JPS6344942B2 - - Google Patents
Info
- Publication number
- JPS6344942B2 JPS6344942B2 JP57098134A JP9813482A JPS6344942B2 JP S6344942 B2 JPS6344942 B2 JP S6344942B2 JP 57098134 A JP57098134 A JP 57098134A JP 9813482 A JP9813482 A JP 9813482A JP S6344942 B2 JPS6344942 B2 JP S6344942B2
- Authority
- JP
- Japan
- Prior art keywords
- throttle valve
- gas
- valve opening
- opening degree
- engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000446 fuel Substances 0.000 claims description 33
- 238000001514 detection method Methods 0.000 claims description 12
- 239000007789 gas Substances 0.000 description 47
- 238000012937 correction Methods 0.000 description 8
- 239000002737 fuel gas Substances 0.000 description 8
- 230000001105 regulatory effect Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 230000004043 responsiveness Effects 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000007257 malfunction Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D19/00—Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
- F02D19/02—Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
- F02D19/021—Control of components of the fuel supply system
- F02D19/023—Control of components of the fuel supply system to adjust the fuel mass or volume flow
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/30—Use of alternative fuels, e.g. biofuels
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
Description
【発明の詳細な説明】
本発明は、機関の負荷状態に応じて空燃比を自
動的に調整するガス燃料機関の制御装置に関する
ものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control device for a gas fuel engine that automatically adjusts the air-fuel ratio according to the load condition of the engine.
一般にガス燃料機関においてノツキング域及び
失火域を回避し、かつ燃費の低減と排気有害成分
の低減を計りながら効率よく機関を運転するに
は、常に最適な空燃比が得られるように制御する
必要がある。 In general, in order to avoid the knocking region and misfire region in a gas fuel engine, and to operate the engine efficiently while reducing fuel consumption and harmful exhaust components, it is necessary to control the air-fuel ratio so that the optimum air-fuel ratio is always obtained. be.
このような制御を行なう従来技術としては、吸
入空気圧を利用して空気量を補正したり、ミキサ
ー部に空気流量がもたらす動圧を感知するバタフ
ライに連動する燃料絞り部を設ける等の機械的手
段によるものが一般的である。しかしながら、ノ
ツキングや失火を回避し、かつ燃費や排気ガスを
低減することを考慮した場合の空燃比は負荷率に
対して単純直線的な関係にはならないため、上記
の機械的な手段では変化する負荷率に応じて常に
最適な空燃比を得ることは困難である。第1図は
この状況を示すものであり、横軸に負荷率の代用
特性であるスロツトル弁開度をとり、縦軸に空燃
比の代りにガス量調整弁開度をとつた場合、燃費
悪化域やノツキング域、失火あるいは失速域が図
のような位置に存在するため、許容されるガス量
調整弁開度はこれらの区域の間に残された山型の
区域に限定されることになり、直線的な関係が得
られないのである。 Conventional techniques for performing such control include mechanical means such as correcting the amount of air using intake air pressure, and providing a fuel throttle section linked to a butterfly that senses the dynamic pressure caused by the air flow rate in the mixer section. This is common. However, the air-fuel ratio does not have a simple linear relationship with the load factor when considering the need to avoid knocking and misfire, and to reduce fuel consumption and exhaust gas. It is difficult to always obtain the optimum air-fuel ratio depending on the load factor. Figure 1 shows this situation. When the horizontal axis shows the throttle valve opening, which is a substitute characteristic for the load factor, and the vertical axis shows the gas flow adjustment valve opening instead of the air-fuel ratio, fuel efficiency deteriorates. Since there are areas as shown in the diagram, such as the nozzle area, the knocking area, and the misfire or stall area, the permissible gas amount adjustment valve opening is limited to the mountain-shaped area left between these areas. , a linear relationship cannot be obtained.
また、他の従来技術としては、燃焼室出口部に
酸素濃度センサーを設け、その検出結果に基づい
て燃料供給量を調整することも行なわれている
が、酸素濃度センサーは一般に高価でしかも耐久
性に乏しく動作も不安定であり、制御回路が複雑
になるとともに取替えコストが高くつく等の問題
があつた。 Another conventional technique is to install an oxygen concentration sensor at the outlet of the combustion chamber and adjust the amount of fuel supplied based on the detection results, but oxygen concentration sensors are generally expensive and have poor durability. There were problems such as poor performance and unstable operation, complicated control circuits, and high replacement costs.
本発明はこれらの点に着目し、負荷率に応じた
空燃比制御を適切に行なうことのできるガス燃料
機関の制御装置を提供することを目的としてなさ
れたものであり、スロツトル弁開度を調整して機
関の回転速度を一定に保持するガバナ機構と、ス
ロツトル弁の開度を検出する手段と、ガス量調整
弁の開度を検出する手段と、スロツトル弁開度に
対するガス量調整弁開度のあり得べき関係を定常
運転状態における定格出力でのスロツトル弁開度
を越える領域にまで及んで数表の形で記憶する手
段と、サンプリングされたスロツトル弁開度とガ
ス量調整弁開度の各検出結果に応じ前記数表に基
づいてガス量調整弁開度を決定して制御出力を出
す演算手段と、演算手段の制御出力によりガス量
調整弁開度を増減する調整手段と、を備えてお
り、定常運転状態における定格出力でのスロツト
ル弁開度を越える領域においては、失火あるいは
失速を生じない燃料リツチな条件となるようにガ
ス量調整弁開度が設定されていることを特徴とし
ている。 The present invention has focused on these points, and has been made for the purpose of providing a control device for a gas fuel engine that can appropriately control the air-fuel ratio according to the load factor. a governor mechanism that maintains the rotational speed of the engine at a constant level; a means for detecting the opening of the throttle valve; a means for detecting the opening of the gas volume adjustment valve; A means for storing the possible relationship in the form of a numerical table extending to a region exceeding the throttle valve opening at rated output in a steady operating state, and A calculation means for determining the opening degree of the gas amount adjustment valve based on the numerical table according to each detection result and outputting a control output, and an adjustment means for increasing or decreasing the opening degree of the gas amount adjustment valve based on the control output of the calculation means. The gas amount adjustment valve opening is set to provide fuel-rich conditions that do not cause misfire or stall in a region exceeding the throttle valve opening at rated output under steady-state operating conditions. There is.
すなわち、本発明はガバナ機構で制御される定
速運転機関において、空気量をスロツトル弁開度
で間接的に検出し、また負荷率もその代用特性で
あるスロツトル弁開度で検出し、これらの検出結
果に基づいて負荷と空気量に応じたガス量調整弁
開度を演算手段により計算してガス供給量を制御
するものであり、スロツトル弁開度に対する最適
なガス量調整弁開度を予め実験によつて求め、こ
れを数表の形で記憶させておくことにより、常に
その時の負荷率に適した空燃比を得ることができ
るのである。また、本発明においては、定常運転
状態における定格出力でのスロツトル弁開度を越
える領域にまで及んでスロツトル弁開度に対する
ガス量調整弁開度のあり得べき関係を記憶させ、
かつこの領域ではガス量調整弁開度を増大して燃
料リツチな条件となるように設定してある。これ
は、運転中に急激に負荷が増大し、過給機応答が
伴わない等の理由でガバナ機構が過大に反応して
スロツトル弁開度が定格値より大きくなる場合が
あることに対処するためであり、一般には演算手
段の誤動作を避ける目的で、第1図に破線で示す
ように定格出力の場合の値をそのまま伸ばして設
定されることが考えられるが、本発明ではこの部
分も制御の対象としており、一時的にガス供給量
が増大して失速状態となることが回避されるので
ある。 That is, in a constant speed operating engine controlled by a governor mechanism, the present invention indirectly detects the amount of air using the throttle valve opening, and also detects the load factor using the throttle valve opening, which is a substitute characteristic. Based on the detection results, a calculation means calculates the gas volume adjustment valve opening according to the load and air volume to control the gas supply amount, and the optimal gas volume adjustment valve opening for the throttle valve opening is determined in advance. By determining this through experiments and storing it in the form of a numerical table, it is possible to always obtain an air-fuel ratio suitable for the load factor at that time. Furthermore, in the present invention, the possible relationship of the gas amount adjustment valve opening to the throttle valve opening is memorized even in a region exceeding the throttle valve opening at the rated output in a steady operating state,
In addition, in this region, the opening degree of the gas amount regulating valve is increased to provide a fuel-rich condition. This is to deal with the situation where the governor mechanism may overreact and the throttle valve opening may become larger than the rated value due to a sudden load increase during operation and no turbocharger response. Generally, in order to avoid malfunction of the calculation means, the value for the rated output may be extended as is and set as shown by the broken line in Figure 1, but in the present invention, this part is also controlled. This avoids a temporary increase in the gas supply amount resulting in a stall condition.
次に、本発明の実施例について図面を参照しな
がら説明する。 Next, embodiments of the present invention will be described with reference to the drawings.
第2図は概念系統図であり、図において、1は
機関、2はガバナ機構、3はスロツトル弁開度を
検出する手段である開度検出器、4はガス量調整
弁開度を検出する手段である開度検出器、5は記
憶手段であるROM、6は演算手段であるマイク
ロコンピユータ、7はガス量調整弁開度を増減す
る調整手段である電動モータ、8はスロツトル
弁、9はガス量調整弁、10は回転速度検出器で
ある。 Fig. 2 is a conceptual system diagram, and in the figure, 1 is the engine, 2 is the governor mechanism, 3 is the opening detector which is a means for detecting the throttle valve opening, and 4 is the opening of the gas volume adjustment valve. 5 is a ROM that is a storage means; 6 is a microcomputer that is a calculation means; 7 is an electric motor that is an adjustment means for increasing or decreasing the opening of the gas amount regulating valve; 8 is a throttle valve; 9 is a throttle valve. 10 is a rotational speed detector.
機関1の燃焼室に供給される燃料ガス11はガ
ス量調整弁9を経てミキサー12に至り、別のポ
ートから吸入された空気13とミキシングされた
後、スロツトル弁8を経由して機関1に供給され
る。スロツトル弁8は回転速度検出器10の検出
結果に基づいてガバナ機構2により弁開度を制御
され、機関1は定速運転状態が保持される。ガバ
ナ機構2としては、回転速度検出器10の出力信
号によつて作動する電子ガバナ等の周知の機構を
適宜採用することができる。またスロツトル弁8
及びガス量調整弁9の開度検出器3,4として
は、例えばポテンシヨメータを用いることがで
き、その出力はマルチプレクサA/Dコンバータ
14にそれぞれ送られ、デジタル量に変換され
る。 The fuel gas 11 supplied to the combustion chamber of the engine 1 passes through the gas amount adjustment valve 9 and reaches the mixer 12, where it is mixed with air 13 taken in from another port, and then flows into the engine 1 via the throttle valve 8. Supplied. The valve opening of the throttle valve 8 is controlled by the governor mechanism 2 based on the detection result of the rotational speed detector 10, and the engine 1 is maintained in a constant speed operating state. As the governor mechanism 2, a well-known mechanism such as an electronic governor operated by the output signal of the rotational speed detector 10 can be appropriately employed. Also, throttle valve 8
For example, potentiometers can be used as the opening degree detectors 3 and 4 of the gas amount regulating valve 9, and their outputs are sent to the multiplexer A/D converter 14 and converted into digital quantities.
マイクロコンピユータ6の21はCPU、22
はRAM、23はI/Oインターフエース、24
はデータバス、アドレスバス、コントロールバス
等からなるいわゆるシステムバスラインである。
マイクロコンピユータ6を構成する各ユニツト
は、デイスクリートなLSIで構成してもよく、あ
るいは全体をまとめたいわゆるワンチツプマイコ
ンを用いてもよい。ROM5には演算制御用のプ
ログラムや、スロツトル弁開度に対するガス量調
整弁開度のあり得べき関係を数表化したデータが
記憶されている。 21 of microcomputer 6 is CPU, 22
is RAM, 23 is I/O interface, 24
is a so-called system bus line consisting of a data bus, address bus, control bus, etc.
Each unit constituting the microcomputer 6 may be composed of a discrete LSI, or a so-called one-chip microcomputer may be used. The ROM 5 stores arithmetic control programs and data that represents a possible relationship between the throttle valve opening and the gas amount adjustment valve opening.
このスロツトル弁開度とガス量調整弁開度の関
係は、第1図に示す制御ライン25のような形で
設定される。すなわち、鎖線Rの左側の定格負荷
以下の領域では燃費悪化域、ノツキング域、失火
域あるいは失速域等を避けて、これらの間に残さ
れた区域内に山型に設定され、定格負荷を越える
鎖線Rの右側の領域では、失火や失速を避けるた
めにガス量調整弁開度を急激に増大するように設
定されている。なお、制御ライン25は小区分ご
とに分けて数表化しているためステツプ状になつ
ているが、ROM5の記憶容量を大きくする程、
きめの細かい滑らかな曲線に近付けることができ
るのはいうまでもない。 The relationship between the throttle valve opening degree and the gas amount adjustment valve opening degree is set as shown in the control line 25 shown in FIG. In other words, in the area below the rated load on the left side of the chain line R, the engine is set in a mountain shape in the area left between these areas, avoiding areas where fuel efficiency deteriorates, knocking, misfiring, or stalling, and exceeds the rated load. In the region to the right of the chain line R, the opening degree of the gas amount regulating valve is set to increase rapidly in order to avoid misfires and stalls. Note that the control line 25 is divided into subdivisions and shown in a numerical table, so it is in the form of steps, but as the storage capacity of the ROM 5 is increased,
Needless to say, it is possible to approximate a fine-grained, smooth curve.
マイクロコンピユータ6では、スロツトル弁開
度の検出結果に対応したガス量調整弁開度を制御
ライン25から求め、これとガス量調整弁開度の
検出結果とを比較して両者の差を少なくするよう
な制御出力、すなわち増信号26あるいは減信号
27を出し、増幅回路28を経て電動モータ7を
正転あるいは逆転させる。この電動モータ7の駆
動により、ガス量調整弁9は内部の調整弁(図示
せず)がリンク29を介して駆動され、最適の空
燃比が得られるようにガス供給量が調整されるの
である。第3図は上述した動作についての制御フ
ローチヤートを示すものである。 The microcomputer 6 obtains the gas amount adjustment valve opening degree from the control line 25 corresponding to the detection result of the throttle valve opening degree, and compares this with the detection result of the gas amount adjustment valve opening degree to reduce the difference between the two. A control output such as that shown in FIG. By driving this electric motor 7, an internal regulating valve (not shown) in the gas quantity regulating valve 9 is driven via a link 29, and the gas supply quantity is adjusted so as to obtain the optimum air-fuel ratio. . FIG. 3 shows a control flowchart for the above-mentioned operation.
以上の説明は、燃料ガスの発熱量が一定である
ことを前提としたものであるが、実験によると、
ノツキング域や失火域等は燃料ガスの発熱量に応
じてほぼ上下にシフトする結果が得られており、
第1図の制御ライン25は発熱量に応じて設定す
ることが望ましい。特に高負荷域においては運転
可能域が狭いため、燃料ガス成分が変化した場合
にノツキング域や失火域に入りやすく、良好な運
転状態が得られないことになる。 The above explanation assumes that the calorific value of the fuel gas is constant, but according to experiments,
The results show that the knocking region and misfire region shift almost vertically depending on the calorific value of the fuel gas.
It is desirable that the control line 25 in FIG. 1 be set according to the amount of heat generated. Particularly in the high load range, the operable range is narrow, so when the fuel gas components change, the engine tends to enter the knocking range or misfire range, making it impossible to obtain good operating conditions.
第4図及び第5図は、このような点を解決する
ために、燃料ガスの発熱量の変化を排気温度によ
つて検出し、この検出結果に応じてスロツトル弁
開度に対するガス量調整弁開度を自動的に補正す
るようにした実施例であり、以下、前述の実施例
と異なる点について述べる。 In order to solve this problem, Figs. 4 and 5 show that changes in the calorific value of the fuel gas are detected based on the exhaust temperature, and the gas amount adjustment valve is adjusted according to the detection result for the throttle valve opening. This is an embodiment in which the opening degree is automatically corrected, and the differences from the previous embodiments will be described below.
ガス燃料機関において一定の負荷率を保つて空
燃比を変えて行くと、ノツキング域や失火域等に
入つたり燃費が変つたりするが、同時に排気温度
も変化し、かつλ=1近辺で排気温度はピークと
なる。この実験的事実に基づき、本実施例では常
に排気温度がピーク値近辺にある状態で運転する
ことによつてλ=1を保持し、しかもノツキング
域や失火域等を避けつつ燃費も良好な状態に保と
うとするものであり、燃料ガスの発熱量の変化を
排気温度の変化によつて検出し、その時の発熱量
でのλ=1近辺に動作点を移動させ、常に望まし
い空燃比を保持するように構成されている。 When a gas fuel engine maintains a constant load factor and changes the air-fuel ratio, it enters the knocking region or misfire region, and the fuel efficiency changes, but at the same time, the exhaust temperature also changes, and the The exhaust temperature reaches its peak. Based on this experimental fact, in this example, by operating with the exhaust temperature always near the peak value, λ = 1 is maintained, and the fuel efficiency is also good while avoiding the knocking region and misfire region. It detects changes in the calorific value of fuel gas by changes in exhaust temperature, moves the operating point to around λ = 1 at that calorific value, and always maintains the desired air-fuel ratio. It is configured as follows.
第4図において、31は機関排気温度を検出す
る排気温度センサー、32は演算増幅回路、33
はA/D変換器であり、排気温度センサー31の
検出出力は演算増幅回路32でA/D変換器33
の入力レンジに適合するように演算増幅され、
A/D変換器33を経てマイクロコンピユータ6
に送られる。なお、排気温度センサー31には
CA熱電対等の公知技術を適宜用いることができ、
機関1が多シリンダー機関の場合には、排気集合
管の出口部に設けてもよく、あるいは任意の特定
シリンダーに設けてもよい。 In FIG. 4, 31 is an exhaust temperature sensor that detects the engine exhaust temperature, 32 is an operational amplifier circuit, and 33
is an A/D converter, and the detection output of the exhaust temperature sensor 31 is sent to the A/D converter 33 by the operational amplifier circuit 32.
is operationally amplified to fit the input range of
Microcomputer 6 via A/D converter 33
sent to. Note that the exhaust temperature sensor 31 has
Known techniques such as CA thermocouples can be used as appropriate;
If the engine 1 is a multi-cylinder engine, it may be provided at the outlet of the exhaust manifold, or it may be provided at any specific cylinder.
ここで、単に排気温度の検出結果をフイードバ
ツクし、ピークを得るようにガス量調整弁を操作
するだけの制御では、時定数が大きいために負荷
率変更等がきつかけとなつてハンチングが起き、
これを避けようとすると応答性が悪くなる等の問
題点があるので、本実施例では記憶された数表に
基づくガス量調整弁開度の値に加える補正量Aを
用いている。この補正量Aは機関始動時には零に
設定される変数であり、サンプリングされた新し
い排気温度と1ピツチ前の排気温度とを比較し、
排気温度が上昇中であればガス量調整弁開度を数
表値より大きくし、下降中であれば小さくするよ
うな制御が行なわれる。 In this case, if the control simply feeds back the detected exhaust temperature and operates the gas amount adjustment valve to obtain the peak, hunting will occur due to the large time constant and changes in the load factor will become difficult.
If an attempt is made to avoid this, there will be problems such as poor responsiveness, so in this embodiment, a correction amount A is used that is added to the value of the gas amount adjustment valve opening degree based on a stored numerical table. This correction amount A is a variable that is set to zero when the engine is started, and the new sampled exhaust temperature is compared with the exhaust temperature one pitch before.
Control is performed such that if the exhaust gas temperature is rising, the opening degree of the gas amount regulating valve is made larger than the numerical value, and if it is falling, it is made smaller.
補正量Aの演算は例えば次のように行なうこと
が可能である。すなわち、ガス量調整弁開度の指
示値が増加中(Aが増加している)か減少中(A
が減少している)かをフラグにより記憶してお
き、その上で排気温度を前回の値と比較し、増大
していればピークに接近中であるのでフラグはそ
のままとし、逆に減少していればフラグを反転
し、補正量Aを今までとは逆の方向に動かすので
ある。 The correction amount A can be calculated, for example, as follows. In other words, the indicated value of the gas amount adjustment valve opening is increasing (A is increasing) or decreasing (A is increasing).
The exhaust gas temperature is then compared with the previous value, and if it is increasing, it is approaching the peak, so the flag is left as it is; conversely, it is decreasing. If so, the flag is reversed and the correction amount A is moved in the opposite direction.
第5図は、上記の補正量Aを用いる演算処理の
制御フローチヤートである。ここで、フローチヤ
ート中の「カウンター」は排気温度検出のサンプ
リング間隔を規制するものである。実験結果によ
れば、基本動作であるスロツトル弁開度の検出は
2回/秒程度でよいが、排気温度検出の動作は時
定数が大きいため20〜30秒/回が良好であり、従
つてこの頻度に見合うカウンター値がプリセツト
される。また同フローチヤート中の「シフト量」
は、補正量Aのほかに必要に応じて数表値に加え
られる補正量であり、運転条件が大きく変るよう
な場合にマニユアル操作等によつて別に付加され
るものである。 FIG. 5 is a control flowchart of arithmetic processing using the above correction amount A. Here, the "counter" in the flowchart regulates the sampling interval for exhaust gas temperature detection. According to the experimental results, the basic operation of detecting the throttle valve opening is sufficient at about 2 times/second, but the operation of exhaust temperature detection has a large time constant, so 20 to 30 seconds/time is good. A counter value corresponding to this frequency is preset. Also, “shift amount” in the same flowchart
is a correction amount that is added to the numerical table value as needed in addition to the correction amount A, and is added separately by manual operation or the like when the operating conditions change significantly.
以上述べたように、本実施例は、負荷変動時に
まず記憶された数表に基づいて非フイードバツク
的にとりあえず次の動作点に移動し、次に排気温
度検出による微調整を行なうという制御がなされ
るので、制御系にフイードバツクループを含むに
もかかわらず、応答性が高くしかもハンチング等
の問題の少ない制御装置を得ることができるので
ある。 As described above, in this embodiment, when the load fluctuates, control is performed by first moving to the next operating point in a non-feedback manner based on the stored numerical table, and then making fine adjustments by detecting the exhaust temperature. Therefore, even though the control system includes a feedback loop, it is possible to obtain a control device that has high responsiveness and has fewer problems such as hunting.
なお、各実施例においては、ガス供給量をガス
量調整弁による絞り弁の開閉によつて制御する場
合について述べてあるが、ガス供給量はガス圧調
整器で供給圧力を調整することによつて制御する
こともできる。また、第2の実施例のように、排
気温度の検出結果による数表値の補正は第1図の
鎖線Rより左側の領域において特に有効であり、
制御ライン25を鎖線Rの左側のみに設定した制
御装置においてこれを実施することもできる。 In each of the examples, a case is described in which the gas supply amount is controlled by opening and closing a throttle valve using a gas amount adjustment valve, but the gas supply amount may be controlled by adjusting the supply pressure with a gas pressure regulator. It can also be controlled by Furthermore, as in the second embodiment, the correction of numerical table values based on the detection results of exhaust gas temperature is particularly effective in the region to the left of the chain line R in FIG.
This can also be implemented in a control device in which the control line 25 is set only to the left of the dashed line R.
上述の実施例の説明からも明らかなように、本
発明は機関のスロツトル弁開度に対するガス量調
整弁開度のあり得べき関係を数表の形で記憶させ
ておくことにより、負荷率に応じて常に最適の空
燃比を得ることができ、機関を燃費が少なくかつ
安定した状態で運転することが可能となるのであ
る。また、定常運転状態における定格出力でのス
ロツトル弁開度を越える領域では、ガス量調整弁
開度を増大して燃料リツチな条件となるようにし
てあるので、負荷の急増時に一時的にこの部分の
数表が読まれて燃料ガスが急増し、失速を回避す
ることができるのである。特に、数表が失火域に
近く、低燃費な制御ラインに設定されている時に
は、負荷急変時に失速状態になりやすいものであ
るが、本発明はこのような設定条件においても良
好な運転状態を保つことが可能となる。 As is clear from the description of the embodiments described above, the present invention stores the possible relationship between the throttle valve opening of the engine and the gas amount adjustment valve opening in the form of a numerical table, thereby adjusting the load factor. Accordingly, the optimal air-fuel ratio can always be obtained, and the engine can be operated stably with low fuel consumption. In addition, in the region where the throttle valve opening exceeds the rated output under steady-state operating conditions, the gas flow adjustment valve opening is increased to create a fuel-rich condition. When the number table is read, the fuel gas increases rapidly, making it possible to avoid a stall. In particular, when the control line is set close to the misfire range and has low fuel consumption, it is easy to stall when the load suddenly changes, but the present invention can maintain good operating conditions even under such setting conditions. It is possible to keep it.
更に、本発明では、負荷率の代用特性としてス
ロツトル弁の開度を検出するため、トルクセンサ
ーのような高価で使用に際しての制約の多いもの
を使用する必要がなく、また空燃比そのものを測
定しないため、酸素濃度センサーのような高価で
取扱いの面倒なものも不要であり、安価で応答性
のすぐれた制御装置を得ることができる利点もあ
る。 Furthermore, in the present invention, since the opening degree of the throttle valve is detected as a substitute characteristic for the load factor, there is no need to use an expensive device such as a torque sensor and there are many restrictions when using it, and there is no need to measure the air-fuel ratio itself. Therefore, there is no need for an expensive and troublesome device such as an oxygen concentration sensor, and there is an advantage that a control device that is inexpensive and has excellent responsiveness can be obtained.
第1図は本発明に係るガス燃料機関におけるス
ロツトル弁開度とガス量調整弁開度の関係及び制
御ラインを示す特性図、第2図は本発明の第1の
実施例の概念系統図、第3図は同上の制御フロー
チヤート、第4図は第2の実施例の概念系統図、
第5図は同上の制御フローチヤートである。
1は機関、2はガバナ機構、3はスロツトル弁
の開度検出器、4はガス量調整弁の開度検出器、
5はROM、6はマイクロコンピユータ、7は電
動モータ、8はスロツトル弁、9はガス量調整
弁、10は回転速度検出器、11は燃料ガス、1
3は空気、25は制御ライン、26は増信号、2
7は減信号である。
FIG. 1 is a characteristic diagram showing the relationship between the throttle valve opening and the gas amount adjustment valve opening and the control line in a gas fuel engine according to the present invention, and FIG. 2 is a conceptual system diagram of the first embodiment of the present invention. FIG. 3 is a control flowchart similar to the above, and FIG. 4 is a conceptual system diagram of the second embodiment.
FIG. 5 is a control flow chart similar to the above. 1 is an engine, 2 is a governor mechanism, 3 is a throttle valve opening detector, 4 is a gas amount adjustment valve opening detector,
5 is a ROM, 6 is a microcomputer, 7 is an electric motor, 8 is a throttle valve, 9 is a gas amount adjustment valve, 10 is a rotation speed detector, 11 is a fuel gas, 1
3 is air, 25 is a control line, 26 is an increase signal, 2
7 is a reduced signal.
Claims (1)
度を一定に保持するガバナ機構と、スロツトル弁
の開度を検出する手段と、ガス量調整弁の開度を
検出する手段と、スロツトル弁開度に対するガス
量調整弁開度のあり得べき関係を定常運転状態に
おける定格出力でのスロツトル弁開度を越える領
域にまで及んで数表の形で記憶する手段と、サン
プリングされたスロツトル弁開度とガス量調整弁
開度の各検出結果に応じ前記数表に基づいてガス
量調整弁開度を決定して制御出力を出す演算手段
と、演算手段の制御出力によりガス量調整弁開度
を増減する調整手段と、を備えており、定常運転
状態における定格出力でのスロツトル弁開度を越
える領域においては、失火あるいは失速を生じな
い燃料リツチな条件となるようにガス量調整弁開
度が設定されていることを特徴とするガス燃料機
関の制御装置。1. A governor mechanism that adjusts the opening degree of the throttle valve to maintain a constant rotational speed of the engine, a means for detecting the opening degree of the throttle valve, a means for detecting the opening degree of the gas amount adjustment valve, and a governor mechanism that adjusts the opening degree of the throttle valve to maintain a constant rotational speed of the engine. Means for storing in the form of a numerical table the possible relationship between the throttle valve opening and the throttle valve opening at the rated output in a steady operating state, and the sampled throttle valve opening. and a calculation means for determining the opening degree of the gas volume adjustment valve based on the numerical table and outputting a control output according to each detection result of the opening degree of the gas volume adjustment valve; In the region where the throttle valve opening exceeds the rated output under steady-state operating conditions, the gas amount adjustment valve opening is adjusted to provide fuel-rich conditions that do not cause misfires or stalls. A control device for a gas fuel engine, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57098134A JPS58214656A (en) | 1982-06-07 | 1982-06-07 | Controller for gas fuel engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57098134A JPS58214656A (en) | 1982-06-07 | 1982-06-07 | Controller for gas fuel engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58214656A JPS58214656A (en) | 1983-12-13 |
JPS6344942B2 true JPS6344942B2 (en) | 1988-09-07 |
Family
ID=14211768
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57098134A Granted JPS58214656A (en) | 1982-06-07 | 1982-06-07 | Controller for gas fuel engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58214656A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60153461A (en) * | 1984-01-20 | 1985-08-12 | Yanmar Diesel Engine Co Ltd | Air-fuel ratio controller for gas engine |
US4864991A (en) * | 1987-12-01 | 1989-09-12 | Snyder Warren E | Method and apparatus for controlling air to gas ratio of gaseous fueled engines |
US6878098B2 (en) * | 2002-02-28 | 2005-04-12 | Caterpillar Inc | Selective governor usage for an engine |
JP5731136B2 (en) * | 2010-06-07 | 2015-06-10 | ヤンマー株式会社 | Gas engine system |
-
1982
- 1982-06-07 JP JP57098134A patent/JPS58214656A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS58214656A (en) | 1983-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4319327A (en) | Load dependent fuel injection control system | |
US9051888B2 (en) | Method for automatically controlling a stationary gas engine | |
US4106451A (en) | Air-fuel ratio adjusting system for internal combustion engines | |
JPS6356416B2 (en) | ||
JPS6344942B2 (en) | ||
JPH08338294A (en) | Method and equipment for adjusting engine | |
US4526148A (en) | Air-fuel ratio control system for an internal combustion engine | |
JPS61138858A (en) | Internal-conbustion engine controller | |
JP3122506B2 (en) | Subchamber gas pressure control device in subchamber gas engine | |
JPH1136993A (en) | Exhaust gas circulation control device of direct injection engine | |
JPH1136970A (en) | Intake air volume detector of engine and exhaust reflux contorl device provided therewith | |
JPS59128938A (en) | Controller for gas fuel engine | |
JP3008770B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JPS6341622A (en) | Superchargning quantity controlling method for internal combustion engine | |
JPH0222229B2 (en) | ||
JPS624676Y2 (en) | ||
JPS624675Y2 (en) | ||
JP2716054B2 (en) | Fuel injection amount control method for internal combustion engine | |
JPS624674Y2 (en) | ||
JPS59224433A (en) | Air-fuel ratio controller for gas engine | |
JPH06288265A (en) | Air-fuel ratio control method and device for gas engine | |
JPS63992Y2 (en) | ||
JPS6069242A (en) | Air-fuel ratio controlling method for internal-combustion engine | |
JPH042792B2 (en) | ||
JPH0336143B2 (en) |