JPS6153437A - Control device for idling rpm in internal-combustion engine - Google Patents

Control device for idling rpm in internal-combustion engine

Info

Publication number
JPS6153437A
JPS6153437A JP17644684A JP17644684A JPS6153437A JP S6153437 A JPS6153437 A JP S6153437A JP 17644684 A JP17644684 A JP 17644684A JP 17644684 A JP17644684 A JP 17644684A JP S6153437 A JPS6153437 A JP S6153437A
Authority
JP
Japan
Prior art keywords
current
linear solenoid
engine
sol5
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17644684A
Other languages
Japanese (ja)
Inventor
Seishi Wataya
綿谷 晴司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP17644684A priority Critical patent/JPS6153437A/en
Publication of JPS6153437A publication Critical patent/JPS6153437A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils

Abstract

PURPOSE:To improve accuracy of control by A/D converting a current flowing through a linear solenoid, and controlling it to follow a target value in the captioned device having a valve being adapted to by-pass a throttle valve and controlled in its opening by said linear solenoid. CONSTITUTION:Idling rpm is controlled by adjusting by a linear solenoid 5, opening of a valve intervened in the middle of a by-pass passage so as to by- pass a throttle valve disposed in a suction pipe. Thereupon, first, target opening thetaS of the SOL5 is set by making use of a microcomputer 16 in conformity with a signal yielded after A/D converting 15 an output from a water temperature sensor 14, and a target current IS to conduct through the SOL5 corresponding to the opening thetaS is set. Then, an average current Il flowing through the SOL5 is A/D converted 15, compared with the target current IS, and a ratio of on and off times of a transistor 11 is adjusted to permit a drive current for driving the SOL5 is controlled. The current flowing through the SOL5 is detected across resistance 30.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はりニアソレノイドを用いた内燃機関のアイドリ
ング回転数制御装置、特にその制御精度の向上に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an idling rotation speed control device for an internal combustion engine using a linear solenoid, and particularly to an improvement in control accuracy thereof.

〔従来技術〕[Prior art]

機関のアイドリング時における回転数が補機類の負荷変
化によって変動するのを防止するためおよび機関の温度
に対応して回転数を変化させるためにアイドリング時に
機1りjへ吸入される空気量又は混合気量を調節する方
式が種々提案されているが、その中の一つに吸入空気絞
り弁をパイ・ぐスする通路にリニアソレノイドによって
駆動される弁を配設し、バイパス窒気量を調節する方式
かある。
In order to prevent the rotation speed of the engine from fluctuating due to changes in the load of auxiliary equipment when the engine is idling, and to change the rotation speed in response to the temperature of the engine, the amount of air sucked into the engine during idling or Various methods have been proposed for adjusting the amount of air-fuel mixture, one of which is to install a valve driven by a linear solenoid in the passage that passes through the intake air throttle valve to control the bypass nitrogen amount. Is there a way to adjust it?

従来におけるリニアソレノイドを用いたアイドリング回
転数制御装置を第1図に示す。図において、】は内燃機
関、2は吸気管、3は吸気管2中に配設さノ1アクセル
被ダルと連動する絞シ弁、4は絞シ弁3をバイパスする
パイ、ぞス管、5はパイi4ス管4全通過する吸気量を
調節するだめのIJ ニアソレノイド、6はリニアソレ
ノイド5によって駆動される弁、7,8は吸気管2とバ
イパス管4とを接続する配管である。リニアソレノイド
5は第3図に示す制御回路によって駆動される。第3図
において、1]はりニアソレノイド5を駆動するトラン
ジスタ、12はリニアソレノイド5と連列接続されたフ
ライホイール用ダイオード、13は内燃機関lに影Vを
与える例えばクーラ用コングレツサやパワーステアリン
グ、自動変速機およびランプなどの負荷、]7は負荷1
3類の駆動時に作動する負荷スイッチ、】4は内燃機関
】の温度を表わす水温センサ、15はアナログ値で得ら
れる水温センサ】4の信号をデづジタル値に変換するA
/D コンバータ、16は水温センサ14や負荷]3の
状態に応じてトランジスタ]lのオン、オフ比率を制御
1する制御手段であるマイクロコンピュータ、9は直流
電源である。
FIG. 1 shows a conventional idling speed control device using a linear solenoid. In the figure, ] is an internal combustion engine, 2 is an intake pipe, 3 is a throttle valve disposed in the intake pipe 2 and interlocks with the accelerator pedal, 4 is a pipe and throttle pipe that bypasses the throttle valve 3, 5 is an IJ near solenoid that adjusts the amount of intake air that passes through all the pipes 4, 6 is a valve driven by the linear solenoid 5, and 7 and 8 are pipes that connect the intake pipe 2 and the bypass pipe 4. . The linear solenoid 5 is driven by a control circuit shown in FIG. In FIG. 3, 1] is a transistor for driving the linear solenoid 5; 12 is a flywheel diode connected in series with the linear solenoid 5; 13 is a congressor for a cooler, power steering, etc. that affects the internal combustion engine l; Loads such as automatic transmissions and lamps, ]7 is load 1
4 is a water temperature sensor that indicates the temperature of the internal combustion engine; 15 is a water temperature sensor obtained as an analog value; A converts the signal of 4 into a digital value;
/D converter, 16 is a microcomputer which is a control means for controlling the on/off ratio of the transistor 1 depending on the state of the water temperature sensor 14 and the load 3, and 9 is a DC power supply.

内燃機関1のアイドリング時における吸入空気量即ちバ
イパス管4の弁6の開度()(イ/4’ス開度)は内燃
機関1の作動状態や補機の負荷によって決められるが、
具体的には第5図に示すように冷却水の温度が低いとき
には大きな開度を必要とし、負荷がない状態ではFm線
a、クーラ用コンテレツサなどの負荷が作動している時
には■線すのように表わされる。このような要求特性は
予めマイクロコンピュータ】6内のメモリ(ROM)に
記憶されておシ、第6図に示す手順でIJ ニアソレノ
イド5の電流が制御される。
The amount of intake air when the internal combustion engine 1 is idling, that is, the opening degree () (I/4' opening degree) of the valve 6 of the bypass pipe 4, is determined by the operating state of the internal combustion engine 1 and the load of the auxiliary equipment.
Specifically, as shown in Figure 5, when the temperature of the cooling water is low, a large opening is required, and when there is no load, the Fm line is a, and when a load such as a cooler contelsor is operating, the opening is large. It is expressed as follows. Such required characteristics are stored in advance in the memory (ROM) in the microcomputer 6, and the current of the IJ near solenoid 5 is controlled in accordance with the procedure shown in FIG.

第6図のフローチャートで動作を説明すると、まず水温
センサ14の信号をA/D コンバータ15によってデ
ィジタル値に変換し、この変換した水温f−1tマイク
ロコンピュータ】6に入力し、そのときの水温に対する
所要バイパス開度をマイクロコンピュータ16内のRA
 Mから読出し、開度θ、=fCWT)  を設定する
。次に、負荷スイッチ17のオン、オフ状態を入力し、
負荷に対応したバイパス開度θ、=f(L)を設定する
0これら割合が大きいときには駆動電流の平均値工2は
大きな値を示す。従って、オンの割合(デユーティ比)
を変えることにより、リニアソレノイド5のストローク
が制御され、パイ・ぞス管4に設けられた弁6の開度が
変化し、吸入空気量が調節される。このようにして、ア
イドリング時の吸入空気量が制御されるが、従来装置で
trh ’)ニアソレノイド5の温度や印加電圧によっ
てチューティ比に対する駆動電流の平均値即ちストロー
ク(開度)がかなり大きく変化してしまうという欠、φ
を有していた。
To explain the operation with reference to the flowchart in FIG. 6, first, the signal from the water temperature sensor 14 is converted into a digital value by the A/D converter 15, and this converted water temperature is input to the microcomputer 6. The required bypass opening degree is determined by RA in the microcomputer 16.
Read from M and set the opening degree θ, = fCWT). Next, input the on/off state of the load switch 17,
Setting the bypass opening degree θ,=f(L) corresponding to the load When these ratios are large, the average value of the drive current 2 shows a large value. Therefore, the on rate (duty ratio)
By changing this, the stroke of the linear solenoid 5 is controlled, the opening degree of the valve 6 provided in the piston pipe 4 is changed, and the amount of intake air is adjusted. In this way, the amount of intake air during idling is controlled, but in the conventional device, the average value of the drive current with respect to the tute ratio, that is, the stroke (opening degree) changes considerably depending on the temperature and applied voltage of the near solenoid 5. The lack of doing it, φ
It had

すなわち、第7図に示すようにリニアソレノイド5は駆
動電流に対してストロークが比例的に変化する特性を有
しておシ、同じデユーティ比であっても印加電圧が低下
したり、リニアソレノイド5のコイル抵抗値がWA度」
、昇廻よって増大したりすると、第8図に示すようにデ
ユーティ比に対するコイルの平均電流が正規の特性aか
ら大幅に変動してbのようになシ、所望の平均箱流即ち
ストロークが得られなくなる。このため、バイパス管4
を通過する空気量が低下し、所望のアイドリングの開度
設定値は第5図に示すような特性として予めマイクロコ
ンピュータ】6内のROMに記憶されてお9、負荷スイ
ッチ17は単に1個には限定されず、核数の負荷に対し
て個別に負荷スイッチが設けられ、これらの個別の負荷
信号がマイクロコンピュータ16に入力され、第5図に
示す曲線すの値が種々の伯ンこ設定される場合もめる。
That is, as shown in FIG. 7, the linear solenoid 5 has a characteristic that its stroke changes proportionally to the drive current, and even if the duty ratio is the same, the applied voltage may decrease or The coil resistance value is WA degrees.
, increases due to rising rotation, the average current of the coil with respect to the duty ratio changes greatly from the normal characteristic a, as shown in Fig. 8, and becomes as shown in b, and the desired average box flow, that is, the stroke, cannot be obtained. I won't be able to do it. For this reason, the bypass pipe 4
The desired idling opening setting value is stored in advance in the ROM in the microcomputer 6 as a characteristic shown in FIG. 9, and the load switch 17 is reduced to just one. is not limited, and load switches are provided individually for the loads of the number of nuclei, and these individual load signals are input to the microcomputer 16, and the values of the curve shown in FIG. I'll argue if it happens.

最終の目標開度θ8=f(OF、θL)が水温および負
荷状態に応じて設定されると、この目標開度θ8 に対
応したりニアソレノイド5への印加電圧の平均値(チュ
ーティ比)μ第2図Vご示すような特性となるので、予
めこのリニアソレノイド5の特性をマイクロコンピュー
タ16円のROM VC記憶させておき、目標開度08
に対応したデユーティ比を読み出し、このチューティ比
でトランジスタ]1を駆動する。リニアソレノイド5は
駆動電流に比例したストローク特゛性を有しており、一
定周期でオン、オフ9jA動される場合第4図(alに
示すようにオンの割合が小さいときには駆動電流の平均
値I+は小さな値を示し、第4図(b)に示すようにオ
ンの回転数を保持できなくなる。
When the final target opening θ8=f (OF, θL) is set according to the water temperature and load condition, the average value of the voltage applied to the near solenoid 5 (Tuty ratio) μ The characteristics will be as shown in Figure 2 V, so store the characteristics of this linear solenoid 5 in advance in a 16 yen microcomputer ROM VC, and set the target opening to 08.
The duty ratio corresponding to is read out, and the transistor ]1 is driven with this duty ratio. The linear solenoid 5 has a stroke characteristic that is proportional to the drive current, and when the linear solenoid 5 is turned on and off at a constant cycle, the average value of the drive current is I+ shows a small value, and as shown in FIG. 4(b), it becomes impossible to maintain the ON rotation speed.

そこで、このような欠点を解消するために第9図に示す
ような装置が考えられた。この装置においては、マイク
ロコンピュータ16から制御すべきりニアソレノイド5
の電流に対応したディジタル値を出力し、このディジタ
ル値をD/A コンバータ18によシアナログ値に変換
し、リニアソレノイド5の電流がこのアナログ値に一致
するようVC、tペアン′f20、トランジスタ11お
よび電流フィードバック用の抵抗19によりt流フィー
ドバック制御を行っている。これによると、□リニアソ
レノイド5の電流はコイル温度による抵抗値変化や印加
電圧の影響を受けることなく精度の良い特性が得られる
が、D/A コンバータ18を必要とするため回路構成
が複雑で高価となるばかシでなく、マイクロコンピュー
タ16とのインタフェースに要するビット数を増加させ
、またトランジスタ11が連続動作をするためトランジ
スタ11の電力損失が大となシ、温度上昇も大きくなる
という欠点を有していた。
Therefore, in order to eliminate such drawbacks, a device as shown in FIG. 9 was devised. In this device, a shear near solenoid 5 is controlled from a microcomputer 16.
The D/A converter 18 outputs a digital value corresponding to the current, converts this digital value into an analog value by the D/A converter 18, and converts VC, t pair 'f20, and transistor so that the current of the linear solenoid 5 matches this analog value. 11 and a resistor 19 for current feedback performs t-current feedback control. According to this, the current of the linear solenoid 5 can obtain accurate characteristics without being affected by changes in resistance value due to coil temperature or applied voltage, but the circuit configuration is complicated because it requires the D/A converter 18. This method is not expensive, but increases the number of bits required for the interface with the microcomputer 16, and also has the drawbacks that since the transistor 11 operates continuously, the power loss of the transistor 11 is large and the temperature rise is also large. had.

〔発明の概要〕[Summary of the invention]

本発明は上記のような従来の欠点を除去するために成さ
れたものであり、リニアソレノイド5の電流値を検出し
、この値をA/D  コンバータニヨシデイジタル値に
変換してマイクロコンピュータによりデユーティ比に対
応した電流値に補正制御することにより、制御精I!f
、全向上することができるとともに構成簡単で電力損失
も小妬い内燃機関のアイドリング回転数制御装置を提供
することを目的とする。
The present invention was made in order to eliminate the above-mentioned drawbacks of the conventional technology, and detects the current value of the linear solenoid 5, converts this value into a digital value in the A/D converter, and uses the microcomputer to convert the current value into a digital value. By performing correction control to the current value corresponding to the duty ratio, the control precision I! f
An object of the present invention is to provide an idling speed control device for an internal combustion engine that can improve the overall performance of the engine, has a simple configuration, and reduces power loss.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面とともに説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第10図において、30は直流1i源9に対してリニア
ソレノイド5と直列に接続された抵抗、31はオペアン
プ、32は抵抗、33はコンデンサである。
In FIG. 10, 30 is a resistor connected in series with the linear solenoid 5 with respect to the DC 1i source 9, 31 is an operational amplifier, 32 is a resistor, and 33 is a capacitor.

上記装置の動作を第1]図のフローチャートによシ説明
する。まず、従来同様に水温テークや負荷状態に応じて
リニアソレノイド5の目標開度θ8の設定を行う。次に
1  目標開度θ8に対応したリニアソレノイド5に流
すべき目標電流値I8 を設定する。この目標開度θ8
と目標電流値Isとの関係は第7図に示した通シであり
、この特性を予めマイクロコンピュータ16内のROM
に記憶しておく。次に、リニアソレノイド5に流れる平
均電流値工6なるアナログ値eA/D コンバータ15
にょ9デイジタル値に変換し、このディジタル値とマイ
クロコンピュータ16で設定した目標電流値工。とを比
較し、両者を一致させるべくトランジスタ】1のオン、
オフ時間の比率を調節することにより、リニアソレノイ
ド5の駆動電流を匍]御する。リニアソレノイド5に流
れる電流f直は抵抗30によって電圧として検出され、
オペアンプ31で電圧増幅された後に抵抗32とコンデ
ンサ33から成る平滑回路で平均化され、A/D コン
バータ15に入力される。
The operation of the above device will be explained with reference to the flowchart in Figure 1. First, the target opening degree θ8 of the linear solenoid 5 is set in accordance with the water temperature take and the load condition, as in the conventional case. Next, a target current value I8 to be applied to the linear solenoid 5 corresponding to the target opening degree θ8 is set. This target opening degree θ8
The relationship between the current value Is and the target current value Is is as shown in FIG.
Remember it. Next, the average current value flowing through the linear solenoid 5 is an analog value eA/D converter 15
The current value is converted into a digital value, and the target current value is set using this digital value and the microcomputer 16. and in order to match the two, turn on transistor]1,
By adjusting the off-time ratio, the drive current of the linear solenoid 5 is controlled. The current f flowing through the linear solenoid 5 is detected as a voltage by the resistor 30,
After the voltage is amplified by an operational amplifier 31, it is averaged by a smoothing circuit consisting of a resistor 32 and a capacitor 33, and is input to the A/D converter 15.

このように本実施例ではりニアソレノイド5の電流を@
接フィードバック制御するので、リニアソレノイド5の
開度はコイル温度や印加電圧の変動を受けることなく、
常に安定したn′度が旬られる。
In this way, in this embodiment, the current of the beam near solenoid 5 is @
Since direct feedback control is used, the opening degree of the linear solenoid 5 is not affected by fluctuations in coil temperature or applied voltage.
A stable n' degree is always maintained.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明においては、リニアソレノイドの電
流を@度情報をA/D変換するA/D 変換器を介して
制御手段に入力し、目標値と一致するようにフィードバ
ック制御しており、簡単な構成で不必要な電力損失も生
じることがなく、常に安定したバイノクス空気量が得ら
れ、アイドリング回転数の精度を向上させることができ
る。
As described above, in the present invention, the current of the linear solenoid is input to the control means via the A/D converter that converts the degree information into A/D, and feedback control is performed so that it matches the target value. With a simple configuration, there is no unnecessary power loss, a stable amount of binox air is always obtained, and the accuracy of the idling speed can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はアイドリング回転数1[す御装置の基本構成図
、第2図および第7図はりニアソレノイドの特性図、第
3図は従来装置の制御1回路図、第4図はりニアソレノ
イドの印加−1圧と電流との関係図、第5図は水温およ
び負荷に対して内燃機関として必要なバイパス開度を示
す図、第6図は従来装置のフローチャート、第8図は従
来装置に2けるリニアソレノイドの特性図、第9図は従
来装置の他の例における制御回路図、第10図および第
11図は夫々本発明装置の制御回路図およびそのフロ−
チャートである。 1・・・内燃機関、2・・・吸気管、3・・・絞シ弁、
4・・・パイ/4’ス管、5・・・リニアンレノイド、
6・−・弁、】3・・・負荷、]4・・・水温センサ、
15・・・A/D  コンバータ、16・・・マイクロ
コンピュータ、17・・・負荷スイッチ、30・・・抵
抗。 尚、図中同一符号は同−又は相当部分を示す。
Figure 1 is a basic configuration diagram of the idling speed 1 [control device], Figures 2 and 7 are characteristic diagrams of the beam near solenoid, Figure 3 is a circuit diagram of the control 1 of the conventional device, and Figure 4 is a diagram of the beam near solenoid. Figure 5 is a diagram showing the bypass opening required for an internal combustion engine with respect to water temperature and load, Figure 6 is a flowchart of the conventional device, and Figure 8 is a diagram showing the relationship between applied -1 pressure and current. 9 is a control circuit diagram of another example of the conventional device, and FIGS. 10 and 11 are control circuit diagrams and flowcharts of the device of the present invention, respectively.
It is a chart. 1... Internal combustion engine, 2... Intake pipe, 3... Throttle valve,
4...Pi/4's tube, 5...Linian renoid,
6... Valve, ]3... Load, ]4... Water temperature sensor,
15... A/D converter, 16... Microcomputer, 17... Load switch, 30... Resistor. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] (1)機関の温度情報をディジタル値に変換するA/D
変換器を有し、機関の負荷変動や機関の温度に対応して
機関の吸入空気量を可変することによりアイドリング時
の回転数を制御するようにした内燃機関のアイドリング
回転数制御装置において、吸気管中に配設されアクセル
ペダルに連動する絞り弁をバイパスする通路中に設けら
れ該バイパス通路の通過空気量を調節する弁、該弁の開
度を機関状態に応じた目標値に制御するリニアソレノイ
ド、該リニアソレノイドの電流をデューティ比を可変す
ることにより目標値に制御する制御手段、リニアソレノ
イドの電流を検出する電流検出手段を備え、電流検出手
段から得られるアナログ信号を前記A/D変換器により
ディジタル値に変換して制御手段に入力し、制御手段は
リニアソレノイドの電流目標値とA/D変換器の出力と
を比較し、その偏差が零となるようにそのデューティ出
力を調節するようにしたことを特徴とする内燃機関のア
イドリング回転数制御装置。
(1) A/D that converts engine temperature information into digital values
In an idling speed control device for an internal combustion engine, which has a converter and controls the engine speed at idling by varying the amount of air intake into the engine in response to engine load fluctuations and engine temperature, A linear valve that is installed in a passage that bypasses a throttle valve that is arranged in a pipe and that is linked to an accelerator pedal and that adjusts the amount of air passing through the bypass passage, and that controls the opening degree of the valve to a target value depending on the engine condition. A solenoid, a control means for controlling the current of the linear solenoid to a target value by varying a duty ratio, and a current detection means for detecting the current of the linear solenoid, and the analog signal obtained from the current detection means is converted into the A/D converter. The control means compares the current target value of the linear solenoid with the output of the A/D converter and adjusts its duty output so that the deviation becomes zero. An idling speed control device for an internal combustion engine, characterized in that:
JP17644684A 1984-08-23 1984-08-23 Control device for idling rpm in internal-combustion engine Pending JPS6153437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17644684A JPS6153437A (en) 1984-08-23 1984-08-23 Control device for idling rpm in internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17644684A JPS6153437A (en) 1984-08-23 1984-08-23 Control device for idling rpm in internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS6153437A true JPS6153437A (en) 1986-03-17

Family

ID=16013844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17644684A Pending JPS6153437A (en) 1984-08-23 1984-08-23 Control device for idling rpm in internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS6153437A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6293456A (en) * 1985-10-21 1987-04-28 Honda Motor Co Ltd Solenoid current control method for intake air quantity control solenoid valve of internal combustion engine
JPS6293460A (en) * 1985-10-21 1987-04-28 Honda Motor Co Ltd Solenoid current control method for intake air quantity control solenoid value of internal combustion engine
FR2639680A1 (en) * 1988-11-30 1990-06-01 Marelli Autronic Spa DEVICE FOR CLOSED LOOP CONTROL OF THE IDLE SPEED OF AN INTERNAL COMBUSTION ENGINE
US5640943A (en) * 1994-05-10 1997-06-24 Nippondenso Co., Ltd. Air flow rate control apparatus for internal combustion engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6022034A (en) * 1983-07-15 1985-02-04 Toyota Motor Corp Engine-speed controlling method for internal-combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6022034A (en) * 1983-07-15 1985-02-04 Toyota Motor Corp Engine-speed controlling method for internal-combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6293456A (en) * 1985-10-21 1987-04-28 Honda Motor Co Ltd Solenoid current control method for intake air quantity control solenoid valve of internal combustion engine
JPS6293460A (en) * 1985-10-21 1987-04-28 Honda Motor Co Ltd Solenoid current control method for intake air quantity control solenoid value of internal combustion engine
FR2639680A1 (en) * 1988-11-30 1990-06-01 Marelli Autronic Spa DEVICE FOR CLOSED LOOP CONTROL OF THE IDLE SPEED OF AN INTERNAL COMBUSTION ENGINE
US5640943A (en) * 1994-05-10 1997-06-24 Nippondenso Co., Ltd. Air flow rate control apparatus for internal combustion engine

Similar Documents

Publication Publication Date Title
US6223731B1 (en) Fuel feeding apparatus with response delay compensation
US4716871A (en) Intake system for engine
JPS59203850A (en) Apparatus for controlling engine speed
US3973537A (en) Fuel supply systems for internal combustion engines
RU2167325C2 (en) Method of and device for control of power of supercharged internal combustion engine
US4637280A (en) Control system for motor vehicle with continuously variable transmission and engine
US4721082A (en) Method of controlling an air/fuel ratio of a vehicle mounted internal combustion engine
US4111162A (en) Method and system for controlling the mixture air-to-fuel ratio
JPS6153437A (en) Control device for idling rpm in internal-combustion engine
JPH08303285A (en) Device and method for controlling valve for automobile
US4681075A (en) Idling speed feedback control method for internal combustion engines
US4391256A (en) Air-fuel ratio control apparatus
JPH0245633A (en) Bypass air quantity controller for internal combustion engine
JPH0128214B2 (en)
JP2721974B2 (en) Duty solenoid control device
JPH04134161A (en) Idling speed controller for engine
JPS6332353Y2 (en)
JP2832296B2 (en) Duty solenoid control device
JPH074289A (en) Idle speed control method
JPH032689Y2 (en)
JP2940919B2 (en) Duty solenoid control device
JP2660624B2 (en) Idle speed control device for internal combustion engine
JPH06167235A (en) Method and apparatus for forming target value of controlling intake pressure and/or supercharging pressure of internal combustion engine
JPS6344942B2 (en)
JP2832295B2 (en) Duty solenoid control device