JPS6153464A - Runner gap monitor for hydraulic turbine - Google Patents

Runner gap monitor for hydraulic turbine

Info

Publication number
JPS6153464A
JPS6153464A JP59175453A JP17545384A JPS6153464A JP S6153464 A JPS6153464 A JP S6153464A JP 59175453 A JP59175453 A JP 59175453A JP 17545384 A JP17545384 A JP 17545384A JP S6153464 A JPS6153464 A JP S6153464A
Authority
JP
Japan
Prior art keywords
runner
vane
gap
displacement
water turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59175453A
Other languages
Japanese (ja)
Other versions
JPH021985B2 (en
Inventor
Akira Oshitani
押谷 侃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP59175453A priority Critical patent/JPS6153464A/en
Publication of JPS6153464A publication Critical patent/JPS6153464A/en
Publication of JPH021985B2 publication Critical patent/JPH021985B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B11/00Parts or details not provided for in, or of interest apart from, the preceding groups, e.g. wear-protection couplings, between turbine and generator
    • F03B11/04Parts or details not provided for in, or of interest apart from, the preceding groups, e.g. wear-protection couplings, between turbine and generator for diminishing cavitation or vibration, e.g. balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Hydraulic Turbines (AREA)

Abstract

PURPOSE:To make a runner gap monitorable directly and continuously, by installing plural displacement sensors, detecting a distance of up to a movable runner vane, so as to be opposed to a tip end of the movable runner vane of a hydraulic turbine, while monitoring the runner gap according to the output. CONSTITUTION:A runner 1 in this hydraulic turbine is made up of attached plural runner vanes to a runner boss 3, while each of these runner vanes 2 is designed so as to make its tilting angle alterable by means of a driving mechanism built in the runner boss 3. In this case, each of displacement type or overcurrent type first and second displacement sensors 6 and 7 is secured to a turbine casing 4 housing the said runner 1 in a way of being opposed to a tip end 2a of the runner vane 2. In addition, a position sensor 8 detecting a rotation position of these runner vanes 2 is set up and an around a shaft 1a of the runner 1. Then, from each output of each of sensors 6-8, a signal 9a corresponding to the maximum displacement of the runner vane tip end 2a is outputted out of an arithmetic unit 9 and displayed on a displayer 11.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は可動形のランナベーンtもったカブラン水車、
斜流水車、円筒水車などの前記ランナベーンと水車ケー
シングとの間の間隙を水車運転中に連続して検出する装
置、特に前記間隙を非接触方式で直接的に検出する構成
に関する。
[Detailed description of the invention] [Technical field to which the invention pertains] The present invention relates to a Kabran water turbine with movable runner vanes,
The present invention relates to a device that continuously detects a gap between a runner vane and a water turbine casing of a mixed flow water turbine, a cylindrical water turbine, etc. during operation of a water turbine, and particularly relates to a configuration that directly detects the gap in a non-contact manner.

〔従来技術とその問題点〕[Prior art and its problems]

上述のような水車では、ランナベーンと水車ケーシング
との間の間隙が増大するとランナベーンに対して仕事を
しないで水車を通過する水の量が増加して水車効率が低
下するため、前記間隙暑できるだけ短くする努力が行わ
れているが、このようにすると一方では以下に説明する
理由でランナベーン(以下単にベーンということもある
)が水車ケーシングに接触する事故が発生する恐れを生
じろ。
In the above-mentioned water turbine, when the gap between the runner vane and the turbine casing increases, the amount of water passing through the turbine without doing any work on the runner vanes increases and the efficiency of the turbine decreases. Therefore, the gap heat is kept as short as possible. Efforts are being made to do this, but on the other hand, there is a risk that an accident may occur where the runner vane (hereinafter also simply referred to as vane) comes into contact with the turbine casing for the reasons explained below.

(1)  ランナボス内に設けられているベーン駆動機
塔が水車運転中に頻繁に行われるベーン駆動動作の結果
損傷してベーンが外方に突出する。
(1) The vane drive tower installed in the runner boss is damaged as a result of vane drive operations that are frequently performed during turbine operation, causing the vanes to protrude outward.

(2)遠心力や水流による外力でベーンが変形し該ベー
ンの先端が外方に突出する。
(2) The vane is deformed by external force due to centrifugal force or water flow, and the tip of the vane protrudes outward.

(3ン  水車を緊急停止させた時過渡的にランナが該
ランナの軸芯に垂直な方向にも振動する。
(3) When the water turbine is brought to an emergency stop, the runner also vibrates in a direction perpendicular to the axis of the runner.

(4)水車の軸に結合された発電機と前記軸とを一体的
にバルブケーシングで被い、この一体化したものを水車
ステーベーンで支持するようにしだ円筒形水車では、水
流による外力や浮力でランナ軸芯が該軸芯に垂直な方向
に変位する。
(4) The generator connected to the shaft of the water turbine and said shaft are integrally covered with a valve casing, and this integrated structure is supported by the water turbine stay vanes. The runner axis is displaced in a direction perpendicular to the runner axis.

したがって上述のような水車においてはベーン先端と水
車ケーシングとの間の間隙ン常時検出して監視する必要
があり、このため従来は水車の軸や軸受の振動ヲ観測し
てベーン先端と水車ケージという事故状態が発生して始
めて前記間隙状態の検知を行うもので該間隙の大きさを
検出することができず、したがってこの間隙の大きさを
知ることによって水車の効率的な運転を行うことができ
ないという問題がある。
Therefore, in the above-mentioned water turbines, it is necessary to constantly detect and monitor the gap between the vane tip and the water turbine casing.For this reason, conventionally, vibrations of the turbine shaft and bearings were observed and the gap between the vane tip and the water turbine cage was measured. The gap condition is detected only after an accident occurs, and the size of the gap cannot be detected, so knowing the size of the gap makes it impossible to operate the water turbine efficiently. There is a problem.

〔発明の目的〕[Purpose of the invention]

本発明は、上述したような、水車ベーンの先端と水車ケ
ーシングとの間の間隙を監視する従来の監視装置におげ
ろ問題を解消して、前記間隙の大ぎさを直接非接触的に
かつ連続的に検出することのできる水車のランナ間隙監
視装置を提供することを目的とする。
The present invention solves the problems of the conventional monitoring device that monitors the gap between the tip of a water turbine vane and the water turbine casing, as described above, and monitors the size of the gap directly and non-contactly and continuously. The purpose of the present invention is to provide a water turbine runner gap monitoring device that can detect the runner gap of a water turbine.

〔発明の要点〕[Key points of the invention]

本発明は、上述の目的を達成するために、可動形ランナ
ベーンを有する水車の該ランナベーン先端に対向するよ
うにして、この先端との間の間隙の大きさに応じた信号
を出力する複数個の変位センサを水車ケーシングに固定
し、さらにこれら変位センサの各出力信号が入力される
演算回路を設げてこの演算回路からランナベーン先端の
最大変位に応じた信号を出力させるようにしてこの出力
信号によって前記間隙を監視するようにし、もって前記
間隙の大きさを直接かつ連続的に検出することのできる
水車のランナ間隙監視装置が得られるようにしたもので
ある。
In order to achieve the above-mentioned object, the present invention provides a plurality of movable runner vane-equipped water turbines, each of which has a movable runner vane, and which outputs a signal corresponding to the size of the gap between the runner vane tip and the tip of the runner vane. The displacement sensors are fixed to the water turbine casing, and an arithmetic circuit is provided to which each output signal of these displacement sensors is input, and the arithmetic circuit outputs a signal corresponding to the maximum displacement of the tip of the runner vane. A water turbine runner gap monitoring device that monitors the gap and can directly and continuously detect the size of the gap is provided.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の一実施例の概略構成図で、図において
1は5枚のランナベーン2がランナポス3に取り付げら
れた水車のランナで、ランナベーン2はランナボス3内
に組み込まれた、駆動機構によって傾きを変えられるよ
うに構成されている。
FIG. 1 is a schematic configuration diagram of an embodiment of the present invention. In the figure, 1 is a water turbine runner in which five runner vanes 2 are attached to a runner post 3, and the runner vanes 2 are incorporated in the runner boss 3. It is configured so that the inclination can be changed by a drive mechanism.

4はランナ1が収容された水車ケーシング、2aはラン
ナベーン2の先端、5は先端2aとケーシング4の内面
との間の間隙で、δはその大きさである。6.7はそれ
ぞれケーシング4を貫通するようにし℃該ケーシング4
に液密に固定され、δに応じた篭気佑号5a、7aを出
力する゛容量式あるいは痛電流式の第1および第2変位
センサ、8はランナ1の軸1aの近傍に配置され該軸1
aの回転位置を介してランナベーン2の回転位置検出を
行う位置センサ、8aはその出力信号で、9は信号6a
と7aと8aとが入力されランナベーン先端2aの最大
変位に応じた信号9ai出力する演算器である。10は
上述の変位センサ6.7と位置センサ8と演算器9とか
らなる水車のランチ間隙監視装置で、11は信号9a用
の表示器である。第1および第2変位センサ6.7はそ
れらの先端がランナ軸1aの軸芯を見込む角度が90度
になるように配置されている。
4 is a water turbine casing in which the runner 1 is housed, 2a is the tip of the runner vane 2, 5 is the gap between the tip 2a and the inner surface of the casing 4, and δ is the size thereof. 6.7 respectively penetrate through the casing 4.
First and second displacement sensors 8 of capacitance or current type are fixed fluid-tightly to the runner 1 and output the cage signals 5a, 7a according to δ. axis 1
A position sensor detects the rotational position of the runner vane 2 through the rotational position of a, 8a is its output signal, 9 is the signal 6a
, 7a, and 8a are inputted to it, and outputs a signal 9ai corresponding to the maximum displacement of the runner vane tip 2a. Reference numeral 10 denotes a water turbine launch gap monitoring device comprising the above-mentioned displacement sensor 6.7, position sensor 8, and calculator 9, and 11 is an indicator for signal 9a. The first and second displacement sensors 6.7 are arranged so that the angle at which their tips look into the axis of the runner shaft 1a is 90 degrees.

第2図は第1図における要部のP矢視図で、図において
Qは水流の方向、12はパルプケーシングで、位置セン
サ8はバルブケヒシングi−2内においてランナ軸1a
の近傍に配設され、第1変位センサ6はその先端がラン
ナベーンの先端2aに対向するようにしてかつ先端端面
が水車ケーシング4の内面に一致づ−ろように設けられ
ている。本図では第1図の第2変位センサ7は示されて
いないが、このセンサ7もセンサ6と同様にして水車ケ
ーシング4に取り付けられている。
FIG. 2 is a view of the main part in FIG.
The first displacement sensor 6 is disposed so that its tip faces the tip 2a of the runner vane, and its tip end surface is aligned with the inner surface of the water turbine casing 4. Although the second displacement sensor 7 of FIG. 1 is not shown in this figure, this sensor 7 is also attached to the water turbine casing 4 in the same manner as the sensor 6.

第1図および第2図においてはランナ間隙監視装置10
が上述のように構成されているので、ランナ1が静止に
近い状態では変位センサ6.7の各出力信号5a、7a
はいずれもほぼ第3図に示したようになるが、ランナ1
の回転速反が上昇すると両出力信号(5a、7aは第4
図に示したようになる。第4図11A) 、 (13)
 、 (Qはそれぞれ水車負荷が6 M’W 、 18
 MW 、 32.5 MW相当の時に観測した信号6
aの波形図で、第3図および第4図においてtは経過時
間を、Hはランナベーンの先端2aの基準位置からの変
位を、に)内の数字はベーンの番号を示している。ベー
ン先端2aの基準位置とはランナ1が静止している時に
該ベーン先端2aの近傍に適宜設定した位置で、各図に
お〜・て変位Hが負になる方向は第1図および第2図に
i6げる間隙の大きさδが小さくなる方向に一致して(
・る。
In FIGS. 1 and 2, a runner clearance monitoring device 10 is shown.
is configured as described above, when the runner 1 is nearly stationary, the output signals 5a, 7a of the displacement sensors 6.7
The results are almost as shown in Figure 3, but runner 1
When the rotational speed increases, both output signals (5a, 7a are the fourth
The result will be as shown in the figure. Fig. 4 11A), (13)
, (Q is a water turbine load of 6 M'W, 18
Signal 6 observed when MW was equivalent to 32.5 MW
In the waveform diagram of a, in FIGS. 3 and 4, t indicates the elapsed time, H indicates the displacement of the tip 2a of the runner vane from the reference position, and the numbers in ) indicate the vane number. The reference position of the vane tip 2a is a position appropriately set near the vane tip 2a when the runner 1 is stationary. In line with the direction in which the gap size δ shown in the figure i6 decreases (
・Ru.

第3図および第4図において信号波形か櫛歯状になるの
はランナ1の回転に伴なってベーン先端2aが変位セン
サに近づいたり遠ざかったりするためであり、水車負荷
の増加と共に櫛歯が狭(なるのはベーン2が水車負荷の
増加に伴なってランナ軸1aの方向に傾けられてきてベ
ーン先端2aが変位センサ6に対向している相対的な時
間が短くなるためであり、また櫛歯の先端が三角状にな
るのはランナ1の回転にもとづく遠心力と水流による外
力とのためにベーン先端2aが変形するためである。
The reason why the signal waveform has a comb-like shape in FIGS. 3 and 4 is because the vane tip 2a approaches or moves away from the displacement sensor as the runner 1 rotates, and the comb-like shape occurs as the turbine load increases. This is because the vane 2 is tilted in the direction of the runner axis 1a as the turbine load increases, and the relative time that the vane tip 2a faces the displacement sensor 6 becomes shorter, and The reason why the tips of the comb teeth have a triangular shape is that the vane tips 2a are deformed by the centrifugal force caused by the rotation of the runner 1 and the external force caused by the water flow.

第1図における変位センサ6.7の出力信号6a。Output signal 6a of displacement sensor 6.7 in FIG.

7aは上述したよ5になるが4第1図にお−〜ては位置
センサ8は軸1aが一回転するごとに一個のパルス信号
を信号8aとして出力するように構成され、また演算器
9は第5図に示したように構成されている。すなわち第
5図において13 、14゜15はそれぞれ信号6a、
7a、3aが入力され各入力信号に応じた出力信号13
a、14a、15aを出力する増幅回路、16は〕くル
ス信号15 aが人力されろと第1図のランナ1が90
度の角度だけ回転するに要する時間T経過後ノ<ルス信
号16aを出力する遅延回路、17.18はそれぞれ信
号13a、14aが人力され、第1図に示した5枚のベ
ーン2の各々ごとに第4図に示した変位I−1の最小値
Hm %検出し℃この最小値に応じた信号17a*18
a’Yそれぞれ出力するようにしたヒ゛−ク値検出回路
である。第1図に2いては変位センサ6.7が水車ケー
シング4に上述のように配設されているので、信号17
aにあられれろ、5枚のベーン2の中のたとえば1香の
ベーン2に対応するHm相尚の信号は、ランナ1が第1
図において凡矢印の方向に回転するものとすると、上記
回転時間T経過後信号18a中に現れることになる。1
9は信号15aと信号17aとが入力され、第1図に示
したランナ1の一回転ごとに、上述したベーン2ごとの
変位Hmの絶対値I Hrnin l y5枚のベーン
2に関して比較して最大のlHminlを選択し、この
選択結果に応じた信号19ag出力する絶対値比較回路
、20は信号16aと信号18aとが人力され、第1図
に示したランナ1の一回転ごとに、ベーン2ごとの変位
Hminの絶対(i l Hmin lを5枚のベーン
2に関して比較し7て最大のIHminI7z”選択し
、この選択結果に応じた信号202を出力する絶対値比
較回路、21は両絶対値比較回路19.20の各出力信
号19 a +20aが入力され両信号中の大きい方の
値に応じた信号9aを信号16aが人力された時に出力
する最大値選択回路で、演算器9は、この場合、上述の
増幅回路13〜15と遅延回路16とピーク値検出回路
17.18と絶対値比較回路19.20と最大値選択回
路21とで構成されている。演算器9は上述のように構
成されているので、出力信号9aは、変位センサ6.7
によって観測されたランナベーン先端2aの前述の基準
位置からの絶対的な変位量の中の最大値ηζ示しており
、第4図においてベーン先端2aの変位■(が正符号に
なった場合、第1図におけるランナ軸1aの軸芯に関し
て対称の位置にあるベーン先端2aの部分は変位Hが負
符号になっていると考えられるので、結局信号9aによ
って第1図に示した間隙δを連続的に監視できることに
なる。
7a is 5 as described above, but in FIG. is constructed as shown in FIG. That is, in FIG. 5, 13, 14 and 15 are signals 6a and 15, respectively.
7a, 3a are input and output signal 13 according to each input signal
The amplifier circuit 16 outputs signals a, 14a, and 15a, and the runner 1 in FIG.
Delay circuits 17 and 18 output the Norse signal 16a after the time T required to rotate the vane by the angle of 1.degree., and the signals 13a and 14a are manually inputted to each of the five vanes 2 shown in FIG. The minimum value Hm% of the displacement I-1 shown in Fig. 4 is detected at ℃, and the signal 17a*18 corresponding to this minimum value is detected.
This is a peak value detection circuit configured to output a'Y, respectively. 2 in FIG. 1, the displacement sensor 6.7 is arranged in the water turbine casing 4 as described above, so that the signal 17
The Hm phase signal corresponding to, for example, one vane 2 among the five vanes 2 is when the runner 1 is the first one.
If it rotates in the direction of the arrow in the figure, it will appear in the signal 18a after the rotation time T has elapsed. 1
9 inputs the signal 15a and the signal 17a, and for each revolution of the runner 1 shown in FIG. An absolute value comparison circuit 20 selects lHminl and outputs a signal 19ag according to the selection result, and a signal 16a and a signal 18a are manually inputted to the absolute value comparison circuit 20 for each rotation of the runner 1 shown in FIG. Absolute value comparison circuit that compares the absolute displacement Hmin (i l Hmin l for the five vanes 2 and selects the maximum IHminI7z) and outputs a signal 202 according to this selection result, 21 is a comparison circuit for comparing both absolute values. This is a maximum value selection circuit which receives the output signals 19a + 20a of the circuits 19 and 20 and outputs a signal 9a corresponding to the larger value of both signals when the signal 16a is manually input. , is comprised of the above-mentioned amplifier circuits 13 to 15, delay circuit 16, peak value detection circuit 17, 18, absolute value comparison circuit 19, 20, and maximum value selection circuit 21. Arithmetic unit 9 is constructed as described above. Therefore, the output signal 9a is output from the displacement sensor 6.7.
The maximum value ηζ of the absolute displacement amount of the runner vane tip 2a from the above-mentioned reference position observed by In the part of the vane tip 2a located symmetrically with respect to the axis of the runner shaft 1a in the figure, the displacement H is considered to have a negative sign, so the signal 9a can be used to continuously adjust the gap δ shown in FIG. It will be possible to monitor.

第1図においてはランナ間隙監視装置10を上述のよう
に構成したので演算回路9の出力信号9aによって間隙
の大きさδを直接かつ連続的に検出することができるが
、本発明は、上述の実施態様に限られるものではな(て
、変位センサの個数を更に増してたとえばベーン20枚
数と同数にしてもよいものであり、また変位センサは隣
接するセンサ間隔が同一になるように配置されてもよい
ものであり、さらにまた演算器9はランナベーン先端2
aの最大変位忙応じた信号を出力すると共に位置センサ
の出力信号8aを利用して前記最大変位を示すランナベ
ーン2の番号を示す信号を出力するように構成してもよ
いものである。
In FIG. 1, the runner gap monitoring device 10 is configured as described above, so that the gap size δ can be directly and continuously detected by the output signal 9a of the arithmetic circuit 9. The present invention is not limited to the embodiment (the number of displacement sensors may be further increased, for example, to the same number as 20 vanes, and the displacement sensors may be arranged so that the spacing between adjacent sensors is the same). Furthermore, the computing unit 9 is connected to the runner vane tip 2.
The configuration may be such that it outputs a signal corresponding to the maximum displacement of the position sensor a and also outputs a signal indicating the number of the runner vane 2 indicating the maximum displacement using the output signal 8a of the position sensor.

〔発明の効果〕〔Effect of the invention〕

上述したように、本発明においては、可動形うンナベー
ンビ有する水車における該ランナベーンの先端に対向す
るように水車ケーシングに固定した、前記ランナベーン
までの距離を検出する複数個の変位センサと、これらの
変位センサの各出力信号が人力され所定の演算を行って
ランナベーン先端の最大変位に応じた信号Y出力する演
算器とで水車のランチ間隙監視装置を構成し、演算器の
出力信号によってランナベーン先端と水車ケーシングと
の間の間隙の大きさt検出するようにしたので、このよ
うな水車のランナ間隙監視装置によれば、前記間隙の大
きさ暑直接かつ連続的に検出できる効果がある。
As described above, in the present invention, a plurality of displacement sensors for detecting the distance to the runner vane, which are fixed to the water turbine casing so as to face the tip of the runner vane in a water turbine having a movable runner vane, and the displacement sensors of these sensors are provided. A water turbine launching gap monitoring device is composed of a calculator that receives each output signal of the sensor and performs predetermined calculations and outputs a signal Y corresponding to the maximum displacement of the runner vane tip. Since the size t of the gap between the water turbine and the casing is detected, the water turbine runner gap monitoring device has the effect of directly and continuously detecting the size of the gap.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の概略構成図、第2図は第1
図の賛部側面図、第3図は第1図における変位センサの
出力信号説明図、第4図人)、第4図(B)、第4図(
C)は、第1図における変位センサのそれぞれ異なる出
力信号波形図、第5図′は第1図における演算器のブロ
ック図である。 2・・・・・・ランナベーン、2a・・・・・・ランナ
ベーンの先端、4・・・・・・ケーシング、6・・・・
・・第1変位センサ、7・・・・・・2g2変位センサ
、9・・・・・・演算器、10°°゛゛水車のランナ間
隙監視装置、δ・・・・・・間隙の大きさ。 第 2 図 fA 3  図 (A) (8)                  (C)第
4図
FIG. 1 is a schematic configuration diagram of an embodiment of the present invention, and FIG.
Fig. 3 is an explanatory diagram of the output signal of the displacement sensor in Fig. 1, Fig. 4 (person), Fig. 4 (B), Fig. 4 (
C) is a diagram of different output signal waveforms of the displacement sensor in FIG. 1, and FIG. 5' is a block diagram of the arithmetic unit in FIG. 1. 2...Runner vane, 2a...Tip of runner vane, 4...Casing, 6...
...First displacement sensor, 7...2g2 displacement sensor, 9...computer, 10°°゛゛ water turbine runner gap monitoring device, δ...gap size . Figure 2 fA 3 Figure (A) (8) (C) Figure 4

Claims (1)

【特許請求の範囲】[Claims] 可動形ランナベーンを有する水車における前記ランナベ
ーンの先端に対向するように前記水車のケーシングに固
定した、前記ランナベーンまでの距離を検出する複数個
の変位センサと、前記変位センサの各出力信号が入力さ
れ所定の演算を行つて前記ランナベーンの先端の最大変
位に応じた信号を出力する演算器とを備え、前記演算器
の出力信号により前記ランナベーンの先端と前記ケーシ
ングとの間の間隙の大きさを検出することを特徴とする
水車のランナ間隙監視装置。
A plurality of displacement sensors for detecting the distance to the runner vane are fixed to the casing of the water turbine so as to face the tip of the runner vane in a water turbine having a movable runner vane, and each output signal of the displacement sensor is inputted to a predetermined value. and an arithmetic unit that performs the calculation and outputs a signal according to the maximum displacement of the tip of the runner vane, and detects the size of the gap between the tip of the runner vane and the casing based on the output signal of the arithmetic unit. A water turbine runner gap monitoring device characterized by:
JP59175453A 1984-08-23 1984-08-23 Runner gap monitor for hydraulic turbine Granted JPS6153464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59175453A JPS6153464A (en) 1984-08-23 1984-08-23 Runner gap monitor for hydraulic turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59175453A JPS6153464A (en) 1984-08-23 1984-08-23 Runner gap monitor for hydraulic turbine

Publications (2)

Publication Number Publication Date
JPS6153464A true JPS6153464A (en) 1986-03-17
JPH021985B2 JPH021985B2 (en) 1990-01-16

Family

ID=15996334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59175453A Granted JPS6153464A (en) 1984-08-23 1984-08-23 Runner gap monitor for hydraulic turbine

Country Status (1)

Country Link
JP (1) JPS6153464A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06298449A (en) * 1993-04-13 1994-10-25 Akira Seisakusho:Kk Zigzag folding device for use in printing machine
WO2018208485A1 (en) * 2017-05-12 2018-11-15 Siemens Energy, Inc. Contactless, blade-tip clearance measurement for turbines

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06298449A (en) * 1993-04-13 1994-10-25 Akira Seisakusho:Kk Zigzag folding device for use in printing machine
WO2018208485A1 (en) * 2017-05-12 2018-11-15 Siemens Energy, Inc. Contactless, blade-tip clearance measurement for turbines
US10222200B2 (en) 2017-05-12 2019-03-05 Siemens Energy, Inc. Contactless, blade-tip clearance measurement for turbines

Also Published As

Publication number Publication date
JPH021985B2 (en) 1990-01-16

Similar Documents

Publication Publication Date Title
JP2866862B2 (en) Method and apparatus for monitoring turbine blade vibration
JP2824523B2 (en) Method and apparatus for measuring fatigue of vibrating member
US20100162802A1 (en) Steam turbine test facility, low-load test method, and load dump test method
US4153388A (en) Method and apparatus for monitoring the state of oscillation of the blades of a rotor
JPS6153464A (en) Runner gap monitor for hydraulic turbine
CN113819011B (en) Impeller state detection method, device and system of wind generating set
US4028532A (en) Turbine speed controlling valve operation
JPS62195481A (en) Nonlubricating type screw fluid mechinery
JP3716068B2 (en) Turbo molecular pump and vacuum vessel having the same
JPH0543052B2 (en)
JPS62245931A (en) Vibration monitoring device
Xu et al. Investigation of an axial fan—blade stress and vibration due to aerodynamic pressure field and centrifugal effects
JPH05118289A (en) Protection device for vacuum pump
CN115185313A (en) Trend tracking early warning method and device for bearing bush temperature of hydroelectric generating set
Madhavan et al. Rotating stall caused by pressure surface flow separation on centrifugal fan blades
EP1167772A1 (en) Vacuum pump
JPS60127464A (en) Rotation monitor of turbo molecular pump
JPS6244618A (en) Monitoring device for eccentricity of steam turbine
Sebghati Monitoring axial-flow compressors for rotating stall and surge
EP4303406A1 (en) System and method for determining rotor whirl displacement
CN212079519U (en) Monitoring device for deformation of variable-pitch bearing of wind turbine generator
KR100543671B1 (en) Apparatus and Method of Rotating Stall Warning in Compressor using Spatial Fourier Coefficient
CN115306752A (en) Optical fiber-encoder joint phase locking method suitable for impeller machinery
JPH0721660U (en) Elevator speed detector
Pieper et al. Experimental investigation of a single stage axial flow compressor with controlled diffusion airfoils