JPS6153083B2 - - Google Patents

Info

Publication number
JPS6153083B2
JPS6153083B2 JP5117581A JP5117581A JPS6153083B2 JP S6153083 B2 JPS6153083 B2 JP S6153083B2 JP 5117581 A JP5117581 A JP 5117581A JP 5117581 A JP5117581 A JP 5117581A JP S6153083 B2 JPS6153083 B2 JP S6153083B2
Authority
JP
Japan
Prior art keywords
poly
membrane
separation
diphenylphenylene oxide
arylsulfone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5117581A
Other languages
Japanese (ja)
Other versions
JPS57167707A (en
Inventor
Hiroshi Makino
Takashi Harada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP5117581A priority Critical patent/JPS57167707A/en
Publication of JPS57167707A publication Critical patent/JPS57167707A/en
Publication of JPS6153083B2 publication Critical patent/JPS6153083B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、気体混合物、液体混合物及び溶液等
の流体の分離膜とその製造法に関するものであ
る。 例えば気体の分離膜は、異種の気体を含む気体
混合物から、その混合物中の気体を選択的に分離
するために用いられる膜状成形体で、その形成材
料及び形態については各種のものが知られてい
る。 流体の分離膜として従来から一般的に使用され
ているものとしては酢酸セルロースからなる流体
分離膜があるが、このものは吸湿性が高いとの欠
点があり、また酸や塩基に対して耐性を持つてい
ないため、目的によつては使用できない場合もあ
り、実用的に充分に満足できる流体分離膜である
とは言い難い。 一方、化学的に安定で、かつ耐熱性の優れてい
るポリ(アリールスルホン)を膜状に成形した流
体の分離膜も従来より知られているが透過性能が
充分高くないため満足できるものとは言えない。 一般に流体の分離膜に要求される基本性能とし
て、気体混合物、液体混合物、溶液中の溶質等の
流体の成分が膜を透過する透過速度の評価となる
透過性能と、二種以上の成分に対して、どちらを
どの程度優先的に透過させるかの点の評価となる
分離性能とがあることは良く知られている。そし
て、流体の分離膜をその構造により分類した場合
には、均質膜、多孔質膜、そして非対称性膜の三
種類に大別されることも良く知られている。均質
膜は、通常の膜形成性高分子重合体を単に膜状に
成形するなどの法で得られる膜で、膜の層に実質
的に多孔構造を持つていない膜である。従つて、
均質膜は分離性能には優れているが、透過性能は
著るしく劣る。一方、膜の層内に多孔構造を設け
た多孔質膜は、一般に透過速度は優れているが、
分離性能は充分でないとの問題点がある。そし
て、これらの均質膜と多孔質膜の長所を生かし、
短所を軽減するように開発されたものが非対称性
膜であり、この非対称性膜は、膜の一方の面に薄
い均質層を設けた形態の多孔質の膜である。非対
称性膜はこのような構造を持つため、透過性能は
均質膜に比較して高いレベルにあり、また分離性
能も多孔質膜に比較して高いレベルとなる。 流体の分離膜の基本性能を上記のような膜の構
造の改良により高める技術が知られているところ
から、前述したような優れた耐薬品性と耐熱性を
持つポリ(アリールスルホン)の特性を生かし
て、かつ実用上優れた透過性能と分離性能を有す
る分離膜を開発する試みも行なわれている。例え
ば特開昭51−129880号公報の明細書には、ポリ
(アリールスルホン)を非対称性膜に形態に成形
した気体分離膜が開示されている。この気体分離
膜は非対称性膜の形態としたため、透過性は均質
膜に比較すれば改善されているが、実用上の観点
からは未だ充分満足できるものとは言えない。 本発明は、優れた耐熱性と耐化学薬品性を備え
ながら、一方、透過性能と分離性能について実用
上、高いレベルにある気体混合物、液体混合物、
溶液等の流体の各成分を分離するための分離膜を
提供することを目的とするものであり、この目的
は以下に記すような本発明の分離膜により達成す
ることができる。すなわち、本発明の分離膜は(A)
ポリ(アリールスルホン)そして(B)ポリ−(2・
6−ジフエニルフエニレンオキシド)及び/又は
ニトロ化ポリ−(2・6−ジフエニルフエニレン
オキシド)とを含む組成物からなり、かつ(A)成分
と(B)成分との重量比が98:2〜60:40(A:B)
の範囲内にあることを特徴とする多孔質膜もしく
は非対称性膜の形態にある流体の分離膜である。 ポリ(アリールスルホン)は、式 で表わされる繰返し構造単位からなる重合体であ
り、膜形成性の重合体として公知の物質である。 ポリ−(2・6−ジフエニルフエニレンオキシ
ド)は、フイルム、耐熱性繊維、難燃性繊維、電
気絶縁体、保護被覆材などの工業的用途を持つ重
合体物質として公知である。ニトロ化ポリ−
(2・6−ジフエニルフエニレンオキシド)は、
ポリ−(2・6−ジフエニルフエニレンオキシ
ド)を公知の方法によりニトロ化することにより
製造することができる。 本発明において特に好適に使用できるポリ−
(2・6−ジフエニルフエニレンオキシド)とし
ては、特公昭55−23298号公報の明細書に開示さ
れている製法、すなわち、銅と窒素との原子比が
1:1.5〜100の割合にある臭化第一銅とピリジン
の存在下で、2・6−ジフエニルフエノールを有
機溶媒中にて酸化重合させるなどの方法で得られ
る極限粘度〔η〕が1以上のポリ−(2・6−ジ
フエニルフエニレンオキド)のような重合度の高
いものを挙げることができる。 ニトロ化ポリ−(2・6−ジフエニルフエニレ
ンオキシド)は、例えば次に記すような方法によ
り容易に製造することができる。 ポリ−(2・6−ジフエニルフエニレンオキシ
ド)を、クロロホルムのような有機溶媒に溶解
し、得られた溶液に発煙硝酸を撹拌下で滴下す
る。滴下が完了した後に反応系に水を加え、次い
で有機溶媒層を分離する。この有機溶媒層を水で
繰り返し洗浄することにより含有されている硝酸
分を除去した後、メタノールを加えて生成物を沈
殿させ、これを別してニトロ化ポリ−(2・6
−ジフエニルフエニレンオキシド)を得る。 本発明の膜に用いられる組成物に含まれるポリ
(アリールスルホン)……(A)成分と名付ける、そ
してポリ−(2・6−ジフエニルフエニレンオキ
シド)及び/又はニトロ化ポリ−(2・6−ジフ
エニルフエニレンオキシド)……(B)成分と名付け
る、とは重量比で98:2〜60:40(A:B)の範
囲内にあることが必要である。(A)成分と(B)成分と
の比を98:2より高くする、即ち(A)成分を上記範
囲より多量使用すると本発明の目的とする効果を
達成することができない。一方、(A)成分と(B)成分
との比を60:40より低くする、即ち(B)成分を上記
範囲より多量使用すると膜形成能の低下、例えば
成形した膜の表面に「むら」ができるなどの現象
が発生するため、本発明の目的の達成に不適当で
ある。 本発明の流体分離膜は多孔質膜もしくは非対称
性膜の形態に成形されている。そして本発明の分
離膜を製造するための好ましい製造法としては、
(A)ポリ(アリールスルホン)そして(B)ポリ−
(2・6−ジフエニルフエニレンオキシド)及
び/又はニトロ化ポリ−(2・6−ジフエニルフ
エニレンオキシド)が98:2〜60:40(A:B)
の範囲内の重量比で溶媒中に溶解されている溶液
を、好ましくは溶液流延法により、薄膜状に形成
し、次いで、得られた薄膜から上記溶液の溶媒を
抽出除去することを特徴とする製造法を挙げるこ
とができる。 ポリ(アリールスルホン)、そしてポリ−(2・
6−ジフエニルフエニレンオキシド)及び/又は
ニトロ化ポリ−(2・6−ジフエニルフエニレン
オキシド)を溶解する溶媒としては、これらの各
成分を溶解することのできる溶媒、例えばジメチ
ルホルムアミド、ジメチルホルムアミドとテトラ
ヒドロフランの混合溶媒、N−メチルピロリドン
など、を挙げることができる。 重合体溶液から薄膜を調製するためには、溶液
流延法を利用することが好ましい。この溶液流延
法は、例えばドクターブレードなどを用いて溶液
をガラス板などの板上に厚み0.05〜2mmの薄膜状
に流延し、次いで溶媒を除去することにより薄膜
を調製する方法で、この方法自体は公知であるた
め詳しい説明は省略する。 溶液流延法により得られた薄膜内に多孔構造を
設けて多孔質膜とするためには、上記の膜形成々
分の溶液の調製に用いた溶媒と混和性を持ち、か
つ膜を溶解しないような溶媒、例えば、メタノー
ル、プロパノール、ブタノールなどの低級アルコ
ール、水、あるいはこれらの低級アルコールと水
との混合溶媒など、で薄膜を処理することによ
り、膜形成々分溶液に用いられた溶媒を抽出しな
がら膜形成々分の凝固を行なわせる、などの公知
の方法が利用される。なお非対称性膜を製造する
ためには、溶液流延法の実施中、又は流延直後
に、その生成中の膜の片面に空気を吹き付けるな
どの公知の方法を利用することができる。なお、
本発明の流体の分離膜を効率良く使用するために
は膜の厚みを0.1〜2mmとすることが好ましい。 上述のような構成を有する本発明の分離膜は高
いレベルの透過性能と分離性能とを併せて有し、
特に高い透過速度をもたらすなどの利点の他に、
更に膜の形成に用いられている各成分の特性から
明らかなように高度の耐熱性及び耐化学薬品性を
持つているため、工業上のプロセスにおいて流体
の分離の目的に用いる膜として優れたものであ
る。 なお、本発明の分離膜の分離対象となる流体に
は特に制限はなく、各種の気体混合物、液体混合
物、各種の成分を溶解もしくは浮遊状態で含む溶
液やけん濁液などが含まれる。例えば、各種の気
体の混合物から所望の気体を選択的に分離するこ
とができる。そのような気体の混合物を構成する
気体の組み合わせとしては、例えば水素と一酸化
炭素、酸素と窒素、水素と窒素、二酸化炭素とメ
タン、ヘリウムとメタン、ヘリウムと窒素などを
挙げることができる。本発明の分離膜は特に水素
と一酸化炭素お分離に対して有用である。また溶
液の限外過等の目的で使用することも可能であ
る。 次に本発明を更に詳しく説明するための実施例
を記載する。後記する各実施例に用いた試料及び
試験方法を次に記す。 〔膜形成溶液(ドープ)の調製〕 (1) 膜形成々分 (イ) ポリ(アリールスルホン):ポリスルホン
(ユニオンカーバイド社製;p−3500) (ロ) ポリ−(2・6−ジフエニルフエニレンオ
キシド):特公昭55−23298号公報の明細書
に記載されている方法により得られた極限粘
度〔η〕=1.08のもの (ハ) ニトロ化ポリ−(2・6−ジフエニルフエ
ニレンオキシド):上記(ロ)に記した極限粘度
〔η〕=1.08のポリ−(2・6−ジフエニルフ
エニレンオキシド)を原料として次に記す方
法で得たモノマー単位当り約0.5ニトロ化さ
れているもの。 ポリ−(2・6−ジフエニルフエニレンオキ
シド)をクロロホルムに溶解して濃度6.3%の
溶液を調製し、この溶液に、ポリ−(2・6−
ジフエニルフエニレンオキシド)1g当り1ml
のの発煙硝酸(d=1.5)を滴下する。反応
後、反応混合物に水を加え、クロロホルム層を
分離して取り出し、このクロロホルム溶液を、
洗液が酸性を示さなくなるまで繰り返し水洗す
る。次いで、このクロロホルム溶液をメタノー
ルに注加し、沈殿した生成物を別する。 (2) 膜形成溶液(ドープ)の調製 膜形成々分の25重量%のジメチルホルムアミ
ド(DMF)溶液を窒素ふん囲気下で調製し、
この溶液を保留サイズ5μの紙で圧過、脱
泡してドープとした。 〔気体透過性能及び気体分離性能の評価〕 分離膜の透過性能と分離性能とを水素ガス
(H2)と一酸化炭素ガス(CO)とを利用し、公知
の評価方法に従い測定した。 本発明の分離膜の評価のために利用した気体透
過速度の測定法は具体的には次の通りである。 膜面積14.65cm2のステンレス製セルに、測定対
象の膜をセツトし、セルの一方に水素ガスを0.5
Kg/cm2に加圧導入し、水素ガスが膜を透過する速
度を流量計を用いて測定した。一酸化炭素につい
ても同様に測定した。なお、測定温度は、恒温槽
を利用して30℃にて一定に維持した。得られた測
定値から、次式に従つて透過度と分離度とを計算
した。 透過度(P′)=透過気体量/膜面積(14.65cm2)・透過時間(秒)・圧力差(0.5×76cmHg) 分離度=水素の透過度(P′H2)/一酸化炭素の透過
度(P′cp) 実施例 1 ポリ(アリールスルホン)20gとニトロ化ポリ
−(2・6−ジフエニルフエニレンオキシド)5
gとを75gのジメチルホルムアミド(DMF)に
溶解し、圧過、脱泡してポリ(アリールスルホ
ン)とニトロ化ポリ−(2・6−ジフエニルフエ
ニレンオキシド)とを80:20の重量比で含むドー
プを調製した。このドープを溶液流延法により、
ガラス板上に0.2mmの厚さの膜状に流延した後、
窒素ふん囲気中60℃で2分間乾燥した。ついでこ
の流延膜をメタノールからなる凝固浴に一昼夜浸
漬して凝固させた後、空気中で乾燥して多孔質膜
を製造した。 実施例 2 凝固浴としてメタノールの代りに、DMF2%と
ラウリルサルフエートナトリウム塩0.5%とを含
む水を用いた以外は実施例1と同様にして多孔質
膜を製造した。 実施例 3 ドープの流延膜の乾燥時間を2分間ではなく1
分間とした以外は実施例1と同様にして多孔質膜
と製造した。 実施例 4 ポリ(アリールスルホン)23.75gとポリ−
(2・6−ジフエニルフエニレンオキシド)1.25
gを7.5gのDMFに溶解し、圧過、脱泡してポ
リ(アリールスルホン)とポリ−(2・6−ジフ
エニルフエニレンオキシド)とを95:5の重量比
で含むドープを調製した。このドープを溶液流延
法により、ガラス板上に0.2mmの厚さの膜状に流
延した後、直ちにDMF2%とラウリルサルフエー
トナトリウム塩0.5%とを含む水からなる凝固浴
に一昼夜浸漬して凝固させた。次いで空気中で乾
燥して多孔質膜を製造した。 比較例 1 ポリ(アリールスルホン)25gとDMF75gと
を含むドープを用いた以外は実施例1と同様にし
て多孔質膜を製造した。 比較例 2 ポリ(アリールスルホン)12.5g、ニトロ化ポ
リ−(2・6−ジフエニルフエニレンオキシド)
12.5g、そしてDMF75gを用いてポリ(アリー
ルスルホン)とニトロ化ポリ−(2・6−ジフエ
ニルフエニレンオキシド)とを50:50の重量比で
含むドープを用いた以外は実施例1と同様にして
多孔質膜を製造した。得られた多孔質膜は表面に
「むら」が見られた。 実施例1−4及び比較例1−2で得られた多孔
質膜の各々について前述の方法により気体の透過
速度を測定し、水素についての透過度、そして水
素と一酸化炭素との分離度を算出した。得られた
結果を第1表に示す。
The present invention relates to a separation membrane for fluids such as gas mixtures, liquid mixtures, and solutions, and a method for producing the same. For example, a gas separation membrane is a membrane-shaped molded body used to selectively separate gases in a gas mixture containing different types of gases, and various types of forming materials and forms are known. ing. Fluid separation membranes made of cellulose acetate have been commonly used as fluid separation membranes, but they have the disadvantage of being highly hygroscopic and are not resistant to acids and bases. Because it does not have this property, it may not be usable depending on the purpose, and it is difficult to say that it is a fluid separation membrane that is fully satisfactory for practical purposes. On the other hand, fluid separation membranes made of poly(arylsulfone), which is chemically stable and has excellent heat resistance, have been known for some time, but their permeation performance is not high enough, so they are not satisfactory. I can not say. In general, the basic performance required of fluid separation membranes is permeation performance, which evaluates the permeation rate at which fluid components such as gas mixtures, liquid mixtures, and solutes in solutions permeate through the membrane; It is well known that there is a separation performance that is an evaluation of how much of the material is preferentially transmitted. It is also well known that when fluid separation membranes are classified according to their structure, they are broadly divided into three types: homogeneous membranes, porous membranes, and asymmetric membranes. A homogeneous membrane is a membrane obtained by simply forming a conventional membrane-forming polymer into a membrane, and the membrane layer does not substantially have a porous structure. Therefore,
Although homogeneous membranes have excellent separation performance, their permeation performance is significantly inferior. On the other hand, porous membranes with a porous structure within the membrane layer generally have an excellent permeation rate;
There is a problem that the separation performance is not sufficient. By taking advantage of the advantages of these homogeneous membranes and porous membranes,
Asymmetric membranes have been developed to alleviate this disadvantage, and are porous membranes with a thin homogeneous layer on one side of the membrane. Since the asymmetric membrane has such a structure, its permeation performance is at a higher level than that of a homogeneous membrane, and its separation performance is also at a higher level than that of a porous membrane. Since there is a known technology to improve the basic performance of fluid separation membranes by improving the membrane structure as described above, we have developed the characteristics of poly(arylsulfone), which has excellent chemical resistance and heat resistance, as described above. Attempts are also being made to take advantage of this and develop separation membranes that have practically excellent permeation performance and separation performance. For example, the specification of JP-A-51-129880 discloses a gas separation membrane in which poly(arylsulfone) is formed into an asymmetric membrane. Since this gas separation membrane is in the form of an asymmetric membrane, the permeability is improved compared to a homogeneous membrane, but it is still not fully satisfactory from a practical standpoint. The present invention provides gas mixtures, liquid mixtures, which have excellent heat resistance and chemical resistance, and which have a practically high level of permeation performance and separation performance.
The object is to provide a separation membrane for separating each component of a fluid such as a solution, and this object can be achieved by the separation membrane of the present invention as described below. That is, the separation membrane of the present invention has (A)
Poly(arylsulfone) and (B) poly-(2.
6-diphenylphenylene oxide) and/or nitrated poly-(2,6-diphenylphenylene oxide), and the weight ratio of component (A) to component (B) is 98 :2~60:40 (A:B)
A fluid separation membrane in the form of a porous membrane or an asymmetric membrane, characterized in that it is within the range of . Poly(arylsulfone) has the formula It is a polymer consisting of repeating structural units represented by the following, and is a substance known as a film-forming polymer. Poly-(2,6-diphenylphenylene oxide) is known as a polymeric material with industrial uses such as films, heat-resistant fibers, flame-retardant fibers, electrical insulation, and protective coatings. nitrated poly-
(2,6-diphenylphenylene oxide) is
It can be produced by nitration of poly-(2,6-diphenylphenylene oxide) by a known method. Polymers particularly suitable for use in the present invention
(2,6-diphenylphenylene oxide) is manufactured by the method disclosed in the specification of Japanese Patent Publication No. 55-23298, that is, the atomic ratio of copper and nitrogen is 1:1.5 to 100. A poly-(2,6- Examples include those with a high degree of polymerization such as diphenylphenylene oxide). Nitrated poly-(2,6-diphenylphenylene oxide) can be easily produced, for example, by the method described below. Poly-(2,6-diphenylphenylene oxide) is dissolved in an organic solvent such as chloroform, and fuming nitric acid is added dropwise to the resulting solution under stirring. After the addition is complete, water is added to the reaction system, and then the organic solvent layer is separated. After repeatedly washing this organic solvent layer with water to remove the nitric acid contained therein, methanol was added to precipitate the product, which was separated and nitrated poly(2.6
-diphenylphenylene oxide). Poly(aryl sulfone) contained in the composition used in the membrane of the present invention...named as component (A), and poly(2,6-diphenylphenylene oxide) and/or nitrated poly(2. 6-diphenylphenylene oxide)...named as component (B), must be within the range of 98:2 to 60:40 (A:B) in terms of weight ratio. If the ratio of component (A) to component (B) is higher than 98:2, that is, if component (A) is used in an amount greater than the above range, the intended effects of the present invention cannot be achieved. On the other hand, if the ratio of component (A) to component (B) is lower than 60:40, that is, if component (B) is used in a larger amount than the above range, the film forming ability will decrease, for example, "unevenness" will appear on the surface of the formed film. This method is inappropriate for achieving the purpose of the present invention because phenomena such as the formation of a The fluid separation membrane of the present invention is formed in the form of a porous membrane or an asymmetric membrane. A preferred manufacturing method for manufacturing the separation membrane of the present invention is as follows:
(A) poly(arylsulfone) and (B) poly-
(2,6-diphenylphenylene oxide) and/or nitrated poly-(2,6-diphenylphenylene oxide) in a ratio of 98:2 to 60:40 (A:B)
The method is characterized by forming a solution dissolved in a solvent at a weight ratio within the range of , preferably by a solution casting method, into a thin film, and then extracting and removing the solvent of the solution from the obtained thin film. Examples of manufacturing methods include: poly(arylsulfone), and poly(2.
As the solvent for dissolving nitrated poly-(2,6-diphenylphenylene oxide) and/or nitrated poly(2,6-diphenylphenylene oxide), solvents that can dissolve each of these components, such as dimethylformamide, dimethyl Examples include a mixed solvent of formamide and tetrahydrofuran, N-methylpyrrolidone, and the like. In order to prepare a thin film from a polymer solution, it is preferable to use a solution casting method. This solution casting method is a method in which a solution is cast into a thin film of 0.05 to 2 mm thick on a plate such as a glass plate using, for example, a doctor blade, and then the thin film is prepared by removing the solvent. Since the method itself is well known, detailed explanation will be omitted. In order to create a porous film by creating a porous structure in the thin film obtained by the solution casting method, it is necessary to use a solvent that is miscible with the solvent used to prepare the solution for forming the film and does not dissolve the film. By treating the thin film with a solvent such as a lower alcohol such as methanol, propanol, or butanol, water, or a mixed solvent of these lower alcohols and water, the solvent used in the film forming component solution can be removed. Known methods such as coagulating the membrane-forming components during extraction may be used. In order to produce an asymmetric membrane, a known method can be used, such as blowing air onto one side of the membrane being produced during or immediately after the solution casting method. In addition,
In order to use the fluid separation membrane of the present invention efficiently, the thickness of the membrane is preferably 0.1 to 2 mm. The separation membrane of the present invention having the above-described configuration has both high levels of permeation performance and separation performance,
In addition to advantages such as providing particularly high permeation rates,
Furthermore, as is clear from the characteristics of each component used to form the membrane, it has a high degree of heat resistance and chemical resistance, making it an excellent membrane for use in fluid separation in industrial processes. It is. Note that the fluid to be separated by the separation membrane of the present invention is not particularly limited, and includes various gas mixtures, liquid mixtures, solutions and suspensions containing various components in a dissolved or suspended state. For example, a desired gas can be selectively separated from a mixture of various gases. Examples of combinations of gases constituting such a gas mixture include hydrogen and carbon monoxide, oxygen and nitrogen, hydrogen and nitrogen, carbon dioxide and methane, helium and methane, helium and nitrogen, and the like. The separation membrane of the present invention is particularly useful for separating hydrogen and carbon monoxide. It can also be used for purposes such as ultrafiltration of solutions. Next, examples will be described to explain the present invention in more detail. The samples and test methods used in each of the Examples described below are described below. [Preparation of film-forming solution (dope)] (1) Film-forming components (a) Poly(arylsulfone): Polysulfone (manufactured by Union Carbide; p-3500) (b) Poly-(2,6-diphenylphene) Nylene oxide): one with an intrinsic viscosity [η] of 1.08 obtained by the method described in the specification of Japanese Patent Publication No. 55-23298 (c) Nitrated poly-(2,6-diphenylphenylene oxide) ): Obtained by the method described below using poly-(2,6-diphenylphenylene oxide) with an intrinsic viscosity [η] = 1.08 as described in (b) above as a raw material, and is nitrated by about 0.5 per monomer unit. thing. Poly-(2,6-diphenylphenylene oxide) was dissolved in chloroform to prepare a solution with a concentration of 6.3%, and poly-(2,6-
Diphenylphenylene oxide) 1ml per 1g
Drop in fuming nitric acid (d=1.5). After the reaction, water is added to the reaction mixture, the chloroform layer is separated and taken out, and this chloroform solution is
Repeatedly wash with water until the washing solution no longer shows acidity. This chloroform solution is then poured into methanol and the precipitated product is separated. (2) Preparation of film-forming solution (dope) A 25% by weight dimethylformamide (DMF) solution of the film-forming components was prepared under a nitrogen atmosphere.
This solution was degassed by pressing through paper with a retention size of 5 μm to obtain a dope. [Evaluation of gas permeation performance and gas separation performance] The permeation performance and separation performance of the separation membrane were measured using hydrogen gas (H 2 ) and carbon monoxide gas (CO) according to a known evaluation method. The specific method for measuring gas permeation rate used to evaluate the separation membrane of the present invention is as follows. The membrane to be measured was set in a stainless steel cell with a membrane area of 14.65 cm2 , and 0.5% hydrogen gas was added to one side of the cell.
A pressure of Kg/cm 2 was introduced, and the rate at which hydrogen gas permeated through the membrane was measured using a flowmeter. Carbon monoxide was also measured in the same way. Note that the measurement temperature was maintained constant at 30°C using a constant temperature bath. From the obtained measured values, the transmittance and resolution were calculated according to the following equations. Permeability (P') = Permeated gas amount/membrane area (14.65cm 2 ), permeation time (seconds), pressure difference (0.5 x 76cmHg) Separation rate = Hydrogen permeability (P' H2 )/monooxide Carbon permeability (P' cp ) Example 1 20 g of poly(arylsulfone) and 5 g of nitrated poly-(2,6-diphenylphenylene oxide)
g in 75 g of dimethylformamide (DMF), pressure-filtered and defoamed to form poly(arylsulfone) and nitrated poly-(2,6-diphenylphenylene oxide) at a weight ratio of 80:20. A dope containing This dope is applied by solution casting method.
After being cast into a film with a thickness of 0.2 mm on a glass plate,
It was dried for 2 minutes at 60°C in a nitrogen atmosphere. Next, this cast membrane was immersed in a coagulation bath consisting of methanol for one day and night to solidify it, and then dried in air to produce a porous membrane. Example 2 A porous membrane was produced in the same manner as in Example 1, except that water containing 2% DMF and 0.5% lauryl sulfate sodium salt was used instead of methanol as the coagulation bath. Example 3 The drying time of the dope casting film was changed to 1 minute instead of 2 minutes.
A porous membrane was manufactured in the same manner as in Example 1, except that the time was 10 minutes. Example 4 23.75g of poly(arylsulfone) and poly-
(2,6-diphenylphenylene oxide) 1.25
A dope containing poly(aryl sulfone) and poly-(2,6-diphenylphenylene oxide) at a weight ratio of 95:5 was prepared by dissolving 7.5 g of DMF and pressurizing and defoaming. . This dope was cast onto a glass plate in the form of a film with a thickness of 0.2 mm by the solution casting method, and then immediately immersed in a coagulation bath consisting of water containing 2% DMF and 0.5% sodium lauryl sulfate salt overnight. and solidified. Then, it was dried in air to produce a porous membrane. Comparative Example 1 A porous membrane was produced in the same manner as in Example 1, except that a dope containing 25 g of poly(arylsulfone) and 75 g of DMF was used. Comparative Example 2 12.5 g of poly(arylsulfone), nitrated poly-(2,6-diphenylphenylene oxide)
Same as Example 1 except that 12.5 g and 75 g of DMF were used and a dope containing poly(aryl sulfone) and nitrated poly-(2,6-diphenylphenylene oxide) in a weight ratio of 50:50 was used. A porous membrane was produced. The obtained porous membrane had "unevenness" on its surface. The gas permeation rate of each of the porous membranes obtained in Example 1-4 and Comparative Example 1-2 was measured by the method described above, and the permeability of hydrogen and the degree of separation between hydrogen and carbon monoxide were determined. Calculated. The results obtained are shown in Table 1.

【表】 第1表に示した分離度のデータから明らかなよ
うに各例により得られた膜は多孔質膜の特性を示
した。そして実施例1−4で得られた多孔質膜
は、ポリ(アリールスルホン)のみを用いて成形
した多孔質膜(比較例1)に比べて、水素の透過
性能について優れた値を示している。 実施例 5 ポリ(アリールスルホン)22.5gとニトロ化ポ
リ−(2・6−ジフエニルフエニレンオキシド)
2.5gとを、DMFとTHF(テトラヒドロフラン)
との混合溶媒(THF/DMF=1.5)7.5gに溶解
し、圧過、脱泡してポリ(アリールスルホン)
とニトロ化ポリ−(2・6−ジフエニルフエニレ
ンオキシド)とを90:10の重量比で含むドープを
調製した。このドープを溶液流延法により、ガラ
ス板上に0.2mmの厚さの膜状に流延した後、室温
にてそのまま1分間放置した。ついでこの流延膜
をメタノールからなる凝固浴に一昼夜浸漬して凝
固させた後、空気中で乾燥して非対称性膜を製造
した。 実施例 6 ポリ(アリールスルホン)17.5g、ポリ−
(2・6−ジフエニルフエニレンオキシド)7.5
g、そしてDMFとTHFとの混合溶媒(THF/
DMF=1.5)75gを用い、ポリ(アリールスルホ
ン)とポリ−(2・6−ジフエニルフエニレンオ
キシド)とを70:30の重量比で含むドープを用い
た以外は実施例5と同様にして非対称性膜を製造
した。 比較例 3 ポリ(アリールスルホン)25g、とDMFと
THFとの混合溶媒(THF/DMF=1.5)75gと
を含むドープを用いた以外は実施例5と同様にし
て非対称性膜を製造した。 実施例5−6及び比較例3で得られた非対称性
膜の各々について前述の方法により気体の透過速
度を測定し、水素についての透過速度、そして水
素と一酸化炭素との分離度を算出した。得られた
結果を第2表に示す。
[Table] As is clear from the separation data shown in Table 1, the membranes obtained in each example exhibited the characteristics of a porous membrane. The porous membrane obtained in Example 1-4 shows superior hydrogen permeation performance compared to the porous membrane formed using only poly(arylsulfone) (Comparative Example 1). . Example 5 22.5 g of poly(aryl sulfone) and nitrated poly-(2,6-diphenylphenylene oxide)
2.5g, DMF and THF (tetrahydrofuran)
Poly(arylsulfone) was dissolved in 7.5 g of a mixed solvent (THF/DMF=1.5) with
and nitrated poly-(2,6-diphenylphenylene oxide) in a weight ratio of 90:10. This dope was cast onto a glass plate in the form of a film with a thickness of 0.2 mm by a solution casting method, and then left as it was at room temperature for 1 minute. Next, this cast membrane was immersed in a coagulation bath consisting of methanol overnight to solidify it, and then dried in air to produce an asymmetric membrane. Example 6 Poly(arylsulfone) 17.5g, poly-
(2,6-diphenylphenylene oxide) 7.5
g, and a mixed solvent of DMF and THF (THF/
The same procedure as in Example 5 was carried out except that 75 g of DMF=1.5) was used and a dope containing poly(aryl sulfone) and poly-(2,6-diphenylphenylene oxide) at a weight ratio of 70:30 was used. An asymmetric membrane was produced. Comparative example 3 25g of poly(arylsulfone) and DMF
An asymmetric membrane was produced in the same manner as in Example 5, except that a dope containing 75 g of a mixed solvent with THF (THF/DMF=1.5) was used. The gas permeation rate was measured for each of the asymmetric membranes obtained in Examples 5-6 and Comparative Example 3 by the method described above, and the hydrogen permeation rate and the degree of separation between hydrogen and carbon monoxide were calculated. . The results obtained are shown in Table 2.

【表】 第2表に示したデータから明らかなように、本
発明の分離膜(実施例5−6)は非対称性膜の形
態に成形した場合も、ポリ(アリールスルホン)
のみを用いて成形した非対称性膜に比較して高い
水素透過度を示している。
[Table] As is clear from the data shown in Table 2, the separation membrane of the present invention (Examples 5-6) was formed using poly(arylsulfone) even when formed into an asymmetric membrane.
This shows a higher hydrogen permeability compared to an asymmetric membrane formed using only asymmetric membranes.

Claims (1)

【特許請求の範囲】 1 (A)ポリ(アリールスルホン)そして(B)ポリ−
(2・6−ジフエニルフエニレンオキシド)及
び/又はニトロ化ポリ−(2・6−ジフエニルフ
エニレンオキシド)とを含む組成物からなり、か
つ(A)成分と(B)成分との重量比が98:2〜60:40
(A:B)の範囲内にあることを特徴とする多孔
質膜もしくは非対称性膜の形態にある流体の分離
膜。 2 (A)ポリ(アリールスルホン)そして(B)ポリ−
(2・6−ジフエニルフエニレンオキシド)及
び/又はニトロ化ポリ−(2・6−ジフエニルフ
エニレンオキシド)が98:2〜60:40(A:B)
の範囲内の重量比で溶媒中に溶解されている溶液
を薄膜状に形成し、次いで、得られた薄膜から上
記溶液の溶媒を抽出除去することを特徴とする流
体の分離膜の製造法。
[Claims] 1. (A) poly(aryl sulfone) and (B) poly-
(2,6-diphenylphenylene oxide) and/or nitrated poly-(2,6-diphenylphenylene oxide), and the weight of component (A) and component (B) Ratio is 98:2 to 60:40
A fluid separation membrane in the form of a porous membrane or an asymmetric membrane, characterized in that the ratio is within the range of (A:B). 2 (A) poly(arylsulfone) and (B) poly-
(2,6-diphenylphenylene oxide) and/or nitrated poly-(2,6-diphenylphenylene oxide) in a ratio of 98:2 to 60:40 (A:B)
1. A method for producing a fluid separation membrane, which comprises forming a solution dissolved in a solvent at a weight ratio within the range of 1 to 1 in a thin film, and then extracting and removing the solvent of the solution from the obtained thin film.
JP5117581A 1981-04-07 1981-04-07 Separating membrane and its production Granted JPS57167707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5117581A JPS57167707A (en) 1981-04-07 1981-04-07 Separating membrane and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5117581A JPS57167707A (en) 1981-04-07 1981-04-07 Separating membrane and its production

Publications (2)

Publication Number Publication Date
JPS57167707A JPS57167707A (en) 1982-10-15
JPS6153083B2 true JPS6153083B2 (en) 1986-11-15

Family

ID=12879493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5117581A Granted JPS57167707A (en) 1981-04-07 1981-04-07 Separating membrane and its production

Country Status (1)

Country Link
JP (1) JPS57167707A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5977928U (en) * 1982-11-17 1984-05-26 三菱電機株式会社 coffee maker

Also Published As

Publication number Publication date
JPS57167707A (en) 1982-10-15

Similar Documents

Publication Publication Date Title
Pusch et al. Synthetic membranes—preparation, structure, and application
US4385084A (en) Process for preparing a selective permeable membrane
CA2409569C (en) Polysulfonamide matrices
JP2885712B2 (en) Polymer solution for asymmetric single membrane and asymmetric single membrane using the same
US5304307A (en) Chargedasymmetric mosaic membrances
GB1590813A (en) Multicomponent membranes
JPH03193126A (en) Sulfonated hexafluorobisphenol-a polysulfone film and fluid separation process
JPS63116723A (en) Method of forming hollow fiber irregular gas separating film
JPH0568859A (en) Gas separation hollow-fiber membrane and its production
Xie et al. Low fouling polysulfone ultrafiltration membrane via click chemistry
JPS6127086B2 (en)
JPS584561B2 (en) Kanjiyouporiniyosono Fuseihan Umaku
US4319008A (en) Polyether admixture and semi-permeable membranes comprised thereof
US5082565A (en) Semipermeable membrane made from polyether ketones
JPS5831204B2 (en) polysulfone semipermeable membrane
JPS6238205A (en) Semi-permeable membrane for separation
JPH0685858B2 (en) Method for manufacturing separation membrane
JPS6153083B2 (en)
JPS60132605A (en) Preparation of asymmetric membrane
JPH0112530B2 (en)
CA1184715A (en) Porous sulfone polymer membrane and process for its preparation
JPH119976A (en) Separation membrane for unsaturated hydrocarbon and separation method
JPS6390533A (en) Separation of hydrogen
JPS62171729A (en) Gas permselective membrane
JPS5850121B2 (en) Microporous permeable membrane