JPS6152818B2 - - Google Patents

Info

Publication number
JPS6152818B2
JPS6152818B2 JP926780A JP926780A JPS6152818B2 JP S6152818 B2 JPS6152818 B2 JP S6152818B2 JP 926780 A JP926780 A JP 926780A JP 926780 A JP926780 A JP 926780A JP S6152818 B2 JPS6152818 B2 JP S6152818B2
Authority
JP
Japan
Prior art keywords
reaction
bis
oxalamide
solvent
chloroethyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP926780A
Other languages
Japanese (ja)
Other versions
JPS56108746A (en
Inventor
Hiroo Inada
Yoichi Saito
Kazutoshi Funahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP926780A priority Critical patent/JPS56108746A/en
Publication of JPS56108746A publication Critical patent/JPS56108746A/en
Publication of JPS6152818B2 publication Critical patent/JPS6152818B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 本発明はN・N′−ビス(2−クロルエチル)
蓚酸アミドの製造方法に関する。更に詳しくは、
本発明はN・N−ビス(2−ヒドロキシエチル)
蓚酸アミドを塩化水素で塩素化するN・N′−ビ
ス(2−クロルエチル)蓚酸アミドの製造方法に
関する。 N・N′−ビス(2−クロルエチル)蓚酸アミ
ドは2・2′−△−ジオキサゾリン製造の際の中
間体として有用であり、また2・2′−△−ジオ
キサゾリンはカルボキシル基等と容易に反応する
ことから粉体塗料の硬化剤として、またエポキシ
樹脂等の架橋剤としてその有用性が注目されてい
る。 従来から、N・N′−ビス(2−クロルエチ
ル)蓚酸アミドはN・N′−ビス(2−ヒドロキ
シエチル)蓚酸アミドを塩化チオニルと作用させ
る方法(J.Am.Chem.Soc.60 2152(1938)参
照)あるいは塩化オキザリルとエチレンイミンと
の反応による方法(J.Chem.Soc.1962 1481参
照)に依り製造されることが知られている。然し
乍ら、これらの方法は、反応の操作、原料の毒性
および価格、環境公害等の問題があり、企業的規
模での製造方法として使用することが困難であつ
た。 一般に脂肪族系ヒドロキシ化合物は塩酸によつ
て塩素化できる。しかし、N・N′−ビス(2−
ヒドロキシエチル)蓚酸アミドは塩酸を反応せし
めるとアミド結合が分解し、塩素化された目的と
するN・N′−ビス(2−クロルエチル)蓚酸ア
ミドを全く得ることができない。更にまた塩酸の
代りに塩化水素ガスを使用しても塩素化によつて
生じる水によつてアミド結合の一部が分解し、収
率が著しく悪いという問題もある。 本発明者等は、これらの問題を解決するため研
究した結果、N・N′−ビス(2−ヒドロキシエ
チル)蓚酸アミドに塩化水素を反応させて目的の
N・N′−ビス(2−クロルエチル)蓚酸アミド
を合成するに際し反応溶剤としてフエノール系溶
剤を用いることにより塩素化が効率良く進むこと
を見出し、本発明に到達した。 すなわち、本発明はN・N′−ビス(2−ヒド
ロキシエチル)蓚酸アミドを塩素化剤と反応せし
めてN・N′−ビス(2−クロルエチル)蓚酸ア
ミドを製造するに際し、該反応をフエノール系溶
剤の存在下で行ない、かつ該塩素化剤として塩化
水素を用いることを特徴とするN・N′−ビス
(2−クロルエチル)蓚酸アミドの製造方法にあ
る。 本発明において塩素化反応は、N・N′−ビス
(2−ヒドロキシエチル)蓚酸アミドをフエノー
ル系溶剤に溶解あるいは懸濁させ、所望の反応温
度において気体の塩化水素を導入して行う。 本発明において反応溶剤として用いられるフエ
ノール系溶剤としては融点が100℃以下のフエノ
ール類が好ましく、例えばフエノール、m−クレ
ゾール、o−クレゾール、p−クレゾール、o−
クロロフエノール、m−クロロフエノール、p−
クロロフエノール等が挙げられる。これらは単独
で使用してもよく、また2種以上の混合物として
も支障なく使用できる。 かかるフエノール系溶剤の使用量はN・N′−
ビス(2−ヒドロキシエチル)蓚酸アミドを溶解
あるいは懸濁しうる量範囲あれば良く、通常、
N・N′−ビス(2−ヒドロキシエチル)蓚酸ア
ミドに対し1/3〜20重量倍であり、好ましくは1/2
〜10重量倍である。また、これらフエノール系溶
剤はその一部を疎水性の溶剤で置換することがで
き、両者を混合して使用することも可能である。
このような疎水性の溶剤としては、例えば、ベン
ゼン、トルエン、キシレン、エチルベンゼン、ブ
ソイドクメン、p−サイメン、デユレン、テトラ
リン、α−メチルナフタレン、β−メチルナフタ
レン、デカリン、流動パラフイン、ジフエニルエ
ーテル等が挙げられる。疎水性の溶剤を併用する
場合、該疎水性の溶剤はフエノール系溶剤に対し
て5重量倍以下、特に当量以下の量比で用いるこ
とが好ましい。かかる疎水性の溶剤のうち、トル
エン、キシレン、エチルベンゼン、プソイドクメ
ン等の如き100℃乃至200℃の温度範囲で水と共沸
しうる溶剤を併用する場合、溶剤の種類とその使
用割合を選択することによつて反応において副生
する水を効率良く、反応系外に共沸によつて除去
することができる。しかしてかかる疎水性の溶剤
を併用することは特に好ましい。 本発明に用いられる塩化水素は、特に限定され
るものではなく、例えば企業的方法で生産されて
いるもの、あるいは塩酸の脱水等により得られる
ものでも差支えない。しかし、塩化水素中に含有
される水分或いは酸素は反応収率の低下をもたら
し、また生成物の着色の原因となるので予め除去
しておくことが望ましい。また、反応調節等の目
的のため、窒素の如き不活性ガスとの混合気体と
して用いても差支えない。塩化水素の導入速度
は、特に限定されるものでなく、反応温度および
反応規模により変化しうる。また、密閉の反応系
において、一定割合の塩化水素を圧入し、次いで
反応によつて減少した塩化水素を遂次補充して反
応させることもできる。また、塩化水素を連続的
に導入して反応させることもできる。 本発明において塩素化反応は、60〜230℃の温
度範囲内で行なうことが望ましい。更には90〜
200℃、特に110〜190℃の温度で行なうのが好ま
しい。この温度範囲より低いと反応の時間が長く
かかり、また、この温度範囲より高いと生成物の
着色あるいは収率の低下が著しくなり、好ましく
ない。また、反応において副生する水分は反応系
から速やかに除去させることが望ましく、低い反
応温度はこの点からも好ましい。また反応は回分
反応、連続反応、遂次反応など任意の方法で行う
ことができ、更にまた連続反応においては未反応
原料及び(又は)溶剤をリサイクルして用いるこ
ともできる。 本発明において副生する水分を積極的に除去
し、反応を好ましい方向に進行させるのに、先に
述べた共沸で水を除去する方法は有効であるが、
その他の方法、例えば反応系内、気体の排出管あ
るいは還流冷却管内に脱水剤を充填する方法も用
いることができる。 本発明の方法によつて製造されたN・N′−ビ
ス(2−クロルエチル)蓚酸アミドは反応系を冷
却することにより反応溶媒から多くの場合結晶と
して容易に分離することができる。このN・
N′−ビス(2−クロルエチル)蓚酸アミドは
2・2′−△−ジオキサゾリン合成の中間体とし
て満足され得るものである。 以下、実施例を挙げて本発明を更に説明する。 実施例 1〜7 温度計、塩化水素導入管、気体排出口を持つた
共沸水抜き装置付きの冷却器及び撹拌機を備えた
500mlの反応器に、N・N′−ビス(2−ヒドロキ
シエチル)蓚酸アミド及び第1表に示す溶媒の所
定量を仕込み、溶媒の還流下、塩化水素ガスを約
1/分の速度で撹拌下導入した。反応によつて
生成した水は共沸して留出するが、水の生成がほ
ぼ止るまで反応を続けた。その時間を第1表に示
す。 得られた反応物を冷メタノールでよく洗浄し結
晶を濾別、乾燥した。得られた結晶はそのままで
も十分純度が高いが、メチルセルソルブから再結
晶し、N・N′−ビス(2−クロルエチル)蓚酸
アミドの標品と比較したところ、融点、IR、
NMRスペクトルとも標品の特性と一致した。 得られたN・N′−ビス(2−クロルエチル)
蓚酸アミドの収率を第1表に示す。 【表】
[Detailed description of the invention] The present invention relates to N.N'-bis(2-chloroethyl)
The present invention relates to a method for producing oxalic acid amide. For more details,
The present invention relates to N.N-bis(2-hydroxyethyl)
The present invention relates to a method for producing N.N'-bis(2-chloroethyl)oxalamide by chlorinating oxalamide with hydrogen chloride. N・N′-bis(2-chloroethyl)oxalamide is useful as an intermediate in the production of 2・2′-△ 2 -dioxazoline, and 2・2′-△ 2 -dioxazoline has a carboxyl group, etc. Because it easily reacts with , its usefulness is attracting attention as a curing agent for powder coatings and as a crosslinking agent for epoxy resins and the like. Conventionally, N.N'-bis(2-chloroethyl)oxalamide has been prepared by a method in which N.N'-bis(2-hydroxyethyl)oxalamide is reacted with thionyl chloride (J.Am.Chem.Soc. 60 2152 ( It is known that it can be produced by a method involving the reaction of oxalyl chloride with ethyleneimine (see J. Chem. Soc. 1962, 1481). However, these methods have problems such as reaction operation, toxicity and cost of raw materials, and environmental pollution, making it difficult to use them as production methods on a corporate scale. Generally, aliphatic hydroxy compounds can be chlorinated with hydrochloric acid. However, N・N′-bis(2-
When hydroxyethyl)oxalamide is reacted with hydrochloric acid, the amide bond decomposes, and the desired chlorinated N·N'-bis(2-chloroethyl)oxalamide cannot be obtained at all. Furthermore, even if hydrogen chloride gas is used instead of hydrochloric acid, there is a problem that a portion of the amide bond is decomposed by the water produced by chlorination, resulting in a significantly poor yield. As a result of research to solve these problems, the present inventors have discovered that by reacting hydrogen chloride with N.N'-bis(2-hydroxyethyl)oxalamide, the desired N.N'-bis(2-chloroethyl) ) It has been discovered that chlorination can proceed efficiently by using a phenolic solvent as a reaction solvent when synthesizing oxalic acid amide, and the present invention has been achieved. That is, the present invention involves reacting N·N'-bis(2-hydroxyethyl)oxalamide with a chlorinating agent to produce N·N'-bis(2-chloroethyl)oxalamide. A method for producing N.N'-bis(2-chloroethyl)oxalamide, characterized in that it is carried out in the presence of a solvent and hydrogen chloride is used as the chlorinating agent. In the present invention, the chlorination reaction is carried out by dissolving or suspending N.N'-bis(2-hydroxyethyl)oxalamide in a phenolic solvent and introducing gaseous hydrogen chloride at a desired reaction temperature. The phenolic solvent used as a reaction solvent in the present invention is preferably a phenol having a melting point of 100°C or less, such as phenol, m-cresol, o-cresol, p-cresol, o-cresol, or
Chlorophenol, m-chlorophenol, p-
Examples include chlorophenol. These may be used alone or as a mixture of two or more without any problem. The amount of such phenolic solvent used is N・N'-
The amount may be within a range that can dissolve or suspend bis(2-hydroxyethyl)oxalamide, and usually,
1/3 to 20 times the weight of N・N'-bis(2-hydroxyethyl)oxalamide, preferably 1/2
~10 times the weight. Further, a part of these phenolic solvents can be replaced with a hydrophobic solvent, and it is also possible to use a mixture of both.
Examples of such hydrophobic solvents include benzene, toluene, xylene, ethylbenzene, butoidcumene, p-cymene, duurene, tetralin, α-methylnaphthalene, β-methylnaphthalene, decalin, liquid paraffin, and diphenyl ether. Can be mentioned. When a hydrophobic solvent is used in combination, it is preferable to use the hydrophobic solvent in an amount of 5 times or less, particularly an equivalent or less, to the phenolic solvent. Among such hydrophobic solvents, when using together a solvent that can azeotrope with water in the temperature range of 100°C to 200°C, such as toluene, xylene, ethylbenzene, pseudocumene, etc., the type of solvent and its usage ratio should be selected. By this, water produced as a by-product in the reaction can be efficiently removed from the reaction system by azeotropy. Therefore, it is particularly preferable to use such a hydrophobic solvent in combination. The hydrogen chloride used in the present invention is not particularly limited, and may be, for example, one produced by a commercial method or one obtained by dehydration of hydrochloric acid. However, since water or oxygen contained in hydrogen chloride lowers the reaction yield and causes coloration of the product, it is desirable to remove it in advance. Further, for purposes such as reaction control, it may be used as a mixed gas with an inert gas such as nitrogen. The rate of introduction of hydrogen chloride is not particularly limited and may vary depending on the reaction temperature and reaction scale. Alternatively, in a closed reaction system, a certain proportion of hydrogen chloride can be injected under pressure, and then the hydrogen chloride reduced by the reaction can be successively replenished for the reaction. Alternatively, hydrogen chloride can be continuously introduced and reacted. In the present invention, the chlorination reaction is preferably carried out within a temperature range of 60 to 230°C. Even 90~
Preferably it is carried out at a temperature of 200°C, especially 110-190°C. If the temperature is lower than this range, the reaction time will take a long time, and if the temperature is higher than this range, the color of the product or the yield will be significantly reduced, which is not preferable. Further, it is desirable that water by-produced in the reaction is quickly removed from the reaction system, and a low reaction temperature is also preferred from this point of view. Further, the reaction can be carried out by any method such as batch reaction, continuous reaction, sequential reaction, etc. Furthermore, in continuous reaction, unreacted raw materials and/or solvent can be recycled and used. In the present invention, the method of removing water by azeotropy described above is effective in actively removing by-product water and allowing the reaction to proceed in a favorable direction.
Other methods, such as a method of filling the reaction system, gas discharge pipe, or reflux condenser with a dehydrating agent, can also be used. N.N'-bis(2-chloroethyl)oxalamide produced by the method of the present invention can be easily separated as crystals from the reaction solvent in most cases by cooling the reaction system. This N.
N'-bis(2-chloroethyl)oxalamide is a satisfactory intermediate for the synthesis of 2.2'- Δ2 -dioxazoline. The present invention will be further explained below with reference to Examples. Examples 1 to 7 Equipped with a thermometer, a hydrogen chloride inlet pipe, a cooler with an azeotropic water removal device and a stirrer with a gas outlet
A 500 ml reactor was charged with N・N'-bis(2-hydroxyethyl)oxalamide and the prescribed amount of the solvent shown in Table 1, and hydrogen chloride gas was stirred at a rate of about 1/min while the solvent was refluxing. Introduced below. The water produced by the reaction was azeotropically distilled off, but the reaction was continued until the production of water almost stopped. The times are shown in Table 1. The obtained reaction product was thoroughly washed with cold methanol, and the crystals were separated by filtration and dried. The obtained crystals are sufficiently pure as they are, but when recrystallized from methylcellosolve and compared with a standard product of N・N'-bis(2-chloroethyl)oxalamide, the melting point, IR,
The NMR spectrum also matched the characteristics of the standard sample. Obtained N・N′-bis(2-chloroethyl)
The yield of oxalic acid amide is shown in Table 1. 【table】

Claims (1)

【特許請求の範囲】[Claims] 1 N・N′−ビス(2−ヒドロキシエチル)蓚
酸アミドを塩素化剤と反応せしめてN・N′−ビ
ス(2−クロルエチル)蓚酸アミドを製造するに
際し、該反応をフエノール系溶剤の存在下で行な
い、かつ該塩素化剤として塩化水素を用いること
を特徴とするN・N′−ビス(2−クロルエチ
ル)蓚酸アミドの製造方法。
1 When reacting N.N'-bis(2-hydroxyethyl)oxalamide with a chlorinating agent to produce N.N'-bis(2-chloroethyl)oxalamide, the reaction is carried out in the presence of a phenolic solvent. 1. A method for producing N.N'-bis(2-chloroethyl)oxalic acid amide, which is carried out using hydrogen chloride as the chlorinating agent.
JP926780A 1980-01-31 1980-01-31 Preparation of n,n'-bis(2-chloroethyl)oxamide Granted JPS56108746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP926780A JPS56108746A (en) 1980-01-31 1980-01-31 Preparation of n,n'-bis(2-chloroethyl)oxamide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP926780A JPS56108746A (en) 1980-01-31 1980-01-31 Preparation of n,n'-bis(2-chloroethyl)oxamide

Publications (2)

Publication Number Publication Date
JPS56108746A JPS56108746A (en) 1981-08-28
JPS6152818B2 true JPS6152818B2 (en) 1986-11-14

Family

ID=11715661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP926780A Granted JPS56108746A (en) 1980-01-31 1980-01-31 Preparation of n,n'-bis(2-chloroethyl)oxamide

Country Status (1)

Country Link
JP (1) JPS56108746A (en)

Also Published As

Publication number Publication date
JPS56108746A (en) 1981-08-28

Similar Documents

Publication Publication Date Title
JPS5839627A (en) Organic compound halogenation
US4400537A (en) Process for 1,4-phenylenediamine
JPS5967281A (en) 3-methylflavone-8-carboxylic acid derivative and its preparation
US3415876A (en) Process for nitrating aromatic compounds in liquid sulfur dioxide
JP2684409B2 (en) Process for producing aniline substituted with cyano group and / or halogen atom and compound used for the production
JPS6152818B2 (en)
CN111848443A (en) Preparation method of salicylonitrile
CN113443950B (en) Method for reducing carbonyl into methylene under illumination
US4024196A (en) Process for the manufacture of hydroquinone
JPH0245462A (en) Improved production of dihalobenzenesulfone compounds
JP2585628B2 (en) Production method of halogen alcohol
JPH0262832A (en) Production of trifluoromethyl derivative
TW466228B (en) Method for production of fluorine-containing aromatic compound
CA1096393A (en) Process for the preparation of an aliphatic monoisocyanate
JPH06116191A (en) Production of 1,3-dihydroxy-4,6-bis(alpha-methyl-alpha-@(3754/24)4'-hydroxyphenyl)ethyl)benzene
JPS6116252B2 (en)
US2734927A (en) Process of producing perchloroindan
JP4956760B2 (en) Method for producing 3-bromobenzoic acid or alkyl ester thereof
KR860001857B1 (en) Process for preparing of 3,3'-or 3,4'-diamino benzophenone
JPS61191646A (en) Haloacetyl derivative of aromatic compound and manufacture
JPS62149650A (en) Production of aromatic bisaniline
JP2002363138A (en) Method for producing 1,4- and/or 1,5-diaminonaphthalene and 1,4- and/or 1,5-diisocyanatonaphthalene
JPS60330B2 (en) Method for producing cyclopentanone
US3033894A (en) Preparation of benzil by catalyzed reaction of benzene and cyanogen
JPH05320083A (en) Production of 2-@(3754/24)3, 4-dihydroxyphenyl)-2-@(3754/24)4-hydroxyphenyl)-propane