JPS6153407A - Speed governing system change over device - Google Patents

Speed governing system change over device

Info

Publication number
JPS6153407A
JPS6153407A JP17408084A JP17408084A JPS6153407A JP S6153407 A JPS6153407 A JP S6153407A JP 17408084 A JP17408084 A JP 17408084A JP 17408084 A JP17408084 A JP 17408084A JP S6153407 A JPS6153407 A JP S6153407A
Authority
JP
Japan
Prior art keywords
steam
load
speed governing
control
function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17408084A
Other languages
Japanese (ja)
Inventor
Hiroshi Ikeda
啓 池田
Hidesumi Kuwajima
桑島 英純
Katsukuni Kuno
久野 勝邦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17408084A priority Critical patent/JPS6153407A/en
Publication of JPS6153407A publication Critical patent/JPS6153407A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D19/00Starting of machines or engines; Regulating, controlling, or safety means in connection therewith

Abstract

PURPOSE:To control erosion and thermal stress by obtaining a change over device, capable of automatically performing throttling speed governing at starting time and shifting to nozzle cut-out speed governing without fear of generating load change and further performing nozzle cut-out speed governing even in medium and low load area. CONSTITUTION:At starting time of a steam engine, each speed governing change-over instrument 4a-4d is changed over to combined function operation instruments 2a-2d side and, after converting a flow signal from an output control operation instrument 1 into an opening requirement signal of combined governing by each operation instrument 2a-2d, said signal is inputted to steam adjusting valve opening/closing controllers 5a-5d. In case load is raised and a flow signal from the output control operation instrument 1 grows above correspondence with high load area and this condition is detected by a change-over command instrument 6, speed governing instruments 4a-4d are changed over to nozzle function operation instruments 3a-3d side by said change-over command instrument 6 at the time of inputting a change-over command signal. Nozzle cut- out speed governing operation is performed hereafter.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は蒸気タービンの調速装置に係り、特に、起動時
と負荷運転時との間において円滑に、かつ自動的に、調
速方式を切り替え得るように創作した調速方式切換装置
に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a speed governor for a steam turbine, and in particular, to a method for smoothly and automatically switching the speed governing system between startup and load operation. This invention relates to a speed control system switching device created to obtain the following results.

〔発明の背景〕[Background of the invention]

蒸気タービンの調速は、該タービンを起動する場合や、
起動完了後に負荷が変動した場合に、タービン入口蒸気
管に設けた蒸気加減弁を開閉制御して行われ、この調速
には(1)ノズル締切調速と、(li)絞り調速と、(
iii)コンバインド調速との3a[類の方式が有る。
The speed control of a steam turbine is performed when starting the turbine,
When the load fluctuates after completion of startup, the steam control valve installed in the turbine inlet steam pipe is controlled to open and close, and this speed control includes (1) nozzle shutoff control, (li) throttle control. (
iii) There is a method similar to 3a with combined speed control.

第2図は前記のノズル締切調速の説明図表で、4個の蒸
気加減弁(図示せず)を設けた場合を例示している。
FIG. 2 is an explanatory chart of the above-mentioned nozzle shut-off speed regulation, and illustrates the case where four steam control valves (not shown) are provided.

タービンを起動して、その負荷を0%から100%まで
上昇せしめる場合、先ず1個の蒸気加減弁をカーブ■!
の如く開いてゆき、1/4負荷(25%)付近で全開に
する。これと前後して、1/4負荷付近で他の1個の蒸
気加減弁を開き始め、カーブ■寞の如く1/2負荷(5
0%)付近で全開にする。これと前後して更に1個の蒸
気加減弁を開き始め、カーブ■3の如< 3/4jl荷
(75%)付近で全開する。これと前後して最後の(4
個目の)蒸気加減弁を開き始め、全負荷時にほぼ全開に
近づける。
When starting a turbine and increasing its load from 0% to 100%, first curve one steam control valve ■!
It opens as shown, and then fully opens at around 1/4 load (25%). Around this time, another steam control valve started to open at around 1/4 load, and as shown in the curve, 1/2 load (5
Fully open around 0%). Around this time, one more steam control valve begins to open, and fully opens at around <3/4jl load (75%) as shown in curve 3. Around this time, the last (4)
Start opening the steam control valve (1) and bring it close to fully open at full load.

負荷が減少した場合は上記の作動を可逆的に行わせ、蒸
気加減弁を1個ずつ絞υ込み、締め切ってゆく。
When the load decreases, the above operation is performed reversibly, and the steam control valves are throttled down and closed one by one.

このノズル締切調速方式においては、全負荷時と無負荷
時の他は各蒸気加減弁ごとに開いているものや閉じてい
るものが有シ、これに伴ってタービンノズルの一部分に
のみ蒸気が流れるのでタービン各部間の温度が不均一に
なり、熱応力が大きいという欠点が有る。
In this nozzle shut-off speed regulating system, each steam control valve is open or closed at times other than full load and no load, and as a result steam only flows to a portion of the turbine nozzle. Since the turbine flows, the temperature between the various parts of the turbine becomes uneven, resulting in large thermal stress.

タービン各部の温度差を小さくするには前述の絞り調速
が適している。
The aforementioned throttling speed control is suitable for reducing the temperature difference between each part of the turbine.

第3図は上記の絞#)調速の説明図表で、仮想線は前述
のノズル締切調速におけるカーブを対比の為に示したも
のである。絞り調速においては無負荷の状態から全負荷
に至るまでの間、カーブvallのように全部の蒸気加
減弁を同様に徐々に開いてゆく。(本図表は4本の平行
線でカーブVallを表わしであるが、実際はこれら4
本の曲線は重なっている。こめ調速方式においては、全
負荷又は無負荷の時以外は全部の蒸気加減弁が半開とな
っているのでエネルギーロスが大きく、部分負荷におけ
る効率が低くなる。
FIG. 3 is an explanatory diagram of the above-mentioned throttle #) speed control, and the imaginary line shows the curve in the nozzle closing speed control described above for comparison. In throttle control, all steam control valves are gradually opened in the same manner as in the curve VALL from a no-load state to a full load state. (This diagram represents the curve Vall with four parallel lines, but in reality these four
The curves of the book overlap. In the steam control system, all steam control valves are half-open except at full load or no load, resulting in large energy loss and low efficiency at partial loads.

前記二つの調速方式(ノズル締切調速・絞り調速)の何
れを選定すべきかについては、主として当該蒸気タービ
ンプラントの起動、停止の頻度、及び、負荷の変動状態
によって定まシ、起動、停止の頻度が激しい場合は熱応
力的条件の緩やかな絞り調速が適し、部分負荷状態が多
い場合にはノズル締切調速が適しているが、実際の場合
における選択は複雑に諸条件が関係してくる。
Which of the two speed control methods (nozzle shut-off speed control or throttle speed control) to select should be determined mainly depending on the frequency of startup and shutdown of the steam turbine plant, and the state of load fluctuations. If the frequency of stoppages is severe, throttle control with gentle thermal stress conditions is suitable, and if there are many partial loads, nozzle shut-off speed control is suitable, but in actual cases the selection is complex and depends on various conditions. I'll come.

上記以外の技術的問題にノズルのエロージョンが有る。Another technical problem other than the above is nozzle erosion.

このエロージョンは主としてボイラ等の蒸気発生器側か
らのスケール等の飛来物によるものであシ、これらの飛
来物は停止後の再起動時において著しく多く見られ、そ
の後はほとんど々い。
This erosion is mainly caused by flying objects such as scale from the steam generator side such as a boiler, and these flying objects are most often seen when restarting after a shutdown, and almost never after that.

従って、停止後の再起動時のみを絞り調速とし、スケー
ル等の飛来物がなくなった時点でその時の運転負荷によ
らずノズル締切シ調速方式に切換え、熱効率を向上させ
ることが要求されてきた。
Therefore, there is a need to improve thermal efficiency by using throttling speed control only when restarting after a shutdown, and switching to the nozzle control speed control system when there are no more flying objects such as scale, regardless of the operating load at that time. Ta.

こうした要請に応えるものとして、前述のコンバインド
調速が提案されている(特公昭46−7123号)。
In order to meet these demands, the above-mentioned combined speed governor has been proposed (Japanese Patent Publication No. 7123/1983).

第4図はコンバインド調速の説明図である。タービン負
荷の大小に応じて、図示の如く低負荷領域、中負荷領域
、高負荷領域を設定する。本例においては20チ負荷未
満を低負荷領域、50″負荷以上を高負荷領域としてい
るが、これらの負荷領域の境界は任意に設定できる。
FIG. 4 is an explanatory diagram of the combined speed control. Depending on the magnitude of the turbine load, a low load area, a medium load area, and a high load area are set as shown in the figure. In this example, a load of less than 20 inches is defined as a low load region, and a load of 50 inches or more is defined as a high load region, but the boundaries of these load regions can be set arbitrarily.

4本のカーブVl’ 、 V(、Vl −Vl ’d、
ソレソれ蒸気加減弁の開閉を示している。
Four curves Vl', V(, Vl - Vl'd,
This shows the opening and closing of the steam control valve.

低負荷領域においては、前述の絞り調速におけるカーブ
Vallと同様に、4個の蒸気加減弁を一様に徐々に開
く。
In the low load region, the four steam control valves are uniformly and gradually opened in the same manner as the curve Vall in the above-mentioned throttle control.

中負荷領域においては、2個の蒸気加減弁をカーブy、
’ 、v、’の如く全開に至るまで徐開し、他の2個の
蒸気加減弁をカーブv3’ 、 y4/の如く徐閉する
In the medium load region, the two steam control valves are set to curve y,
The steam control valves are gradually opened as shown in curves ', v,' until they are fully open, and the other two steam control valves are gradually closed as shown in curves v3' and y4/.

高負荷領域においては、カーブ■1′、■2′は全開に
なっておυ、カーブ■3′は1/2負荷から3/4負荷
1での間に全開され、カーブv4′は3/4負荷から全
負荷までの間にほぼ全開の状態に近づく。
In the high load region, curves ■1' and ■2' are fully opened υ, curve ■3' is fully opened between 1/2 load and 3/4 load 1, and curve v4' is 3/4 From 4 load to full load, it approaches the fully open state.

負荷が減少するときは、上述の作動を可逆的に辿る。When the load is reduced, the above-described operation is followed reversibly.

上に述べたコンバインド調速(第4図)にこれは、熱応
力やエロージョンが大きい問題となる低負荷領域では絞
#)調速され、効率が重視される高負荷領域ではノズル
締切調速されるので、これらの問題が合理的に解消され
ており、極めて優れた調速方式である。
In the above-mentioned combined speed control (Fig. 4), in low load areas where thermal stress and erosion are a major problem, the speed is controlled by throttle #), and in high load areas where efficiency is important, nozzle closing speed is controlled. Therefore, these problems are rationally solved, making it an extremely excellent speed regulating system.

然しながう、上記のコンバインド調速方式についても、
なお欠配のような改善の余地が有る。
However, regarding the above combined speed control system,
However, there is room for improvement, such as the lack of staff.

このコンバインド調速方式においては、低負荷領域では
絞り調速、高負荷領域ではノズル締切調速、というよう
に固定的にプログラムが定められているので、例えば3
0%負荷においてはノズル締切調速が不可能であり、同
様に70%負荷においては絞り調速は不可能であるとい
う問題があった。
In this combined speed control system, the program is fixed such as throttling speed control in the low load area and nozzle closing speed control in the high load area, so for example 3
There was a problem in that nozzle closing speed regulation was impossible at 0% load, and similarly, throttling speed regulation was impossible at 70% load.

絞り調速とノズル締切調速には各々の弁開特性から与え
られる必然的な長所及び短所がある。絞り調速は全弁を
同時に開けるため、全体に蒸気が均等に与えられ、ター
ビンノズル等のエロージョンも均等に進展する。しかし
ながら徐々に弁を開くので、絞られている間にエネルギ
のロスが生じるのは避けられず部分負荷における効率が
低くなっている。一方、ノズル締切調速方式は各個の弁
を頭に全開していくので1つの弁についてはすぐ全開さ
れ絞りによるロスはなく効率はよい。しかし、タービン
ノズルの1部分にのみ蒸気を流すために、該ノズルのみ
二ローションをうけまた熱負荷が太きいため早期に材料
が劣化するという問題がある。さらに、ノズルのエロー
ジョンは、タービンに蒸気を供給する蒸気発生器を一度
停止した後に再起動した時に蒸気発生器よシ飛来するス
ケール等によるものが大部分であり、この点では前記特
許出願公告昭46−7123号に示される例は低負荷域
で絞り調速を高負荷域でノズル締切調速を採用している
ため、起動時には全弁に【蒸気を流し各ノズルに均等に
配分されエロージョンも均等となシ、1部分が過度にエ
ロージョンをうけることはない。しかしながら定常状態
となっても低負荷運転域は絞p調速であるため効率が良
くないという問題があった。
Throttle speed control and nozzle closing speed control have inherent advantages and disadvantages given by their respective valve opening characteristics. Since all valves are opened at the same time in throttle control, steam is distributed evenly throughout the valve, and erosion of the turbine nozzle, etc., progresses evenly. However, since the valve is opened gradually, energy loss is inevitable during throttling, resulting in low efficiency at partial loads. On the other hand, in the nozzle shut-off speed regulating system, each valve is fully opened first, so one valve is fully opened immediately and there is no loss due to throttling, resulting in good efficiency. However, since the steam flows only into one part of the turbine nozzle, only that nozzle receives two lotions, and the heat load is large, so there is a problem that the material deteriorates early. Furthermore, most of the erosion of the nozzle is caused by scale etc. that fly from the steam generator when the steam generator that supplies steam to the turbine is stopped and then restarted. The example shown in No. 46-7123 uses throttle control in the low load range and nozzle shutoff control in the high load range, so at startup, steam flows through all valves and is evenly distributed to each nozzle, preventing erosion. Evenly, one part will not be subject to excessive erosion. However, even in a steady state, there is a problem that the efficiency is not good because the throttle is controlled by p in the low load operating range.

また、ノズル締切調速のプログラムと絞り調速のプログ
ラムとの両方を用意しておいて、任意の状態(任意の時
点)でこれらの内の任意のプログラムに切シ替えること
も考えられるが、プログツム切換時に衝撃的な負荷変動
を生じる虞れが有る。
It is also possible to prepare both a nozzle closing speed regulation program and an aperture speed regulating program and switch to any one of these programs in any state (at any time). There is a risk of shocking load fluctuations occurring when switching programs.

〔発明の目的〕[Purpose of the invention]

本発明は上述の事情に鑑みて為されたもので、起動時に
は自動的に絞り調速を行い、かつ、負荷変動を生じる虞
れ無くノズル締切調速に移行し、中負荷乃至低負荷領域
においてもノズル締切調速を行うことができる、調速方
式の切換装置を提供しようとするものである。
The present invention has been made in view of the above-mentioned circumstances, and it automatically performs throttling speed control at startup, shifts to nozzle cut-off speed control without the risk of load fluctuations, and operates in the medium to low load range. Another object of the present invention is to provide a speed regulating switching device capable of controlling the nozzle closing and speed.

〔発明の概要〕[Summary of the invention]

上記の目的を達成する為、本発明の切換装置は、蒸気タ
ービンの出力を制御する演算器と、タービン入口蒸気流
量を調節する複数個の蒸気加減弁と、前記の出力制御演
算器から与えられる流量信号を蒸気加減弁の開度要求信
号に変換する関数演算器と、上記関数演算器の出力信号
に従つ七蒸只加減弁の開度を制御する弁開閉制御器とを
備えた蒸気タービン制御装置において、前記の関数演算
器は、(イ)低負荷領域において絞り調速を行い、高負
荷領域においてノズル締切調速を行い、中間負荷領域に
おいて上記28M類の調速方式を遷移的に切シ換えるコ
ンバインド調速機能を備えた関数演算器と、(ロ)全負
荷領域においてノズル締切調速機能を備えた関数演算機
との双方の関数演算器を設け、かつ、蒸気タービンの負
荷が高負荷領域にある状態において前記双方の関数演算
器の出力信号を選択的に切り替えて弁開閉制御器に入力
せしめる機能を備えた調速切換器を設けたことを特徴と 上に述べた本発明の概要を更に要約して次に述べる。
In order to achieve the above object, the switching device of the present invention includes a computing unit for controlling the output of a steam turbine, a plurality of steam control valves for regulating the turbine inlet steam flow rate, and a switching device provided by the above-mentioned output control computing unit. A steam turbine equipped with a function calculator that converts a flow rate signal into an opening request signal for a steam control valve, and a valve opening/closing controller that controls the opening of a seven-steam control valve according to an output signal of the function calculator. In the control device, the above-mentioned function calculator (a) performs throttling speed regulation in a low load region, performs nozzle closing speed regulation in a high load region, and transitionally controls the speed regulating method of the above 28M class in an intermediate load region. (b) A function calculator equipped with a combined speed control function that switches between speeds, and (b) a function calculator equipped with a nozzle shutoff speed control function in the full load range, and when the load of the steam turbine is The present invention as described above is characterized in that a speed governor switching device is provided which has a function of selectively switching the output signals of both of the functional calculators and inputting the signals to the valve opening/closing controller in a state of a high load region. The following is a further summary of the outline.

第2図に示したノズル締切調速と第4図に示したコンバ
インド調速とを対比すると、50%負荷以上の領域にお
いては両図表のカーブは等価である。従って50チ負荷
から100%負荷までの間においては、ノズル締切調速
#コンバインド調速の相互切換を行っても負荷変動を生
じる虞れが無い。本発明はこの原理に着目して構成した
ものである。
Comparing the nozzle shut-off speed control shown in FIG. 2 with the combined speed control shown in FIG. 4, the curves in both charts are equivalent in the region of 50% load or more. Therefore, from the 50-chi load to the 100% load, there is no risk of load fluctuations even if the nozzle shut-off speed regulation and combined speed regulation are mutually switched. The present invention is constructed focusing on this principle.

第2図は本発明の切換装置の1実施例を示す。FIG. 2 shows one embodiment of the switching device of the present invention.

本例は蒸気加減弁の全流量を制御する出力制御演算器1
、出力制御器1からの流量信号によpコンバインドガバ
ニ/グ時の蒸気加減弁開度要求信号を出力するコンバイ
ンド関数演算器2a〜2d賀各弁に1個付)、出力制御
演算器1からの流量信号によりノズル締切調速時の蒸気
加減弁開度要求信号を出力するノズル関数演算器3a〜
3d(各弁に1個付)、コンバイントガパニングとノズ
ル締切調速とを切換える調速切換器43〜4d。
In this example, the output control calculator 1 controls the total flow rate of the steam control valve.
, a combined function calculator 2a to 2d (one attached to each valve), which outputs a steam control valve opening request signal during combined governor/g based on the flow rate signal from the output controller 1; an output control calculator 1; Nozzle function calculators 3a to 3a which output a steam control valve opening request signal at the time of nozzle shut-off and speed regulation based on the flow rate signal from
3d (one for each valve), and speed control switchers 43 to 4d for switching between combined gapping and nozzle closing speed control.

各々の蒸気加減弁の開度要求信号にニジ開度を調整する
蒸気加減弁開閉制御器5a〜5d、切換指令信号によシ
調速方式の切換を実施する切換指令器6よシ構成される
It is composed of steam control valve opening/closing controllers 5a to 5d that adjust the opening degree according to the opening request signal of each steam control valve, and a switching command device 6 that performs switching of the speed regulating method according to the switching command signal. .

上述の如く構成した本実施例の切換装置(第1図)の作
動を次に述べる。
The operation of the switching device (FIG. 1) of this embodiment constructed as described above will now be described.

起動時には、前記調速切換器4a〜4dはコンバインド
関数演算器2a〜2d側に切換っておυ、出力制御演算
器1からの流量信号は、コンバインド関数演算器2a〜
2dによってコンバイントガパニングの開度要求信号に
変換され蒸気加減弁開閉制御器53〜5dに入力され各
々の蒸気加減弁の開度を調整する。負荷が上昇し出力制
御演算器1からの流量信号が前述の高負荷領域相当以上
となると切換指令器6はそれを検出して切換可能な状態
となる。この状態で切換指令信号を切換指令器6に入力
すると、該切換指令器6は調速切換器43〜4dをノズ
ル関数演算器32〜3d側に切換えそれ以後はノズル締
切調速が行なわれることとなる。この実施例によれば、
起動時は絞り調速を行なうため1部のノズルのみがエロ
ージョンをうけることを防止でき、同一の開度特性をも
ったところで切換えるため切換えによる負荷変動は起こ
らず、かつ切換後は低負荷においても高効率の運転が可
能である。
At startup, the speed governor switching devices 4a to 4d are switched to the combined function calculators 2a to 2d, and the flow rate signal from the output control calculator 1 is transferred to the combined function calculators 2a to 2d.
2d, the signal is converted into a combined gas opening request signal and inputted to the steam control valve opening/closing controllers 53 to 5d to adjust the opening degree of each steam control valve. When the load increases and the flow rate signal from the output control calculator 1 becomes equal to or higher than the above-mentioned high load region, the switching command unit 6 detects this and becomes ready for switching. When a switching command signal is input to the switching command device 6 in this state, the switching command device 6 switches the speed regulators 43 to 4d to the nozzle function calculators 32 to 3d, and from then on, nozzle closing speed regulation is performed. becomes. According to this example,
At startup, throttling control is performed, which prevents only one part of the nozzle from being eroded.Since switching occurs when the opening characteristics are the same, no load fluctuations occur due to switching, and after switching, even at low loads. Highly efficient operation is possible.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明の切換装置によれば、起動
時には自動的に絞υ調整を行って二ローションの被害を
軽減するとともに熱応力を軽減し、かつ、負荷変動を生
じる虞れなくノズル締切調速く移行し、その後、中負荷
乃至低負荷領域においてもノズル締切調速を行って蒸気
加減弁−よるエネルギーロスを軽減し得るという優れた
実用的効果を奏する。
As detailed above, according to the switching device of the present invention, the throttle υ is automatically adjusted at startup to reduce damage caused by two lotions, reduce thermal stress, and eliminate the risk of load fluctuations. This has an excellent practical effect in that the nozzle shut-off adjustment is quickly shifted, and then the nozzle shut-off speed is adjusted even in the medium to low load range, thereby reducing energy loss caused by the steam control valve.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例を示す系統図、第2図はノズ
ル締切調速の説明図表、第3図は締切調速の説明図表、
第4図はコンバインド調速の説明図表である。
Fig. 1 is a system diagram showing one embodiment of the present invention, Fig. 2 is an explanatory chart of nozzle cut-off speed regulation, Fig. 3 is an explanatory chart of cut-off speed regulation,
FIG. 4 is an explanatory chart of combined speed control.

Claims (1)

【特許請求の範囲】[Claims] 1、蒸気タービンの出力を制御する演算器と、タービン
入口蒸気流量を調節する複数個の蒸気加減弁と、前記の
出力制御演算器から与えられる流量信号を蒸気加減弁の
開度要求信号に変換する関数演算器と、上記関数演算器
の出力信号に従つて蒸気加減弁の開度を制御する弁開閉
制御器とを備えた蒸気タービン制御装置において、前記
の関数演算器は、(イ)低負荷領域において絞り調速を
行い、高負荷領域においてノズル締切調速を行い、中間
負荷領域において上記2種類の調速方式を遷移的に切り
換えるコンバインド調速機能を備えた関数演算器と、(
ロ)全部の負荷領域にわたつてノズル締切調速機能を備
えた関数演算機との双方の関数演算器を設け、かつ、蒸
気タービンの負荷が高負荷領域にある状態において前記
双方の関数演算器の出力信号を選択的に切り替えて弁開
閉制御器に入力せしめる機能を備えた調速切換器を設け
たことを特徴とする、蒸気タービンの調速方式切換装置
1. A computing unit that controls the output of the steam turbine, a plurality of steam control valves that adjust the steam flow rate at the turbine inlet, and converting the flow rate signal given from the output control computing unit into an opening request signal for the steam regulation valve. In the steam turbine control device, the function calculator includes: (a) a function calculator that controls the opening of a steam control valve according to an output signal of the function calculator; A functional calculator equipped with a combined speed control function that performs throttle speed control in the load range, performs nozzle closing speed control in the high load range, and transitionally switches between the above two types of speed control methods in the intermediate load range;
(b) Both function calculators are provided with a function calculator having a nozzle shutoff speed regulating function over all load ranges, and both of the function calculators are installed in a state where the load of the steam turbine is in a high load range. What is claimed is: 1. A speed governing system switching device for a steam turbine, comprising a speed governing switch having a function of selectively switching the output signal of the output signal and inputting the signal to a valve opening/closing controller.
JP17408084A 1984-08-23 1984-08-23 Speed governing system change over device Pending JPS6153407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17408084A JPS6153407A (en) 1984-08-23 1984-08-23 Speed governing system change over device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17408084A JPS6153407A (en) 1984-08-23 1984-08-23 Speed governing system change over device

Publications (1)

Publication Number Publication Date
JPS6153407A true JPS6153407A (en) 1986-03-17

Family

ID=15972297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17408084A Pending JPS6153407A (en) 1984-08-23 1984-08-23 Speed governing system change over device

Country Status (1)

Country Link
JP (1) JPS6153407A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017053324A (en) * 2015-09-11 2017-03-16 株式会社東芝 Steam regulating valve control device, power-generating plant, and control method of steam regulating valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017053324A (en) * 2015-09-11 2017-03-16 株式会社東芝 Steam regulating valve control device, power-generating plant, and control method of steam regulating valve

Similar Documents

Publication Publication Date Title
KR900001954A (en) How to reduce the valve loop to increase the efficiency of the steam turbine
JPH02185605A (en) Operation of steam turbine apparatus at low load level
JPS6153407A (en) Speed governing system change over device
JPS61106903A (en) Speed governing type change-over device
JP2005291113A (en) Thermal power generation plant and method for operating the same
JPS585409A (en) Method of controlling regulating valve for pressure- change operation
JPH01247703A (en) Full arc injection steam turbine
JP2620124B2 (en) Bleed turbine control method and apparatus
JP3781929B2 (en) Turbine controller
CN113153463B (en) Method for improving load response speed of steam turbine set by using water supply system
JPS61167102A (en) Governing system changeover device
JP2825235B2 (en) Steam control valve controller
JPS5820362B2 (en) load control device
JPS63186902A (en) Turbine control device
JPH06101420A (en) Control device for bleeder turbine
JPH0553922B2 (en)
JPH0467001B2 (en)
JP2509676B2 (en) Mixed pressure turbine controller
JP4413588B2 (en) Steam turbine plant and operation method thereof
CA1163814A (en) Method of varying turbine output of a supercritical- pressure steam generator-turbine installation
JPH0229922B2 (en)
SU994783A1 (en) System for controlling heat generation turbine plant
JP2965658B2 (en) Turbine control method
JPH08189993A (en) Turbine speed controller
CN116447188A (en) Control system and method for low-pressure cylinder regulating valve of nuclear power unit