JPS62195481A - Nonlubricating type screw fluid mechinery - Google Patents

Nonlubricating type screw fluid mechinery

Info

Publication number
JPS62195481A
JPS62195481A JP23110285A JP23110285A JPS62195481A JP S62195481 A JPS62195481 A JP S62195481A JP 23110285 A JP23110285 A JP 23110285A JP 23110285 A JP23110285 A JP 23110285A JP S62195481 A JPS62195481 A JP S62195481A
Authority
JP
Japan
Prior art keywords
rotor
female
male
rotors
screw rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23110285A
Other languages
Japanese (ja)
Inventor
Katsuaki Kikuchi
勝昭 菊地
Masayuki Urashin
昌幸 浦新
Katsumi Matsubara
松原 克躬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23110285A priority Critical patent/JPS62195481A/en
Publication of JPS62195481A publication Critical patent/JPS62195481A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/0085Prime movers

Abstract

PURPOSE:To permit the noncontact operation by detecting the existence of the contact between the both rotors by an AE sensor or an accelerating speed sensor which is arranged in a bearing part or in a casing close to the bearing part and controlling the speed of revolution of a motor on a female screw rotor side. CONSTITUTION:When male and female rotors 1 and 2 contact, the signal supplied from an AE sensor or an accelerating speed sensor 19 which is arranged in a bearing 6 part contains the pulse-shaped wave forms. Acontact detector 20 wave-detection-treats the signals, and the frequency distribution of the contact for the male rotor revolution angle thetaM is prepared. The result is taken into a calculator 21 together with the signals thetaM supplied from the revolution angle detectors 14 and 15 for the male and female rotors 1 and 2. The calculator 21 calculates the variation of revolution theta from thetaF and thetaM, and compares said variation with the contact frequency distribution, and determines the revolution speed control quantity for preventing the contact of the both rotors 1 and 2. The revolution speed control quantity is sent into the driving controller 18 for a motor, and the revolution speed of a motor 12 for the female rotor is controlled, and the noncontact operation of the both rotors 1 and 2 is permitted.

Description

【発明の詳細な説明】 本発明は無給油式スクリュー流体機械に係り、特に塩ス
クリューロータと雌スクリューロータが接触しないで、
同期回転される駆動方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an oil-free screw fluid machine, and in particular, to
This relates to a drive system that rotates synchronously.

〔発明の背景〕[Background of the invention]

無給油式スクリュー流体機械は注油式と異なり、雄スク
リユ−ロータの接触を完全に防止するため、例えば実開
昭58−47273号公報に示されるように、トルク伝
達はロータ同志で直接伝達せず、軸端に装着された同期
歯車により行われるように構成されている。
Unlike oil-lubricated machines, non-lubricated screw fluid machines completely prevent contact between the male screw rotors, so torque is not transmitted directly between the rotors, as shown in Japanese Utility Model Application Publication No. 58-47273, for example. , is configured to be performed by a synchronous gear mounted on the shaft end.

この方式は単に一組の同期歯車だけで済み簡便ではある
が、雄雌スクリューロータの加工精朋、歯間の隙間と歯
車の加工精度との取合いを適切にしておく必要がある。
Although this method is simple and requires only one set of synchronous gears, it is necessary to properly balance the machining precision of the male and female screw rotors, the gap between the teeth, and the machining precision of the gears.

しかし、実際にけ雄雌スクリューロータの熱変形や歯車
の弾性変形など運転時には煩雑な挙動があり、当初に設
定した状態にはならず、雄雌スクリューロータが接触し
てしまうなどの問題があった。また、このような複雑な
挙動を予め考慮して同期歯車の形状や加工精度を設定す
ることも可能ではあるが、一般にそのような作業は大変
であり、実際的ではないという問題点を有する。
However, in reality, during operation, there are complicated behaviors such as thermal deformation of the male and female screw rotors and elastic deformation of the gears, and there are problems such as the male and female screw rotors coming into contact with each other without achieving the originally set state. Ta. Although it is possible to set the shape and machining accuracy of the synchronous gear by taking such complicated behavior into consideration in advance, such work is generally difficult and impractical.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、雄雌スクリューロータの加工精度、組
立精度及び運転時の変形などに左右されず、常に両ロー
タが接触しないで同期駆動できる無給油式スクリュー流
体機械を提供することにある。
An object of the present invention is to provide an oil-free screw fluid machine in which the male and female screw rotors can be driven synchronously without being in contact with each other, regardless of the machining accuracy, assembly accuracy, deformation during operation, etc. of the male and female screw rotors.

〔発明の概要〕[Summary of the invention]

本発明は雄雌スクリューロータ駆動のための電動機を設
置し、雌スクリューロータが雄スクリューロータと接触
しないように、雌ロータの電動機の回転速度を制御する
。雌スクリューロータの電動機の回転速度の制御方式と
しては、雄雌スクリューロータを組立てた状態で準静的
に測定した雌スクリューロータの準静的回転伝達誤差と
運転中の雄雌スクリューロータのそれぞれの回転角から
算出した雌スクリューロータの回転変動を比較し、回転
変動が準静的回転伝達誤差と運転時に確保されなければ
ならない雄雌スクリューロータ歯間の隙間との和になる
ような方式とするか、または雄スクリューロータまたは
雌スクリューロータを支える軸受部に設置したAEセン
サまたは加速度センサにより両ロータの接触の有無を検
出することにより、接触が生じないようにする特徴を有
する。
The present invention installs electric motors for driving male and female screw rotors, and controls the rotational speed of the electric motor of the female rotor so that the female screw rotor does not come into contact with the male screw rotor. The control method for the rotational speed of the electric motor of the female screw rotor is based on the quasi-static rotational transmission error of the female screw rotor measured quasi-statically with the male and female screw rotors assembled and the respective differences between the male and female screw rotors during operation. The rotation fluctuation of the female screw rotor calculated from the rotation angle is compared, and the method is such that the rotation fluctuation is the sum of the quasi-static rotation transmission error and the gap between the male and female screw rotor teeth that must be maintained during operation. Alternatively, the present invention has a feature of preventing contact from occurring by detecting the presence or absence of contact between the two rotors using an AE sensor or an acceleration sensor installed in a bearing section that supports the male screw rotor or the female screw rotor.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図により説明する。雄ス
クリューロータ1 (以下雄ロータと呼ぶ)と雌スクリ
ューロータ2(以下雌ロータと呼ぶ)は所定の歯間隙間
を保つように、雄ロータ1は軸受6,7.8で、雌ロー
タ2は軸受9.10゜11で支持されている。これらの
軸受のうち、軸受7と8、軸受10と11は半径方向に
それぞれのロータを支持し、軸受6及び9が両ロータの
軸方向の動きを拘束している。雄ロータ1の1つの端に
延びた軸には電動機のロータ3がはめられており、これ
に対向した静止側にはステータ4が設定されている。雌
ロータ2の1つの端にも雄ロータ1と同様に電動機のロ
ータ12がはめられ、対応するステータ13が設けられ
ている。本実施例ではこれらの要素がケーシング5の中
に納められている密閉形の場合を示している。
An embodiment of the present invention will be described below with reference to FIG. The male screw rotor 1 (hereinafter referred to as the male rotor) and the female screw rotor 2 (hereinafter referred to as the female rotor) are equipped with bearings 6, 7.8, and the female rotor 2 so as to maintain a predetermined gap between the teeth. It is supported by bearings 9.10°11. Of these bearings, bearings 7 and 8 and bearings 10 and 11 support the respective rotors in the radial direction, and bearings 6 and 9 restrain the axial movement of both rotors. A rotor 3 of an electric motor is fitted on a shaft extending to one end of the male rotor 1, and a stator 4 is set on the stationary side opposite to this. Similarly to the male rotor 1, a rotor 12 of the electric motor is fitted to one end of the female rotor 2, and a corresponding stator 13 is provided. In this embodiment, a closed type case in which these elements are housed in a casing 5 is shown.

雌ロータ及び雄ロータの軸端にはロータの回転角検出器
14.15が設けられている。ケーシング5の外部には
、回転角信号の変換器16、設定値との比較をし所定の
演算を行う比較演算器17及び比較演算器17からの出
力信号に応じて電動機の回転速度を制御する電動機駆動
制御器18で構成された割U系が形成されている。
Rotor rotation angle detectors 14 and 15 are provided at the shaft ends of the female and male rotors. Externally, the casing 5 includes a rotation angle signal converter 16, a comparison calculator 17 that compares the rotation angle signal with a set value and performs a predetermined calculation, and controls the rotational speed of the motor according to the output signal from the comparison calculator 17. A split U system including a motor drive controller 18 is formed.

次に、本実施例の動作を説明する。本流体機械の運転前
に、雄ロータ1を準静的に回転させ、雌ロータ2の回転
角を測定する。雄ロータ1の回転角を09、雌ロータの
回転角をθIFとする。雌ロータ2と雄ロータ1との回
転数比をnとすると、理想状態での雌ロータ2の回転数
は、 θF =n〜 ・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・(1)となる。
Next, the operation of this embodiment will be explained. Before operating this fluid machine, the male rotor 1 is rotated quasi-statically, and the rotation angle of the female rotor 2 is measured. The rotation angle of the male rotor 1 is 09, and the rotation angle of the female rotor is θIF. If the rotation speed ratio of the female rotor 2 and the male rotor 1 is n, then the rotation speed of the female rotor 2 in the ideal state is θF = n ~ ・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・(1)

しかし、実際には両ロータの加工誤差と組立誤差のため
に、式(1)は完全には成り立たず、雌ロータ2の回転
角は Δ′θ、) 3%  n flM  ・・・・・・・・
−・・・・・・・・・・・・・・・(2)たけ誤差をも
つ。このΔθ。は、雌ロータの準静的回転伝達誤差と呼
ばれるもので、第2回(a)に示すような変化を示す。
However, in reality, equation (1) does not completely hold due to processing errors and assembly errors of both rotors, and the rotation angle of female rotor 2 is Δ'θ, ) 3% n flM .・・・
−・・・・・・・・・・・・・・・(2) Has a large error. This Δθ. is called the quasi-static rotational transmission error of the female rotor, and shows a change as shown in Part 2 (a).

比較演算器17には記憶部があり、第2図(a)の波形
を記憶させておく。また、比較演算器には雄ロータと帷
ロータの歯間の設定隙間に相当する雌ロータ換算の回転
角θgをも記憶させておく。
The comparator 17 has a storage section in which the waveform shown in FIG. 2(a) is stored. Further, the comparator is also stored with a rotation angle θg in terms of the female rotor, which corresponds to the set gap between the teeth of the male rotor and the sleeve rotor.

次に運転時の動作を説明する。雄ロータIV′i第1図
には特に明示してはいないが、通常よく知られでいる方
法によってロータ3とステータ4によって構成される電
動機で所定の回転速度で運転される。雄ロータ1及び雌
ロータ2に設けられた回転角検出器14からはθ  1
5からけθ、の信号が発生する。θ2.θ、は回転速度
の形で時間VC対して示すと第2図中)のようになる。
Next, the operation during operation will be explained. Although not specifically shown in FIG. 1, the male rotor IV'i is operated at a predetermined rotational speed by an electric motor constituted by a rotor 3 and a stator 4 in a generally well-known manner. From the rotation angle detector 14 provided on the male rotor 1 and female rotor 2, θ 1
A signal of 5 and θ is generated. θ2. When θ is expressed in the form of rotational speed with respect to time VC, it becomes as shown in Fig. 2).

θ9とθ。θ9 and θ.

の信号げ変換器16に入力され、雌ロータ2の平均回転
速変可と変動回転Δθとが次式のように算出される。
The signal is inputted to the signal converter 16, and the variable average rotational speed and variable rotational speed Δθ of the female rotor 2 are calculated as shown in the following equation.

古 =n士 900091180180110111.
1901039166811008.(3)F    
    M Δθ=θF  n−・・・・・・・・・・・・・・・・
・・・・・・・・・・・(4)ここで九は雄ロータ1の
平均回転速度または設定回転速度である。Δθは第2図
(C)に示されるように、ΔOoと似たような波形にな
るはずである。式(3)と(4)で定義される九とΔθ
は、変換器16から出力され、比較演算器+7vc入力
される。比較演算器17では、すでに記憶されている準
静的回転伝達誤差Δθ0と入力された変動回転角Δ0と
を比較して、 Δφ=Δθ−(Δθ0+θg)・川・・叫・・(5)と
なる値を各θMVC対して算出する。△φは今とともに
比較演算器17から出力され、電動機駆動制御器18に
人力される。電動@駆動制御器18け入力された二つの
信号のうら、θ、を用いて電動機ロータ12の平均回転
速度を指令するとともに、Δφが零になるように回転速
度の微小調整を行う。
Old = nshi 900091180180110111.
1901039166811008. (3)F
M Δθ=θF n−・・・・・・・・・・・・・・・・
(4) Here, 9 is the average rotational speed or set rotational speed of the male rotor 1. Δθ should have a waveform similar to ΔOo, as shown in FIG. 2(C). 9 and Δθ defined by equations (3) and (4)
is output from the converter 16 and input to the comparator +7vc. The comparison calculator 17 compares the quasi-static rotational transmission error Δθ0 that has already been stored and the input variable rotation angle Δ0, and calculates Δφ=Δθ−(Δθ0+θg)・Kawa...Shou...(5) A value is calculated for each θMVC. Δφ is also outputted from the comparator 17 and inputted to the motor drive controller 18 . The other of the two signals input to the electric drive controller 18, θ, is used to command the average rotational speed of the motor rotor 12, and the rotational speed is finely adjusted so that Δφ becomes zero.

以上の一連の動作によって、雌ロータ2け雄ロータ1と
歯部で所定の隙間を保って回転することができる。雌雄
ロータの加工誤差と組立誤差は運転前に測定されるヨ準
静的回転伝達誤挙として表現され、運転中はこの準静的
回転伝達誤差に対応するように回転角調整されることに
よって、実害のないものにされてしまう。したがって、
同期歯車方式のように、雌雄ロータ及び同期歯車の加工
精度と組立精度を高くする盛装けなくなる。また、雌雄
ロータの隙間も狭くすることができるので、性能を高め
ることも容易になる。
Through the above series of operations, the female rotor can be rotated with a predetermined gap maintained between the two-coated male rotor 1 and the teeth. Machining errors and assembly errors between male and female rotors are expressed as quasi-static rotation transmission errors that are measured before operation, and during operation, the rotation angle is adjusted to correspond to this quasi-static rotation transmission error. It becomes harmless. therefore,
Unlike the synchronous gear system, it is no longer possible to arrange male and female rotors and synchronous gears to increase the processing accuracy and assembly accuracy. Furthermore, since the gap between the male and female rotors can be narrowed, performance can be easily improved.

第3図は本発明の他の実施例である。第1図の実施例と
同じ部分は同一の符号で示している。
FIG. 3 shows another embodiment of the invention. The same parts as in the embodiment of FIG. 1 are designated by the same reference numerals.

本実施例でHlAh:センサまたは加速度センサ19が
軸受部またはそれに近いケーシングに配置されている。
In this embodiment, the HlAh sensor or acceleration sensor 19 is arranged in the bearing part or in the casing near it.

20はセンサー9からの信号を分析し、雌雄ロータの接
触の有無を検出する接触検出器である。21V′i接触
検出器20、回転角検出器14.15からの信号を受取
り、雌雄ロータが接触しないような制御信号を電動機駆
動制御器18へ送るための演算器である。
A contact detector 20 analyzes the signal from the sensor 9 and detects the presence or absence of contact between the male and female rotors. 21V'i This is a computing unit that receives signals from the contact detector 20 and the rotation angle detectors 14 and 15, and sends a control signal to the motor drive controller 18 to prevent the male and female rotors from coming into contact.

19のAEセンサまたは加速度センサからの信号には、
雌雄ロータが接触すると第4図の(a) K示すような
パルス状の波形が含まれる。この信号を接触検出器20
では、検波などの処理して、第4図の(b) vc示さ
れるように、雄ロータ回転角θMVC対する接触の頻度
分布を作成する。この結果は雌ロータ用の回転角検出器
14及び雄ロータ用の回転角検出器15かもの信号0 
及びθ9とともに演算器21に取シ込まれる。演算器2
1け、θ。
The signals from the 19 AE sensors or acceleration sensors include
When the male and female rotors come into contact, a pulse-like waveform as shown in FIG. 4(a)K is included. This signal is transferred to the contact detector 20.
Now, processing such as detection is performed to create a frequency distribution of contact with respect to the male rotor rotation angle θMVC, as shown in FIG. 4(b) vc. This result indicates that the rotation angle detector 14 for the female rotor and the rotation angle detector 15 for the male rotor have a signal of 0.
and θ9 are input into the arithmetic unit 21. Arithmetic unit 2
1, θ.

と09から第1図の実施例の場合と同様に回転変動Δθ
を算出し、これを接触頻度分布と比較することによって
、雌ロータと雄ロータが接触しないだめの回転速度別−
量を決定する。このように決定された回転速度制御量が
電動機駆動制御器18へ送られ、雌ロータ用電動機ロー
タ12の回転速度を制御する。
From 09 to
By calculating this and comparing it with the contact frequency distribution, the number of rotational speeds at which the female rotor and male rotor should not come into contact can be determined.
Determine the amount. The rotational speed control amount determined in this way is sent to the motor drive controller 18 to control the rotational speed of the female rotor motor rotor 12.

本実施例では、運転状態に起こりうる雌雄ロータの接触
の有無そのものを直接的に検出し制御するから、雌雄ロ
ータの熱や流体力による変形が生じ、静止時におけるロ
ータ形状と違ったとしても、差し支えがないという利点
がある。したがって、本実施例を第1図に示した実施例
と併用することによって、実際に印した雄雌ロータの非
接触運転が可能となる。
In this embodiment, since the presence or absence of contact between the male and female rotors that may occur during operation is directly detected and controlled, even if the male and female rotors are deformed due to heat or fluid force and the shape of the rotor differs from that when it is at rest, The advantage is that there is no problem. Therefore, by using this embodiment together with the embodiment shown in FIG. 1, non-contact operation of the male and female rotors as actually marked becomes possible.

!+図及び第3図の両実施例では、構成要素がすべてケ
ーシング内に納められている。密閉形を例示しているが
、電動機が雌ロータ又は雄ロータと一体化されている必
要はなく、ケーシングの外に配置されているいわゆる開
放形と呼ばれる構造であって本構わない。
! In both the embodiments in Figures 1 and 3, all the components are housed within the casing. Although a closed type is illustrated, the electric motor does not need to be integrated with the female rotor or the male rotor, and may have a so-called open type structure in which it is disposed outside the casing.

また、雌ロータに取付けられる電動機は例示の実施例で
は、雄ロータの電動機とは反対向きに浦−かれているが
、同じ向きでも良い。一般にスクリューの流体機械では
雌ロータ駆動に必要なトルクは雄ロータのトルクの数分
の−でも良く、雌ロータ用の電動機は雄ロータ用のもの
に比べて小形となるはずで、両者を雌雄ロータの同じ側
に配置することは可能となろう。
Furthermore, although the electric motor attached to the female rotor is oriented in the opposite direction to the electric motor of the male rotor in the illustrated embodiment, it may be oriented in the same direction. In general, in screw fluid machines, the torque required to drive the female rotor may be several times lower than that of the male rotor, and the electric motor for the female rotor is expected to be smaller than that for the male rotor, so both male and female rotors are connected. It would be possible to place them on the same side.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、同期歯車が不要
であり、同期歯車の加工誤差、組立誤差及び変形に依存
する雌雄ロータの接触が発生しないので、スクリュー流
体機械の無給油運転が容易となる。
As explained above, according to the present invention, there is no need for a synchronous gear, and contact between male and female rotors that depends on processing errors, assembly errors, and deformation of the synchronous gear does not occur, making it easy to operate a screw fluid machine without oil. becomes.

また、雌雄ロータの実際の組合せ状態で、両ロータ歯部
間の隙間を保つ方式なので、隙間を小さくすることがで
き、流体性能を向上させる。更に、雌雄ロータの加工誤
差、組立誤差及び変形を考慮した雌ロータの回転速度制
御が行えるので、両ロータの加工精度や組立精度を高く
することがなく、加工組立の簡略化を図れる等の効果を
有する
In addition, since the system maintains the gap between the teeth of both rotors when the male and female rotors are actually combined, the gap can be reduced, improving fluid performance. Furthermore, since the rotational speed of the female rotor can be controlled in consideration of machining errors, assembly errors, and deformations of the male and female rotors, there is no need to increase the machining accuracy and assembly accuracy of both rotors, and the machining and assembly process can be simplified. have

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すスクリュー流体機械の
肋uN図と制i卸系の構成を示す図、第2図は不実施例
で得られる準静的回転伝達誤差、回転速度及び回転変動
の波形の説明図、第3図は他の実施例を示すスクリュー
流体機械の制御系の構成図、第4図は第3図の実施例で
得られるセンサ波形及び頻度パターンの説明図である。 1・・・雄ロータ  2・・・雌ロータ  3,12・
・・電動機ロータ  4,13・・・電動機ステータ5
・・・ケーシング  6,7.8,9.10.II・・
・軸受  14.15・・・回転角検出器  16・・
・変換器  17・・・比較演算器  18・・・電動
機駆励制仰器  19・・・AEセンサまたは加速度セ
ンナ  20・・・接触検出器  21・・・演算器。
Fig. 1 is a diagram showing the structure of the screw fluid machine and the control system according to an embodiment of the present invention, and Fig. 2 is a diagram showing the quasi-static rotation transmission error, rotation speed, and control system obtained in a non-embodiment. FIG. 3 is a configuration diagram of a control system of a screw fluid machine showing another embodiment. FIG. 4 is an explanatory diagram of sensor waveforms and frequency patterns obtained in the embodiment of FIG. 3. be. 1... Male rotor 2... Female rotor 3, 12.
...Electric motor rotor 4, 13...Electric motor stator 5
...Casing 6, 7.8, 9.10. II...
・Bearing 14.15...Rotation angle detector 16...
- Converter 17... Comparison calculator 18... Motor drive suppressor 19... AE sensor or acceleration sensor 20... Contact detector 21... Arithmetic unit.

Claims (1)

【特許請求の範囲】 1、互いに噛合う雄スクリューロータ及び雌スクリュー
ロータをケーシング内に収納し、両ロータの両端を軸受
にて支持してなるスクリュー流体機械において、雄スク
リューロータに電動機を連結すると共に、雌スクリュー
ロータの軸芯上にも別個の電動機を配置し、この両電動
機を介し雄雌ロータを同期駆動することを特徴とする無
給油式スクリュー流体機械。 2、雄スクリューロータと雌スクリューロータとを組立
てた状態で準静的に測定した雌スクリューロータの準静
的回転伝達誤差と運転中の両ロータの回転角から算出し
た雌スクリューロータの回転変動とを比較し、回転変動
が準静的回転伝達誤差と必要な両ロータ噛間の隙間との
和になるように雌スクリューロータ側の電動機の回転速
度を制御するようにしたことを特徴とする特許請求の範
囲第1項記載の無給油式スクリュー流体機械。 3、雄スクリューロータまたは雌スクリューロータを支
える軸受部に設置したAEセンサまたは加速度センサに
より、両ロータの接触の有無を検出し、接触が生じない
ように雌スクリューロータ側の電動機の回転速度を制御
するようにしたことを特徴とする特許請求の範囲第1項
記載の無給油式スクリュー流体機械。
[Claims] 1. In a screw fluid machine in which a male screw rotor and a female screw rotor that mesh with each other are housed in a casing and both ends of both rotors are supported by bearings, an electric motor is connected to the male screw rotor. An oil-free screw fluid machine characterized in that a separate electric motor is also arranged on the axis of the female screw rotor, and the male and female rotors are driven synchronously through both electric motors. 2. The rotational fluctuation of the female screw rotor calculated from the quasi-static rotation transmission error of the female screw rotor measured quasi-statically with the male screw rotor and female screw rotor assembled and the rotation angle of both rotors during operation. A patent characterized in that the rotational speed of the electric motor on the female screw rotor side is controlled so that the rotational fluctuation is the sum of the quasi-static rotational transmission error and the required gap between the two rotor meshes. An oil-free screw fluid machine according to claim 1. 3. The AE sensor or acceleration sensor installed on the bearing that supports the male screw rotor or female screw rotor detects whether or not there is contact between the two rotors, and controls the rotational speed of the electric motor on the female screw rotor side to prevent contact. An oil-free screw fluid machine according to claim 1, characterized in that the oil-free screw fluid machine is configured to:
JP23110285A 1985-10-18 1985-10-18 Nonlubricating type screw fluid mechinery Pending JPS62195481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23110285A JPS62195481A (en) 1985-10-18 1985-10-18 Nonlubricating type screw fluid mechinery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23110285A JPS62195481A (en) 1985-10-18 1985-10-18 Nonlubricating type screw fluid mechinery

Publications (1)

Publication Number Publication Date
JPS62195481A true JPS62195481A (en) 1987-08-28

Family

ID=16918329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23110285A Pending JPS62195481A (en) 1985-10-18 1985-10-18 Nonlubricating type screw fluid mechinery

Country Status (1)

Country Link
JP (1) JPS62195481A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5348448A (en) * 1992-03-19 1994-09-20 Matsushita Electric Industrial Co., Ltd. Fluid rotating apparatus with plural drive motor synchronization system
US5417551A (en) * 1992-01-31 1995-05-23 Matsushita Electric Industrial Co., Ltd. Housing arrangement for a synchronous plural motor fluid rotary apparatus
JP2008261225A (en) * 2007-04-10 2008-10-30 Ihi Corp Tandem screw compressor
JP2010209746A (en) * 2009-03-09 2010-09-24 Kobe Steel Ltd Screw compressor
CN104454524A (en) * 2014-11-18 2015-03-25 杭州久益机械有限公司 Female-male screw rod rotor synchronous frequency-conversion integrated compressor machine head
CN105121783A (en) * 2013-03-01 2015-12-02 耐驰泵及系统有限公司 Screw pump
JP2015220905A (en) * 2014-05-20 2015-12-07 株式会社荏原製作所 Pump including electric motor and control method of the same
WO2020128830A1 (en) * 2018-12-18 2020-06-25 Atlas Copco Airpower, Naamloze Vennootschap Volumetric machine like a compressor, expander, pump or the like for the displacement of a medium and method thereby used
BE1026958B1 (en) * 2018-12-18 2020-08-11 Atlas Copco Airpower Nv Volumetric machine such as a compressor, expander, pump or the like for moving a medium and method used therein
WO2020160999A1 (en) * 2019-02-05 2020-08-13 Bitzer Kühlmaschinenbau Gmbh Machine for expanding or compressing gaseous media
RU2793258C2 (en) * 2019-02-05 2023-03-30 Битцер Кюльмашиненбау Гмбх Machine for expansion or compression of gaseous media

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5417551A (en) * 1992-01-31 1995-05-23 Matsushita Electric Industrial Co., Ltd. Housing arrangement for a synchronous plural motor fluid rotary apparatus
US5348448A (en) * 1992-03-19 1994-09-20 Matsushita Electric Industrial Co., Ltd. Fluid rotating apparatus with plural drive motor synchronization system
JP2008261225A (en) * 2007-04-10 2008-10-30 Ihi Corp Tandem screw compressor
JP2010209746A (en) * 2009-03-09 2010-09-24 Kobe Steel Ltd Screw compressor
CN101907095A (en) * 2009-03-09 2010-12-08 株式会社神户制钢所 Helical-lobe compressor
CN105121783A (en) * 2013-03-01 2015-12-02 耐驰泵及系统有限公司 Screw pump
JP2016508573A (en) * 2013-03-01 2016-03-22 ネッチュ プンペン ウント システーメ ゲーエムベーハーNetzsch Pumpen & Systeme Gmbh Screw pump
JP2015220905A (en) * 2014-05-20 2015-12-07 株式会社荏原製作所 Pump including electric motor and control method of the same
CN104454524A (en) * 2014-11-18 2015-03-25 杭州久益机械有限公司 Female-male screw rod rotor synchronous frequency-conversion integrated compressor machine head
WO2020128830A1 (en) * 2018-12-18 2020-06-25 Atlas Copco Airpower, Naamloze Vennootschap Volumetric machine like a compressor, expander, pump or the like for the displacement of a medium and method thereby used
BE1026958B1 (en) * 2018-12-18 2020-08-11 Atlas Copco Airpower Nv Volumetric machine such as a compressor, expander, pump or the like for moving a medium and method used therein
US11493043B2 (en) 2018-12-18 2022-11-08 Atlas Copco Airpower, Naamloze Vennootschap Positive displacement machine with kinematic synchronization coupling and with driven moving parts having their own individual drives
WO2020160999A1 (en) * 2019-02-05 2020-08-13 Bitzer Kühlmaschinenbau Gmbh Machine for expanding or compressing gaseous media
RU2793258C2 (en) * 2019-02-05 2023-03-30 Битцер Кюльмашиненбау Гмбх Machine for expansion or compression of gaseous media
US11939978B2 (en) 2019-02-05 2024-03-26 Bitzer Kuehlmaschinenbau Gmbh Machine for depressurizing or compressing gaseous media

Similar Documents

Publication Publication Date Title
KR910009242B1 (en) Torque control apparatus for rotating motor machine
EP3530423B1 (en) Method and device for detecting abnormality of encoder, and robot control system
CN101470433B (en) Machine diagnosing method and device therefor
JPS62195481A (en) Nonlubricating type screw fluid mechinery
CN105773604B (en) Robot controller
CN110601604B (en) Multi-motor speed synchronous control system and control method thereof
CN103853099A (en) SERVO CONTROL device WITH POSITION COMPENSATION FUNCTION FOR DRIVEN MEMBER
US6485274B2 (en) Displacement machine for compressible media
JPH11129176A (en) Calibration method using sensor
US4494207A (en) Dual turbine controller
JPH0861290A (en) Friction pump using magnetic bearing
CN116840680B (en) Magnetic suspension molecular pump motor performance detection method and application thereof
US4484137A (en) Wide dynamic range shaft speed sensor
JP4559912B2 (en) Magnetic bearing device
JP2669540B2 (en) Rotary compressor controller
SU1751499A1 (en) Method of control over radial active magnetic bearings of rotary machine
JP4280051B2 (en) Origin return method and control program in positioning system
JPS63290182A (en) Torque control type rotary motor machine
US7424337B2 (en) Method for increasing the control dynamics of a load driven by a driveshaft of direct drive
JPH11202914A (en) Industrial robot and its fault detecting method, and recording medium where fault detecting program for industrial robot is recorded
JPS61192924A (en) Automatic regulation device for bearing alignment
JP2003047269A (en) Servo controller
JPH0953596A (en) Multiple stage pump and reducing method of fluid exciting force thereof
KR0126786B1 (en) Position detecting method and apparatus of rotating axis
JP4161695B2 (en) Control device for permanent magnet type synchronous motor