JPS6155633A - Photometric device of single-lens reflex camera - Google Patents

Photometric device of single-lens reflex camera

Info

Publication number
JPS6155633A
JPS6155633A JP59179059A JP17905984A JPS6155633A JP S6155633 A JPS6155633 A JP S6155633A JP 59179059 A JP59179059 A JP 59179059A JP 17905984 A JP17905984 A JP 17905984A JP S6155633 A JPS6155633 A JP S6155633A
Authority
JP
Japan
Prior art keywords
light
prism
reflecting
photometric
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59179059A
Other languages
Japanese (ja)
Inventor
Masatake Katou
正猛 加藤
Tetsuji Nishimura
西村 哲治
Hideo Yokota
秀夫 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59179059A priority Critical patent/JPS6155633A/en
Priority to US06/729,293 priority patent/US4682237A/en
Publication of JPS6155633A publication Critical patent/JPS6155633A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Exposure Control For Cameras (AREA)

Abstract

PURPOSE:To attain center preferential average photometry with respect to the photometric characteristic by changing stepwise the reflection factor of a half- transmission part, which branches the optical path in a prism, to adjust the photometric characteristic. CONSTITUTION:The luminous flux focused by a photographic lens 1 is reflected on a mirror 2 to form an image on a focusing screen 4, and this light is reflected on prisms 5 and 6 and is emitted from a surface S6 and reaches an eye 8 through an eyepiece lens 7. A half-transmission part 9 is provided on a surface S3 of the prism 5 to lead a part of the luminous flux to a photodetector 10. Since the reflection factor of the half-transmission part 9 is reduced stepwise toward a surface S1', the dense distribution of light under the center of the picture on the photometric sensitivity distribution is reduced to attain center preferential average photometry.

Description

【発明の詳細な説明】 本発明は測光装置を有するカメラの光学系に関し、特に
−眼レフレックスカメラや、撮像管若しくは固体撮影素
子を用いた電子カメラに適した装fPilc関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical system for a camera having a photometric device, and more particularly to an optical system suitable for an eye reflex camera or an electronic camera using an image pickup tube or a solid-state photographing element.

従来より銀塩フィルムを用いた一眼レフレックスカメラ
はシステム展開を有する上で最適な構造を持つとして大
きな発展を遂げてきた。その代表的な光学系としては、
撮影レンズの光路をクイックリターンぐラーで分岐して
ファインダー光路とし1分岐され九光路をペンタダノ・
プリズムに導いて光路の方向を変えるとともに画面の左
右を反転し接眼レンズに導く形態である。
Conventionally, single-lens reflex cameras using silver halide film have achieved great development as they have an optimal structure for system development. A typical optical system is
The optical path of the photographing lens is branched by a quick return puller to become the finder optical path, and nine optical paths are split into one.
In this configuration, the light path is guided to a prism, the direction of the optical path is changed, the left and right sides of the screen are reversed, and the light is guided to the eyepiece.

そして撮影レンズを通過した光束を測光するいわゆるT
TL測光を行う測光装置は多くの場合、ペンタダハプリ
ズムの底面若しくは射出面等に配はされている。
Then, the so-called T that measures the light flux passing through the photographic lens
A photometric device that performs TL photometry is often placed on the bottom surface or exit surface of a pentagonal roof prism.

しかしながら最近のCCD等の撮像体を用いた所謂電子
カメラにおけるファインダー光学系においては上述の様
なファインダー光学系は光学性能及び構成上あまり好ま
しいものとは言えなくなってきた。それは主に次のよう
な理由による。
However, in recent finder optical systems in so-called electronic cameras using imaging bodies such as CCDs, the above-mentioned finder optical systems have become less desirable in terms of optical performance and construction. This is mainly due to the following reasons.

(イ)例えば、5インチの撮像体の有効画面は対角線長
比で35間フィルムに比べて%と小さいため、所定の視
野率及び視野倍率を得るには従来のペンタダハプリズム
を用いたのでは達成が難しくなる。
(b) For example, the effective screen of a 5-inch image pickup body is 35% smaller in diagonal length ratio than that of a film, so it is not possible to obtain the specified field of view ratio and field magnification using a conventional penta-roof prism. becomes difficult.

(ロ)撮像体の後部に電気的処理回路を配置するための
空間を設けなければならず撮影レンズの像面からカメラ
の最後端までの距離が長くなってくる。このためファイ
ンダー光学系の観察用の瞳位置をカメラ側後方KyJg
長して設定しなくてはならず、このような構成は光学性
能を維持するうえで難しい。
(b) A space must be provided at the rear of the image pickup body for arranging the electrical processing circuit, which increases the distance from the image plane of the photographic lens to the rearmost end of the camera. For this reason, the pupil position for observation of the finder optical system is set to KyJg behind the camera side.
This configuration is difficult to maintain optical performance.

前述した(イ)、(ロ)の光学性能上、特に重要なのは
、視野倍率で、これについて述べる。一般に視野倍率は
大きh程ファイング−光学系として観察しやすいので好
ましい。視野倍率rは撮影レンズの標準の焦点距離をf
o、接眼レンズの焦点距離をf。とすると = f、で
表わされる視野倍f。
Regarding the optical performance of (a) and (b) above, what is particularly important is the field of view magnification, which will be discussed below. In general, the larger the field of view magnification h is, the easier it is to observe as a pointing optical system, so it is preferable. The field of view magnification r is the standard focal length of the photographic lens.
o, the focal length of the eyepiece is f. Then = f, the field of view multiplication f.

率γを大きくするには、焦点距離f0を小さくする必要
がある。
In order to increase the ratio γ, it is necessary to decrease the focal length f0.

接眼レンズはファインダー光学系の結像面近傍に、その
前側焦点が位置するように配置されるので、視野倍率γ
の高倍率化を図るには、7 ・アイングー光学系のフォ
ーカシングスクリーンから接眼レンズまでのいわゆる正
立正像を得る為の光学系の光路長をなるべく小さくする
必要がある。今仮シに撮影レンズの焦点距離foを%イ
ンチ撮像体に対して標準レンズに相当するようfo ”
 12.5 mmとし、視野倍率γを16とすると、接
眼レンズの焦点距離f、は2(L8龍となそこで、ペン
タダハプリズムを用いた従来のファインダー光学系にお
いて視野倍率r=α6以上を得るKは、フォーカシング
スクリーンから接眼レンズまでの光路−長を接眼レンズ
の焦点距離と略等しく20.8mm程度にしなければな
らない。このことはペンタダハプリズムの射出面に可能
なかぎシ近接して接眼レンズを配置しなくてはならない
ことを意味し、かつ前述した(口)の条件より観察用の
瞳をカメラの最後端よりも後方に設定したいということ
と相反し、実際には困難である。
The eyepiece lens is arranged so that its front focal point is located near the image formation plane of the finder optical system, so the field magnification γ
In order to achieve high magnification, it is necessary to make the optical path length of the optical system from the focusing screen of the eyepiece optical system to the eyepiece lens to obtain a so-called erect normal image as small as possible. Now, temporarily change the focal length of the photographing lens to % inches so that it corresponds to a standard lens for the image pickup object.
12.5 mm, and the field magnification γ is 16, the focal length f of the eyepiece is 2 (L8).Therefore, in the conventional finder optical system using a penta roof prism, the field magnification r = α6 or more can be obtained. In this case, the optical path length from the focusing screen to the eyepiece must be approximately 20.8 mm, which is approximately equal to the focal length of the eyepiece.This means that the eyepiece can be placed as close as possible to the exit surface of the penta roof prism. This means that it is necessary to do this, and it is actually difficult because it conflicts with the desire to set the observation pupil behind the rear end of the camera due to the above-mentioned (mouth) condition.

本特許出願人は先に特願昭59−126825号で、フ
ァインダーの視野倍率の高倍率化を図ると共に観察用の
瞳をカメラの最後端より後方に設定したファインダー光
学系で、且つ測光素子へファインダー光束の一部を導く
装置について述べている。しかしながらファインダー光
学系の構成自体が困難な要求に答える構造になっている
ため別の要求を満足するための余裕に乏しく、ここでは
測光特性を自由に選択することが難しくなっている。
The applicant of this patent previously proposed in Japanese Patent Application No. 59-126825 that the viewfinder optical system is designed to increase the field of view magnification of the finder, and the observation pupil is set behind the rear end of the camera, and the photometric element is This article describes a device that guides a portion of the finder light beam. However, since the structure of the finder optical system itself is designed to meet difficult requirements, there is little margin for satisfying other requirements, making it difficult to freely select photometric characteristics.

(目的) 本発明の目的は、−眼レフレックスカメラのファインダ
ー光学系の光路を分岐して測光素子に導光する装置で、
測光特性を所望の形態に成し得る様にしたことである。
(Objective) The object of the present invention is to - provide a device for branching the optical path of the finder optical system of an eye reflex camera and guiding the light to a photometric element;
This allows the photometric characteristics to be shaped as desired.

また第2の目的は、視野倍率を拡大すると共に瞳をカメ
ラ本体後方へ移動させたファインダーの光路を分岐して
測光を達成した際に測光素子の位置に係わらず測光特性
を中央重点平均測光となる様にしたことである。
The second purpose is to expand the field of view magnification and to branch the optical path of the finder, which moves the pupil to the rear of the camera body, to achieve photometry, and to change the photometry characteristics to center-weighted average photometry regardless of the position of the photometry element. This is what I did.

以上の目的を連成するために本発明は、撮像体上に被写
体像を形成する撮影レンズと、撮影レンズに光学的に結
合され、複数回の内面反射で光を導くプリズムを具える
ファインダーと、プリズム中の光路を分岐する光中透過
面と、分岐された光路を通る光束を受光する測光素子と
を有し、前記光中透過面は反射率が連続的又は段階的に
変化する鏡面処理で形成されており、反射率の変化によ
り測光特性を調整するものである。
In order to achieve the above objects, the present invention provides a photographic lens that forms a subject image on an imaging body, and a finder that is optically coupled to the photographic lens and includes a prism that guides light through multiple internal reflections. , the light-transmitting surface has a light-transmitting surface that branches an optical path in the prism, and a photometric element that receives the light beam passing through the branched optical path, and the light-transmitting surface has a mirror finish in which the reflectance changes continuously or stepwise. The photometric characteristics are adjusted by changing the reflectance.

(実施例) 以下、第1図に従って本発明の詳細な説明する。図中、
1は撮影レンズで被写体の像を形成する機能を持つ。2
はタイツクリター/ミラーで、ビューファインダーへ導
光する機能を持つ。ミラー2は半透鏡であっても良い。
(Example) The present invention will be described in detail below with reference to FIG. In the figure,
1 has the function of forming an image of a subject with a photographing lens. 2
is a tights critter/mirror that has the function of guiding light to the viewfinder. The mirror 2 may be a semi-transparent mirror.

3は固体撮像素子の撮保面である。4はフオーカシング
ス・クリーンで、例えば中央部にスプリットプリズムを
、周辺にマット面を有し、ミラー2に関して撮影面5と
略等しい位置に配する。撮影レンズ1で結像作用を受け
た光束はミラー2で反射してフォーカシングスクリーン
4上又はその近傍に像を形成する。
3 is the imaging surface of the solid-state imaging device. Reference numeral 4 denotes a focusing screen, which has, for example, a split prism in the center and a matte surface around the periphery, and is arranged at approximately the same position as the photographing surface 5 with respect to the mirror 2. A light beam subjected to an imaging action by the photographing lens 1 is reflected by the mirror 2 and forms an image on or near the focusing screen 4.

5と6は組合せプリズムで、光路の方向を替えると共に
撮影レンズ1の光軸と接眼レンズ7の光軸との位置関係
を定め、また画面の左右を逆転する機能を持つ。5は第
1プリズムは三角柱状を成し、図示の面は断面に当る。
Combination prisms 5 and 6 have the function of changing the direction of the optical path, determining the positional relationship between the optical axis of the photographing lens 1 and the optical axis of the eyepiece lens 7, and reversing the left and right sides of the screen. The first prism 5 has a triangular prism shape, and the illustrated surface corresponds to the cross section.

Slは入射面、S2は鏡面処理の施された第1反射面、
B、lは第2反射面で全反射又は鏡面反射するものとし
、入射面S1を延長した面である。又B5は出射面であ
る。6は第2プリズムで、S4が入射面、S5・S5/
は第1反射面で、鏡面処理されたダハ(Dach)面で
ある。Bi2は第2反射面で全反射又は鏡面反射するも
のとし、入射面S4を延長し九面である。S6は出射面
である。さらにフォーカシングスクリーン4から出た光
は第1プリズム50入射面S1に垂直に入射し、反射膜
の蒸着された第1反射面S2で反射した後、入射面S1
と同一面なる第2反射面B1/によって全反射若しくは
鏡面反射をし、射出面S5より第1グリズム5から射出
する。その後光線は第2プリズム乙の入射面84よル入
射し反射膜の蒸着された2つの第3反射面S5、第4反
射面B5′よ形成るダハ面で反射し更に入射面S4と同
一面なる第5反射面B4tで反射した後射出面86より
略垂直に射出する。そして射出面S6より射出した光束
は接眼レンズ7を通って観察meK達する。尚、ifプ
リズム5と第2プリズム6は貼合わせても良いし、わず
かの隙間を隔てて配置しても良い。
Sl is an incident surface, S2 is a mirror-treated first reflective surface,
B and l are assumed to undergo total reflection or specular reflection on the second reflecting surface, and are surfaces that are extensions of the incident surface S1. Further, B5 is an output surface. 6 is the second prism, S4 is the entrance surface, S5/S5/
is a first reflective surface, which is a mirror-treated Dach surface. Bi2 is assumed to undergo total reflection or specular reflection on the second reflecting surface, and has nine surfaces extending from the incident surface S4. S6 is an exit surface. Further, the light emitted from the focusing screen 4 enters the first prism 50 incident surface S1 perpendicularly, and after being reflected by the first reflective surface S2 on which a reflective film is deposited, the light enters the incident surface S1 of the first prism 50.
The light is totally reflected or specularly reflected by the second reflecting surface B1/ which is the same surface as , and is emitted from the first grism 5 through the exit surface S5. After that, the light beam enters through the incident surface 84 of the second prism B, is reflected by the roof surface formed by the two third reflective surfaces S5 and fourth reflective surface B5' on which reflective films are deposited, and is further reflected on the same surface as the incident surface S4. After being reflected at the fifth reflecting surface B4t, the light is emitted substantially perpendicularly from the exit surface 86. The light beam emitted from the exit surface S6 passes through the eyepiece lens 7 and reaches the observation meK. Incidentally, the if prism 5 and the second prism 6 may be attached to each other, or may be arranged with a slight gap between them.

次に、かかる構成におhて、測光を行う為の方法につい
て説明する。
Next, a method for performing photometry in such a configuration will be described.

図において、第1プリズムの射出面85、若しくは第2
プリズムの入射面84のいずれかに半透過部9を設け、
前記M1プリズムの第2反射面B、Iで全反射した光束
の一部を、前記第2反射面611方向に反射させ、これ
より射出せしめて前記第2反射面S1近傍に配設した受
光素子10に導き、測光する。しかしながら、受光素子
10とフォーカシングスクリーン4とが近接して置かれ
るために、それらの保持部材のメカニカルな干渉をなく
すように配慮すると、受光素子の位置はあまシフオーカ
シングスクリーンに近づけられない。これKよって生じ
る問題点を第2図によって説明すると、受光素子10の
中心が接眼レンズ寄υに位置するため、フォーカシング
スクリーン上での測光感度分布にか、たよりが生じると
とである。同時においては便宜上、受光素子の中心点か
ら様々な方向に射出する光線が、逆に7オーカシングス
クリーン4で、どの様に分布するかを示しておシ、これ
より測光感度分布は画面中心より下に密な分布を示す、
下部重点平均測光となる。これを第6図に示す。
In the figure, the exit surface 85 of the first prism or the second prism
A semi-transparent part 9 is provided on either of the entrance surfaces 84 of the prism,
A light-receiving element disposed near the second reflective surface S1 that reflects a part of the luminous flux totally reflected by the second reflective surfaces B and I of the M1 prism toward the second reflective surface 611 and emits it from the second reflective surface 611. 10 and measure the light. However, since the light receiving element 10 and the focusing screen 4 are placed close to each other, if consideration is given to eliminating mechanical interference between the holding members, the position of the light receiving element cannot be brought close to the light-shift focusing screen. The problem caused by this K will be explained with reference to FIG. 2. Since the center of the light-receiving element 10 is located at the distance from the eyepiece lens υ, the photometric sensitivity distribution on the focusing screen is biased. At the same time, for convenience, we will show how the light rays emitted in various directions from the center point of the light receiving element are distributed on the 7 orcasing screen 4, and from this, the photometric sensitivity distribution is from the center of the screen. Showing a dense distribution at the bottom,
Bottom-weighted average metering. This is shown in FIG.

同図に示した様な測光感度分布であると、通常量も一般
的な人物のバストショットのシーンでは入物の顔が画面
中心よりやや上方Kt)るために、黒服を着ている場合
は頭部分が極端にオーバーとな夛、白服を着ている場合
は逆にアンダーとな)最適露出が得にくい。
With the photometric sensitivity distribution shown in the same figure, the normal amount is also high in a bust shot scene of a typical person, since the face of the person in the scene is slightly above the center of the screen (Kt), so when the person is wearing black clothes, If the head is extremely over-exposed, or if you are wearing white clothes, it will be under-exposed), making it difficult to obtain optimal exposure.

この様な事態に対処するため第1図の半透過部9を、第
4図に描く様に反射率が連続的又は段階状をなし、第2
反射面B、rに近い部分はど反射率が小さくなる様にl
している。この構成により下側部分の反射光量は徐々に
減少し、測光感度分布上画面中心より下方の光線の密な
る分布を軽減できるから、中央重点平均測光に相当する
効果を与えられるものである。
To deal with this situation, the semi-transparent part 9 in Fig. 1 has a continuous or stepwise reflectance as shown in Fig. 4, and the semi-transparent part 9 in Fig.
Reflection surface B, the part close to r has a small reflectance.
are doing. With this configuration, the amount of reflected light in the lower portion gradually decreases, and the dense distribution of light rays below the center of the screen on the photometric sensitivity distribution can be reduced, providing an effect equivalent to center-weighted average photometry.

連続的に反射率の変化する膜はコストが割高で又それだ
けのa度が要求されるとは限らない。
A film whose reflectance changes continuously is expensive, and a high degree of a is not necessarily required.

第4図の段階的に反射率が変わる半透過膜は例えば次の
様な方法で簡単に製作できる。即ち誘電体多層膜をプリ
ズムに蒸着する際に大きさが段階的に異なる開口を有す
るマスクを多数用意し、蒸着膜の膜厚及び蒸着物質をそ
れぞれのマスクごとに変えて順次繰シ返し蒸着し、反射
率が段階的に変化する様に蒸着膜を形成する。この場合
、反射率やマスクの開口の寸法は規則的に変化させる必
要はなく、所望の測光感度分布を満足すれば良いわけで
ある。
The semi-transparent film whose reflectance changes stepwise as shown in FIG. 4 can be easily manufactured, for example, by the following method. That is, when depositing a dielectric multilayer film onto a prism, a large number of masks having openings of different sizes are prepared, and the thickness and substance of the deposited film are changed for each mask, and the deposition is repeated in sequence. , a vapor deposited film is formed so that the reflectance changes stepwise. In this case, it is not necessary to regularly change the reflectance or the dimensions of the aperture of the mask, as long as the desired photometric sensitivity distribution is satisfied.

(効果) 以上述べ九通p本発明は測光分布を所望の形態に変形さ
せられるから、ファインダー中のプリズムを撮影系およ
びカメラ自体の配置と適合させた際に測光分布が初期の
目的と異なっていてもそれを自在に調整し得る効果があ
る。
(Effects) As stated above, the present invention can transform the photometric distribution into a desired form, so when the prism in the viewfinder is adapted to the arrangement of the photographing system and camera itself, the photometric distribution will be different from the initial purpose. However, it has the effect of being able to adjust it freely.

さらに本発明による効果は、接眼レンズ側よ〕入射する
逆入光に対して測光素子の受ける影響が少ない点である
。通常これを防ぐ手段として接眼レンズ近傍に配された
アイピースシャッター等により、逆入光による測光エラ
ーを解決しているが、装置が複雑化したシ、操作がしK
くいといった欠点を有していた。
A further advantage of the present invention is that the photometric element is less affected by reverse incident light that enters from the eyepiece side. Normally, as a means to prevent this, an eyepiece shutter placed near the eyepiece lens is used to solve the photometry error caused by reverse light, but the device is complicated and the operation is difficult.
It had the disadvantage of being stiff.

本発明による測光方式では、接眼レンズ側よ)入射した
逆入光の多くは、ファインダー光学系の正規光路を逆行
する光路をとるため、第1プリズムの入射面S3より入
射した光束は、前記第2反射面B1rで全反射し、受光
素子10にはとどかず、したがって露出エラーを生じな
い利点がある。
In the photometry method according to the present invention, most of the reverse incident light incident on the eyepiece side takes an optical path that goes backwards from the normal optical path of the finder optical system, so that the light flux incident on the incident surface S3 of the first prism is The light is totally reflected by the second reflecting surface B1r and does not reach the light receiving element 10, which has the advantage of not causing exposure errors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す光学断面図、第2図はプ
リズムの形状に依存する測光分布を説明するだめの光学
断面図で、第3図はその測光分布図。第4図は実施例に
係る半透過部を示す斜視図。 図中、 1・・・撮影レンズ 2・・・クイックリターンミラー 4・・・フォーカシングスクリーン 5・・・第1プリズム 6・・・第2プリズム 7・・・接眼レンズ 9・・・半透過部 10・・・受光素子 である。
FIG. 1 is an optical sectional view showing an embodiment of the present invention, FIG. 2 is an optical sectional view for explaining the photometric distribution depending on the shape of the prism, and FIG. 3 is the photometric distribution diagram. FIG. 4 is a perspective view showing a semi-transparent part according to the embodiment. In the figure, 1...Photographing lens 2...Quick return mirror 4...Focusing screen 5...First prism 6...Second prism 7...Eyepiece 9...Semi-transparent part 10 ...A light receiving element.

Claims (2)

【特許請求の範囲】[Claims] (1)撮像体上に被写体像を形成する撮影レンズと、撮
影レンズに光学的に結合され、複数回の内面反射で光を
導くプリズムを具えるファインダーと、プリズム中の光
路を分岐する光半透過面と、分岐された光路を通る光束
を受光する測光素子とを有し、前記光半透過面は反射率
が連続的又は段階的に変化する鏡面処理で形成されてお
り、反射率の変化によつて測光特性を調整することを特
徴とする一眼レフレツクスカメラの測光装置。
(1) A photographic lens that forms a subject image on an imaging body, a finder that is optically coupled to the photographic lens and includes a prism that guides light through multiple internal reflections, and an optical half that branches the optical path in the prism. It has a transmissive surface and a photometric element that receives the light beam passing through the branched optical path, and the semi-transmissive surface is formed by a mirror treatment in which the reflectance changes continuously or stepwise, and the reflectance changes continuously or stepwise. A photometric device for a single-lens reflex camera, characterized in that photometric characteristics are adjusted by.
(2)前記ファインダーを前記撮影レンズに光学的に結
合させるために反射鏡を使用し、前記プリズムは前記反
射鏡からの反射光を垂直入射させるための入射面S_1
と前記入射面より入射した光を前記入射面の延長上にあ
る第2反射面S_1′で反射する様に反射偏向させるた
めの第1反射面S_2と前記第2反射面S_1′で反射
した光を射出させるための射出面S_3を有する第1プ
リズムと、前記第1プリズムの射出面S_3から射出し
た光を入射させるための入射面S_4と前記入射面S_
4の延長上にある第5反射面S_4′で再び反射するよ
うに反射偏向させ、かつ左右像を反転させるための屋根
型の第3反射面S_5、第4反射面S_5′と前記第5
反射面S_4で反射した光を射出させるための射出面S
_6を有する第2プリズムから成り、前記光半透過面は
前記第1プリズムの射出面S_3もしくは前記第2プリ
ズムの入射面S_4上に在つて前記第1プリズムの第2
反射面S_1′で反射した光の一部を該第2反射面S_
1′の方向へ反射させるものであり、前記光半透過面の
反射率は前記第2反射面S_1′に近づく程低下する特
許請求の範囲第1項記載の一眼レフレツクスカメラの測
光装置。
(2) A reflecting mirror is used to optically couple the finder to the photographing lens, and the prism has an entrance surface S_1 for vertically entering the reflected light from the reflecting mirror.
and the light reflected by the first reflecting surface S_2 and the second reflecting surface S_1' for reflecting and deflecting the light incident from the said incident surface so that it is reflected by the second reflecting surface S_1' which is an extension of the said incident surface. a first prism having an exit surface S_3 for emitting light; an entrance surface S_4 for entering the light emitted from the exit surface S_3 of the first prism; and the entrance surface S_
4, a roof-shaped third reflecting surface S_5, a fourth reflecting surface S_5', and the fifth
Output surface S for emitting the light reflected by the reflective surface S_4
_6, and the light semi-transmissive surface is located on the exit surface S_3 of the first prism or the entrance surface S_4 of the second prism, and
A part of the light reflected by the reflecting surface S_1' is transferred to the second reflecting surface S_
2. A photometric device for a single-lens reflex camera according to claim 1, wherein the reflectance of said semi-transparent surface decreases as it approaches said second reflecting surface S_1'.
JP59179059A 1984-05-07 1984-08-27 Photometric device of single-lens reflex camera Pending JPS6155633A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59179059A JPS6155633A (en) 1984-08-27 1984-08-27 Photometric device of single-lens reflex camera
US06/729,293 US4682237A (en) 1984-05-07 1985-05-01 Photographic optical apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59179059A JPS6155633A (en) 1984-08-27 1984-08-27 Photometric device of single-lens reflex camera

Publications (1)

Publication Number Publication Date
JPS6155633A true JPS6155633A (en) 1986-03-20

Family

ID=16059389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59179059A Pending JPS6155633A (en) 1984-05-07 1984-08-27 Photometric device of single-lens reflex camera

Country Status (1)

Country Link
JP (1) JPS6155633A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63114992A (en) * 1986-03-13 1988-05-19 Tanaka Kikinzoku Kogyo Kk Production of insoluble anode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63114992A (en) * 1986-03-13 1988-05-19 Tanaka Kikinzoku Kogyo Kk Production of insoluble anode

Similar Documents

Publication Publication Date Title
US4774539A (en) Camera having a focus detecting apparatus
JP2617965B2 (en) Viewfinder optical system for single-lens reflex camera
US3385190A (en) Photometry system for single lens reflex cameras or cine cameras
JPS61114217A (en) Photographic optical system
JPS6155633A (en) Photometric device of single-lens reflex camera
US5668919A (en) Camera
JPS6255769B2 (en)
JP4083315B2 (en) Photometric device
US4032938A (en) Miniature single lens reflex camera
JPS6147901A (en) Luminous flux splitting mirror for camera
JPS6153622A (en) Photometric device of single-lens reflex camera
JP2556553B2 (en) Compact single-lens reflex camera
JPS6197633A (en) Optical system of finder
JP2556554B2 (en) Compact single-lens reflex camera
JPS60233628A (en) Finder optical system
JP2600934B2 (en) Projection system for automatic focus detection
JP2656046B2 (en) Metering system for electronic cameras
JPH01227134A (en) Optical finder system with photometric means
JPH01101530A (en) Finder optical system
JPH01101533A (en) Finder optical system having photometric means
JPH01200239A (en) Photographing system for single-lens reflex camera
JPH0795182B2 (en) Photometric optical system of single-lens reflex camera
JPH07134323A (en) Photometry device for camera
JPH01101535A (en) Finder optical system having photometric means
JPS59214828A (en) Photometer for camera