in which a light beam passing through the photographing lens in an area outside the photographing optical path is bent at a position closer to the object than the shutter, thereby bypassing the shutter. and an optical path bending means for guiding the light beam to the focus detection device. Further, in the camera according to the second aspect of the invention, the optical path bending means of the camera according to the first aspect is constituted by a total reflection mirror.

【作用】[Effect]

請求項1の発明に係るカメラでは、撮影レンズを通過す
るに際して撮影光路の外側領域を通過した測距用光束が
、シャッタを通過する前に、即ちシャッタの対物側で光
路屈曲手段により屈曲させられる。このことにより、測
距用光束はシャッタを通過せずこれを迂回して焦点検出
装置へ導かれ請求項2の発明に係るカメラでは、上記光
路屈曲手段が全反射ミラーであることにより、ハーフミ
ラ−が用いられる場合に比して測距用光束として得られ
る光の量が多くなる。
In the camera according to the invention of claim 1, the distance measuring light beam that has passed through the outer region of the photographing optical path when passing through the photographing lens is bent by the optical path bending means before passing through the shutter, that is, on the object side of the shutter. . As a result, the distance measuring light flux bypasses the shutter and is guided to the focus detection device. The amount of light obtained as a distance-measuring light beam increases compared to the case where a distance measuring light beam is used.

【実施例】【Example】

以下に本発明の好適な一実施例について、第1図ないし
第4図を参照して説明する。第1図は、本発明に係るカ
メラの実施例について、その撮影光学系および合焦光学
系をカメラの縦断面方向から見て示す図であり、第2図
は第1図の撮影光学系および合焦光学系をカメラの横断
面方向から見て示す図である。尚、ここで合焦光学系と
は、測距用光束を焦点検出装置へ導く光学系を表す。図
中1は撮影光学系の撮影レンズ群、2は焦点検出装置で
ある。3は撮影光路外に配置される第1つ全反射ミラー
であり、撮影レンズ群1を通過した測距用光束を焦点検
出装置2へ導く。4は、上記第1ミラー3と対をなして
測距用光束を焦点検出装置2へ導く第2の全反射ミラー
である。5はシャッタ台板、6は絞り兼用シャッタの羽
根を示す。 第1ミラー3はシャッタ台板5に取り付けられている。 第2図に破線で表した7は撮影光路外を通る軸上光束で
あり、カメラの縦断面方向から見た第1図では撮影光路
を通る光束の光軸に重なって現れる光束である。また、
第2図において撮影光路8は実線で示されている。即ち
、破線7と実線8の間を通る光束が測距用の光束として
焦点検出装置2へ導かれる。本実施例での撮影レンズの
スペックは、焦点距離が35mmであり、Fナンバは4
.0としている。(実線8で囲まれる光束はFナンバが
4.0の光束であり、破線7と実線8とで囲まれる光束
はFナンバが2.5の光束である。)本発明に係るカメ
ラの動作についてその概要を説明すると、まずレリーズ
ボタンの押し込み量が2段階に区切られており、これを
1段押し込むと第1段目のスイッチがオンとなる。この
第1段目スイッチは、カメラの測光およびピント合わせ
を起動させるスイッチであり、これがオンとなることに
よって自動的に撮影準備が完了する。そして、この状態
で第2段目スイッチの動作状態が判断される。第2段目
スイッチは、レリーズボタンをさらにもう1段押し込む
ことによってオンとなり、絞り兼用シャッタ機構により
羽根6を開閉して適正な露光を行い、さらに露光完了後
にフィルムの巻き上げを行って次の撮影が可能な状態に
準備する。一連の露光動作はこのようにして完了する。 第3図は、焦点検出装置(AF素子)2の光学系と撮影
光学系とをカメラの上側から見て示す図である。第3図
において、撮影レンズ1゛に対するフィルム面と等価な
位置にある予定結像面(F)の前方には、第2ミラー4
が45°の傾きをもって配置されており、この第2ミラ
ー4には合焦検出する視野を規定するための矩形開口4
aが形成されている。予定結像面(F)の後方にはコン
デンサーレンズL。が配置されており、そのさらに後方
には1対の再結像レンズL、、L、が、撮影レンズ1゛
の光軸(12)に対称に配置されている。これら1対の
再結像レンズL+、Ltは、撮影レンズ1”よってその
予定結像面(F)に形成された像を再結像させる。コン
デンサーレンズL0と両方の再結像レンズL、、L、と
の間には、第3の全反射ミラーMIが45°の傾きをも
って配置されており、この第3ミラーMlは、第2ミラ
ー4によって光軸(ρ)に平行にされた光線を、さらに
90°屈曲させて光軸(のに垂直にさせる(第4図参照
)。第3図中(A)、(B)、(C)で示した各矢印は
、撮影レンズ1゜によって形成される前ピン像、合焦像
、後ピン像をそれぞれ示しており、再結像レンズL、、
L、は、これら前ピン像(A)、合焦像(B)、後ピン
像(C)の各機に対応した像:(Aυ、 (A t)、
(B I)、 (B l)、(C、)、 (C*’)を
それぞれ第1像、第2像として形成する。ここで、(A
)、(B)、(C)が図中上向きの矢印で示した像とし
て形成される場合、それらに対応した第1.第2像は共
に下向きの矢印で示した像として形成され、第1.第2
像の間隔は撮影レンズl°の焦点調節状態に応じて変化
する。したがって、再結像レンズLl、Ltに関してそ
の予定結像面と共役な位置ないしその近傍にそれぞれ受
光素子列を配置し、それらの受光素子列の出力から第1
.第2像の位置(間隔)の変化を検出すれば撮影レンズ
1′の焦点調節状態を検出できる。 尚、M、、M、は再結像レンズL、、L、の前方に配置
された絞りマスクである。 撮影レンズ1°の斜線で示す部分は撮影光路外の光束が
通過する領域を示し、この部分を通過する測距用光束は
第1ミラー3を通過して焦点検出装置2へ向かうことに
なるが、この第1ミラー3通過後はシャッタ6と平行と
なって第4図に示すように進むので、その光束はシャッ
タ6に遮られることはない。 合焦光学系が上述のように構成されることによって、測
距用光束はシャッタ6を通過せずに焦点検出装置の受光
素子列に導かれるので、シャッタ6の動作とは無関係に
常時TTL方式によるオートフォーカスが行える。した
がって、シャッタ6の動作は露光のためだけに開閉動作
を行えばよく、そのための機構も従来の通常のコンパク
トカメラ並に小型、簡略化が可能になる。また、測距用
光束を焦点検出装置へ導く各ミラーはいずれも全反射ミ
ラーであり、十分なオートフォーカスの光量が確保でき
る。
A preferred embodiment of the present invention will be described below with reference to FIGS. 1 to 4. FIG. 1 is a diagram showing the photographing optical system and focusing optical system of an embodiment of the camera according to the present invention, viewed from the vertical cross-sectional direction of the camera, and FIG. 2 is a diagram showing the photographing optical system and the focusing optical system of FIG. FIG. 3 is a diagram showing the focusing optical system viewed from the cross-sectional direction of the camera. Note that the focusing optical system here refers to an optical system that guides the distance measuring light beam to the focus detection device. In the figure, 1 is a photographic lens group of a photographic optical system, and 2 is a focus detection device. Reference numeral 3 denotes a first total reflection mirror disposed outside the photographing optical path, which guides the distance measuring light beam that has passed through the photographing lens group 1 to the focus detection device 2. Reference numeral 4 denotes a second total reflection mirror that forms a pair with the first mirror 3 and guides the distance measuring light beam to the focus detection device 2. Reference numeral 5 indicates a shutter base plate, and reference numeral 6 indicates a blade of a shutter that also serves as an aperture. The first mirror 3 is attached to the shutter base plate 5. The dashed line 7 in FIG. 2 is an axial light beam passing outside the photographing optical path, and in FIG. 1 viewed from the vertical cross-sectional direction of the camera, it is a light beam that appears overlapping the optical axis of the light beam passing through the photographing optical path. Also,
In FIG. 2, the photographing optical path 8 is shown by a solid line. That is, the light beam passing between the broken line 7 and the solid line 8 is guided to the focus detection device 2 as a light beam for distance measurement. The specifications of the photographic lens in this example are that the focal length is 35 mm and the F number is 4.
.. It is set to 0. (The light flux surrounded by solid line 8 has an F number of 4.0, and the light flux surrounded by broken line 7 and solid line 8 has an F number of 2.5.) Regarding the operation of the camera according to the present invention To give an overview, first, the amount by which the release button is pressed is divided into two stages, and when the release button is pressed one stage, the first stage switch is turned on. This first stage switch is a switch that starts photometry and focusing of the camera, and when it is turned on, preparation for photographing is automatically completed. Then, in this state, the operating state of the second stage switch is determined. The second stage switch is turned on by pressing the release button one more step, and the diaphragm/shutter mechanism opens and closes the blades 6 for proper exposure.After the exposure is complete, the film is wound and the next shot is taken. Prepare to be able to do so. The series of exposure operations is thus completed. FIG. 3 is a diagram showing the optical system of the focus detection device (AF element) 2 and the photographing optical system as viewed from above the camera. In FIG. 3, a second mirror 4 is located in front of the expected imaging plane (F) at a position equivalent to the film plane for the photographic lens 1.
is arranged with an inclination of 45 degrees, and this second mirror 4 has a rectangular opening 4 for defining a field of view for focus detection.
a is formed. A condenser lens L is located behind the planned image plane (F). is arranged, and further behind it, a pair of re-imaging lenses L, , L, are arranged symmetrically with respect to the optical axis (12) of the photographing lens 1'. These pair of re-imaging lenses L+, Lt re-image the image formed by the taking lens 1'' on its intended imaging plane (F).The condenser lens L0 and both re-imaging lenses L,... A third total reflection mirror MI is arranged with an inclination of 45° between L and L, and this third mirror Ml reflects the light rays made parallel to the optical axis (ρ) by the second mirror 4. , further bent by 90° to make it perpendicular to the optical axis (see Fig. 4).Each arrow shown in Fig. 3 (A), (B), and (C) is formed by a 1° photographing lens. The front focus image, the focused image, and the back focus image are shown, respectively, and the re-imaging lens L,...
L is the image corresponding to each of these front-focus image (A), in-focus image (B), and back-focus image (C): (Aυ, (A t),
(B I), (B l), (C, ), and (C*') are formed as a first image and a second image, respectively. Here, (A
), (B), and (C) are formed as images indicated by upward arrows in the figure, the corresponding first . The second image is formed as an image indicated by both downward arrows, and the first... Second
The interval between images changes depending on the focus adjustment state of the photographic lens l°. Therefore, with respect to the re-imaging lenses Ll and Lt, light-receiving element arrays are arranged at positions conjugate with their intended image-forming planes or in the vicinity thereof, and from the output of these light-receiving element arrays, the first
.. By detecting a change in the position (interval) of the second image, the focus adjustment state of the photographic lens 1' can be detected. Note that M,,M, is an aperture mask placed in front of the re-imaging lens L,,L,. The shaded area at 1° of the photographic lens indicates the area through which the light beam outside the photographic optical path passes, and the range-finding light beam passing through this portion passes through the first mirror 3 and heads toward the focus detection device 2. After passing through the first mirror 3, the light beam travels parallel to the shutter 6 as shown in FIG. 4, so that the light beam is not blocked by the shutter 6. By configuring the focusing optical system as described above, the distance measuring light beam is guided to the light receiving element array of the focus detection device without passing through the shutter 6, so the TTL method is always used regardless of the operation of the shutter 6. Autofocus can be performed using Therefore, the shutter 6 only needs to be opened and closed for exposure, and the mechanism for this can be made smaller and simpler than a conventional compact camera. In addition, each mirror that guides the distance measuring light beam to the focus detection device is a total reflection mirror, so that a sufficient amount of light for autofocus can be ensured.

【発明の効果】【Effect of the invention】

以上の説明より明らかなように、本発明によれば次のご
とき優れた効果が発揮される。 即ち、レンズシャッタタイプでありながらTTL方式を
採用しても、オートフォーカスを行う際のシャッタの動
作が不必要になり、そのための機構も不必要となってカ
メラ自体の小型化および機構の簡略化が達成される。 特に、光路屈曲手段として全反射ミラーを用いた場合に
は、ハーフミラ−を用いる他のオートフォーカス機構よ
りも十分な光量が得られる。
As is clear from the above description, the present invention provides the following excellent effects. In other words, even if the TTL method is adopted even though it is a lens shutter type, the shutter operation when performing autofocus is unnecessary, and the mechanism for that is also unnecessary, making the camera itself smaller and the mechanism simpler. is achieved. In particular, when a total reflection mirror is used as the optical path bending means, a more sufficient amount of light can be obtained than other autofocus mechanisms that use a half mirror.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係るカメラの実施例について、その
撮影光学系および合焦光学系をカメラの縦断面方向から
見て示す図であり、第2図は第1図の撮影光学系および
合焦光学系をカメラの横断面方向から見て示す図である
。第3図は合焦光学系をカメラの上側から見て示す図、
第4図は合焦光学系示す斜視図である。 1・・・撮影レンズ群、1″・・・撮影レンズ、2・・
・焦点検出装置、3・・・第1ミラー、4・・・第2ミ
ラー5・・・シャッタ台板、6・・・シャッタ、7・・
・撮影光路外の光束、8・・・撮影光路、Q・・・撮影
レンズの光軸、F・・・予定結像面、Lo・・・コンデ
ンサーレンズ%1IIL2・・・再結像レンズ、MI・
・・第3ミラー、M、、M。 ・・・絞りマスク 特 許 出 願 人  ミノルタカメラ株式会社代 理
 人 弁理士   青白 葆 (外1名)第1図 第2図
FIG. 1 is a diagram showing the photographing optical system and focusing optical system of an embodiment of the camera according to the present invention, viewed from the vertical cross-sectional direction of the camera, and FIG. 2 is a diagram showing the photographing optical system and the focusing optical system of FIG. FIG. 3 is a diagram showing the focusing optical system viewed from the cross-sectional direction of the camera. Figure 3 is a diagram showing the focusing optical system viewed from above the camera.
FIG. 4 is a perspective view showing the focusing optical system. 1... Shooting lens group, 1''... Shooting lens, 2...
-Focus detection device, 3...first mirror, 4...second mirror 5...shutter base plate, 6...shutter, 7...
・Light flux outside the photographing optical path, 8: Photographing optical path, Q: Optical axis of the photographing lens, F: Planned imaging plane, Lo: Condenser lens %1IIL2: Re-imaging lens, MI・
...Third mirror, M,,M. ... Aperture mask patent Applicant Minolta Camera Co., Ltd. Agent Patent attorney Seishi Ao (1 other person) Figure 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)、レンズシャッタ(6)を有するカメラにおいて
、 撮影光路(8)の外側領域で撮影レンズ(1、1′)を
通過する光束(7)を、上記シャッタ(6)よりも対物
側の位置で屈曲させ、該シャッタ(6)を迂回させて該
光束(7)を焦点検出装置(2)へ導く光路屈曲手段(
3、4)を備えたことを特徴とするカメラ。
(1) In a camera having a lens shutter (6), the light beam (7) passing through the photographing lens (1, 1') in the outer area of the photographing optical path (8) is directed to a position closer to the objective side than the shutter (6). optical path bending means (
3, 4).
(2)、上記光路屈曲手段(3、4)は、全反射ミラー
である請求項1記載のカメラ。
(2) The camera according to claim 1, wherein the optical path bending means (3, 4) are total reflection mirrors.
JP31369289A 1989-12-01 1989-12-01 Camera Pending JPH03172827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31369289A JPH03172827A (en) 1989-12-01 1989-12-01 Camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31369289A JPH03172827A (en) 1989-12-01 1989-12-01 Camera

Publications (1)

Publication Number Publication Date
JPH03172827A true JPH03172827A (en) 1991-07-26

Family

ID=18044370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31369289A Pending JPH03172827A (en) 1989-12-01 1989-12-01 Camera

Country Status (1)

Country Link
JP (1) JPH03172827A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5880890A (en) * 1996-09-17 1999-03-09 Nikon Corporation Optical system having a focal point detection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5880890A (en) * 1996-09-17 1999-03-09 Nikon Corporation Optical system having a focal point detection device

Similar Documents

Publication Publication Date Title
JPS61114217A (en) Photographic optical system
JPH04343Y2 (en)
JPH03172827A (en) Camera
JP2767108B2 (en) Auto focus camera
US4437741A (en) Light measuring device for a single lens reflex camera
JPH0359626A (en) Camera system
JPS6255769B2 (en)
JP2596145B2 (en) Camera system
JPH0527304A (en) Photographing device provided with hologram
JP3782189B2 (en) Photometric device for camera and camera
JPH03174129A (en) Camera
JP2556553B2 (en) Compact single-lens reflex camera
JP2514617B2 (en) Camera system
JP2656046B2 (en) Metering system for electronic cameras
JP2006171658A (en) Finder optical system and imaging apparatus having same
JPH0943506A (en) Camera
JP2514616B2 (en) Camera system
JP2003057530A (en) Focus detection unit and single lens reflex electronic camera
JPS62156609A (en) Optical system for focus detection
JPH01155326A (en) Finder device
JPH01155324A (en) Single-lens reflex camera
JPH0457035A (en) Camera
JPH02308143A (en) Camera system
JPH0364845B2 (en)
JPH06250251A (en) Photometry device