JP4956760B2 - Method for producing 3-bromobenzoic acid or alkyl ester thereof - Google Patents

Method for producing 3-bromobenzoic acid or alkyl ester thereof Download PDF

Info

Publication number
JP4956760B2
JP4956760B2 JP18046598A JP18046598A JP4956760B2 JP 4956760 B2 JP4956760 B2 JP 4956760B2 JP 18046598 A JP18046598 A JP 18046598A JP 18046598 A JP18046598 A JP 18046598A JP 4956760 B2 JP4956760 B2 JP 4956760B2
Authority
JP
Japan
Prior art keywords
reaction
bromo
dihalogeno
acid
alkyl ester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18046598A
Other languages
Japanese (ja)
Other versions
JP2000016971A (en
Inventor
光夫 車屋
常俊 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Electronic Chemicals Co Ltd
Original Assignee
Jemco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jemco Inc filed Critical Jemco Inc
Priority to JP18046598A priority Critical patent/JP4956760B2/en
Publication of JP2000016971A publication Critical patent/JP2000016971A/en
Application granted granted Critical
Publication of JP4956760B2 publication Critical patent/JP4956760B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は3-ブロモ-5-フルオロ安息香酸誘導体の製造方法、およびその新規な中間体に関する。3-ブロモ安息香酸誘導体は医薬、農薬等の中間体として使用され、特にフルオロキノリン系合成抗菌剤の中間体として重要である。
【0002】
【従来技術】
3-ブロモ-2,4-ジハロゲノ-5-フルオロ安息香酸誘導体は、フルオロキノロン系合成抗菌剤である、8-ブロモ-6-フルオロ-4-オキソ-3-キノリンカルボン酸誘導体を製造するための重要な中間体である。
この3-ブロモ-2,4-ジハロゲノ-5-フルオロ安息香酸誘導体の製造法としては、例えば3-クロロ-4-フルオロアニリンから多数の工程を経て3-ブロモ-2,4,5-トリフルオロ安息香酸を合成する方法(EP216-245)や、テトラフルオロフタロニトリルのフッ素1つを臭素に置換して4-ブロモ-3,5,6-卜リフルオロフタル酸とし、これを脱炭酸して3-ブロモ-2,4,5-トリフルオロ安息香酸を合成する方法(特開平3-284649号)などが知られている。
【0003】
しかし前者の方法は製造工程が多いため最終的な収率は極めて低い。また、後者の方法はテトラフルオロフタロニトリルを臭素化する際、高価な臭化リチウムを使用し、またテトラフルオロフタロニトリルの反応率を20〜50%に抑える必要があるため、極めて生産性が低いと云う問題がある。
【0004】
その他、2-(2,4,5-トリフルオロフェニル)-4,4-ジメチル-2-オキサゾリンを臭素化し、加水分解して3-ブロモ-2,4,5-トリフルオロ安息香酸を合成する方法(J.Heterocyc1ic Chem.,33,1407,1996)、あるいは、2,4,5-トリフルオロ安息香酸を臭素化して3-ブロモ-2,4,5-トリフルオロ安息香酸を合成する方法(特関平9-67303号)が知られているが、いずれも高価な有機リチウム化合物を必要としたり、低温で反応を行う必要があるなど工業的な実施には適さない。
【0005】
【発明が解決しようとする問題点】
このように、5-フルオロ-3-ブロモ-2,4-ジハロゲノ安患香酸誘導体を工業的に製造するのに適した方法は従来知られていない。本発明は、従来の上記問題を解決したものであって、5-フルオロ-3-ブロモ-2,4-ジハロゲノ安患香酸誘導体を収率良く、容易に製造できる方法を提供する。なお、本発明の説明において、3-ブロモ安息香酸またはそのアルキルエステルについて、便宜上、3-ブロモ安息香酸誘導体と云う。
【0006】
【問題を解決するための手段】
すなわち、本発明は以下の製造方法に関する。
〔1〕2,4-ジハロゲノ-5-ニトロ安息香酸またはそのアルキルエステル(2位および4位のハロゲンはフッ素または塩素)と、70〜100重量%硫酸の混合物中に臭素酸塩を添加して上記2,4-ジハロゲノ-5-ニトロ安息香酸またはそのアルキルエステルを臭素化することによって、次式(I)(式中のX 1 ,X 2 はフッ素または塩素、Rは水素またはC1〜C6の直鎖または分岐のアルキル基)で表される3-ブロモ-2,4-ジハロゲノ-5-ニトロ安息香酸またはそのアルキルエステル(2位および4位のハロゲンはフッ素または塩素)を製造することを特徴とする製造方法。

Figure 0004956760
〔2〕臭素酸塩が臭素酸のアルカリ金属塩またはアルカリ土類金属塩である上記[1]に記載する製造方法。
【0007】
また、本発明は上記[1]〜上記[2]の製造方法に基づく以下の製造方法に関する。
〔3〕上記[1]または上記[2]の何れかの方法によって製造した3-ブロモ-2,4-ジハロゲノ-5-ニトロ安息香酸またはそのアルキルエステル(2位および4位のハロゲンはフッ素または塩素)を還元して上記ニトロ基がアミノ基に置換された3-ブロモ-2,4-ジハロゲノ-5-アミノ安息香酸またはそのアルキルエステルとし、さらにこれをジアゾ化した後に脱ジアゾフッ素化することによって、3-ブロモ-2,4-ジハロゲノ-5-フルオロ安息香酸またはそのアルキルエステル(2位および4位のハロゲンはフッ素または塩素)を製造する方法。
【0008】
【発明の実施の形態】
以下、本発明を実施の形態に基づいて具体的に説明する。
3-ブロモ-2,4-ジハロゲノ-5-フルオロ安息香酸誘導体は2,4-ジハロゲノ5-フルオロ安息香酸誘導体を臭素化すれば得られるが、従来技術から理解されるように、2,4-ジハロゲノ-5-フルオロ安息香酸誘導体の臭素化は容易ではなく、本発明者等もこれまで種々検討したが工業的に十分な結果を得ることはできなかった。3-ブロモ-2,4-ジハロゲノ-5-フルオロ安息香酸誘導体を製造するには、どのような構造の化合物を出発物質に用いるか、また、どのような段階で臭素化およびフッ素化を行うかが重要である。
【0009】
本発明は、図1に示すように、2,4-ジハロゲノ-5-ニトロ安息香酸誘導体を出発物質とし、(1)臭素化、(2)還元、(3)フッ素化の各工程を経て3-ブロモ-2,4-ジハロゲノ-5-フルオロ安息香酸誘導体を製造する方法である。出発物質の2,4-ジハロゲノ-5-ニトロ安息香酸誘導体は、例えば、2,4-ジハロゲノ安息香酸誘導体のニトロ化などによって容易に得ることができる。以下、各工程を詳細に説明する。
【0010】
(1)臭素化
本発明の方法は、第一段階として、2,4-ジハロゲノ-5-ニトロ安息香酸誘導体を臭素化して次式(I)で示される3-ブロモ-2,4-ジハロゲノ-5-ニトロ安息香酸誘導体を製造する。
Figure 0004956760
(式中、X1,X2 はハロゲン、Rは水素またはC1〜C6の直鎖または分岐のアルキル基)
ここで、出発物質の2,4-ジハロゲノ-5-ニトロ安息香酸誘導体の芳香環はニトロ基、カルボキシル基、ハロゲンによって著しく不活性化されているため、分子状臭素を臭素源とする一般的な臭素化反応の方法では目的物を得るのは困難である。このような不活性化された芳香環を臭素化する方法としては、鉄粉や各種ルイス酸を触媒として使用し、あるいは発煙硫酸中で反応を行う例が知られているが、本化合物の場合、いずれも反応が殆ど進行しないか、分解物のみが生成して極めて低収率となり、満足な結果が得られない。
【0011】
また、このような不活性な芳香族化合物を臭素化する他の方法として、臭素源に臭素酸塩を使用し、硫酸中で反応を行う例が報告されている(J.Org.Chem,1981,46,2169)。この報告によれば、40〜70重量%の希硫酸中で臭素酸カリウムを臭素源として反応を行うことにより、電子吸引基によって芳香環が不活性化されているニトロベンゼンや安息香酸の臭素化がそれぞれ88%、62%の収率で可能であるとしている。ただし、硫酸の濃度が収率に大きな影響を与え、濃度が70重量%を越えると臭素酸カリウムが制御不能な速度で分解し、この時に発生する分子状臭素はもはや臭素化剤として作用しないため収率が急激に低下することが知られている。事実、ニトロベンゼンの臭素化の例では、硫酸濃度68%において最大収率88%で目的物が得られるが、硫酸濃度が70%になると収率は15%まで低下することが指摘されており、これは硫酸濃度が70%の時には反応が進行する前に臭素酸カリウムが分解してしまうためであることが示唆されている。
【0012】
このような従来例に対して、本発明は、あえて濃度70〜90重量%の高濃度硫酸を用いたものであり、本発明の方法によれば、3-ブロモ-2,4-ジハロゲノ-5-ニトロ安息香酸誘導体が高収率で得られる。
出発物質の2,4-ジハロゲノ-5-ニトロ安息香酸誘導体は、ニトロ基以外にもカルボキシル基やハロゲンで置換されているため、ニトロベンゼンよりも反応性はさらに低いと考えられ、臭素化反応の進行は困難であることが予想されたが、硫酸濃度70%のとき収率は10%程度であるのに対して、硫酸濃度をさらに高めたところ、予想に反して収率は向上し、硫酸濃度90%のときに収率71%となり最も良好な結果を得た。
このように、本発明は、従来の知識からは予測し得なかった事実として、本件のような極度に芳香環が不活性化された化合物については、硫酸濃度は高い方が好ましく、70〜100%という高濃度が好適であることを見い出した。
【0013】
反応操作としては、(イ)原料の芳香族化合物と臭素酸塩および水を混合撹拌下に硫酸を徐々に添加する方法と、臭素酸塩と硫酸の順序を入れ替え、(ロ)原料の芳香族化合物と硫酸および水を混合撹拌下に臭素酸塩を徐々に添加する方法とがある。硫酸濃度が上記のように高濃度の場合には、臭素酸塩の分解を抑制するため後者の方法が好ましい。
【0014】
臭素化剤である臭素酸塩は、カリウム、ナトリウムなどのアルカリ金属塩の他にアルカリ土類金属塩を使用することができる。臭素酸塩の添加割合は、原料の芳香族化合物に対して1.0〜5倍当量、好ましくは1.0〜3倍当量が適当である。これによって原料の芳香族化合物がほぼ全量消費されるまで十分転化率を上げることが可能であり、精製分離の手間が省けるので都合が良い。
反応温度は−50〜150℃が良く、−20〜100℃が好ましい。反応時間は反応温度にもよるが、0.01〜20時間、通常は0.1〜10時間が適当である。
【0015】
なお、上記臭素化工程において、2,4-ジハロゲノ-5-ニトロ安息香酸誘導体に代えて2,4-ジハロゲノ-5-アミノ安息香酸誘導体を出発物質として用い、これを臭素化して3-ブロム-2,4-ジハロゲノ-5-アミノ安息香酸誘導体を得ようとすると、6-ブロム体が高選択的に生成し、目的の3-ブロム体は殆ど得られない。
【0016】
(2)還元
本発明の方法は、第二段階として、式(I)の3-ブロモ-2,4-ジハロゲノ-5-ニトロ安息香酸誘導体を還元して次式(II)で示される3-ブロモ-2,4-ジハロゲノ-5-アミノ安息香酸誘導体とする。
Figure 0004956760
(式中のX1,X2およびRは式Iと同じ)
式(I)のニトロ化合物から式(II)のアミノ化合物を得るには、通常の還元反応を支障なく利用することができる。一例を挙げれば、接触水素化によって良好な収率で還元を行うことができる。触媒としては白金、パラジウム、ロジウム、ルテニウム、イリジウム、ラネ-ニッケルなどが使用でき、これらの金属は活性炭やアルミナ、硫酸バリウムなどの不活性担体に保持されていても艮い。
触媒の使用量は原料芳香族化合物に対して0.1〜10重量%が適当である。溶媒としては、水、アルコール、酢酸エチルなどのエステル類、エーテル類、ベンゼンやへキサンなどの芳香族または脂肪族炭化水棄類などが使用できる。反応温度は0〜50℃が好ましい。反応時間は反応温度にもよるが、通常は0.5〜20時間が適当である。反応圧力は0〜10気圧が好ましい。
接触水素化以外の方法として、例えば、塩酸中で鉄や亜鉛、塩化錫を使用する反応でも高収率で目的物を得ることが可能である。
【0017】
なお、式(I)で示される3-ブロモ-2,4-ジハロゲノ-5-ニトロ安息香酸誘導体、および式(II)で示される3-ブロモ-2,4-ジハロゲノ-5-アミノ安息香酸誘導体はいずれもケミカルアブストラクト(Chemical Abstract)などに記載されておらず、新規化合物と考えられる。
【0018】
(3)フッ素化
本発明の方法は、第三段階として、式(II)の3-ブロモ-2,4-ジハロゲノ-5-アミノ安息香酸誘導体を還元して次式(III)で示される3-ブロモ-2,4-ジハロゲノ-5-フルオロ安息香酸誘導体を得る。
Figure 0004956760
(式中のX1,X2およびRは式Iと同じ)
上記化合物のフッ素化は通常のジアゾ化反応と脱ジアゾフッ素化反応を組み合わせることにより可能である。例えば、式(II)のアミノ化合物に亜硝酸付与剤とフッ化水素を加えてジアゾ化し、生成したジアゾニウム塩を熱または光によって分解してフッ素化を行うことができる。また、亜硝酸付与剤とフッ化水素と共に塩基を併用しても良い。
【0019】
亜硝酸付与剤としては通常のジアゾ化剤が使用可能であり、具体的には無水亜硝酸、亜硝酸ソーダ、亜硝酸カリウムなどが好適である。亜硝酸付与剤の添加量は少なくとも式(II)のアミノ化合物に対して当量以上必要である。
塩基としてはフッ化水素と錯体を形成する塩基、すなわち酸素、窒素、リン、イオウなどを含む化合物を使用することができる。具体的にはエチルエーテルなどのエーテル類、トリエチルアミンやピリジンなどのアミン類、ケトン類、アルデヒド類、エステル類などが好適である。
フッ化水素と塩基の割合は、塩基がフッ化水素と塩基の合計量に対して5〜90重量%、好ましくは5〜45重量%であり、この範囲を外れると収率が低下する。ジアゾ化反応の温度は−100〜100℃、好ましくは−50〜50℃である。
【0020】
上記ジアゾニウム塩を脱ジアゾフッ素化して目的の3-ブロモ-5-フルオロ安息香酸誘導体を得る。
ジアゾニウム塩を含む反応液は、ジアゾニウム塩を単離することなく引き続いて熱または光によって脱ジアゾフッ素化反応を行うことも可能である。熱分解によって行う場合には反応温度は20〜250℃が適当であり、40〜200℃が好ましい。光分解によって行う場合には光源として高圧水銀灯、低圧水銀灯などが好適に用いられ、照射時間は0.5〜20時間が好ましい。反応温度は−50〜150℃、好ましくは−20〜100℃である。なお、この反応において熱分解と光分解を比較した場合、収率面では光分解の方が有利である。
【0021】
【実施例および比較例】
本発明の実施例を比較例と共に以下に示す。なお、%は特に示さない限り重量%である。
【0022】
実施例1(F2NMAの臭素化によるBF2NAMの製造:図2)
マグネット回転子、温度計および排気口を備えた50mlの三口フラスコに、2,4-ジフルオロ-5-ニトロ安息香酸メチル(F2NMA)4.34g(純度約99.3wt%,約20mmol)と85重量%硫酸16mlを仕込み、室温で撹拌して溶解させた。フラスコを外部から内温が4.5℃になるまで冷却し、これにロートを使用して臭素酸カリウム3.34g(20mmol)を26分かけて投入し、反応させた(最高温度32℃)。この投入直後に反応液を採取し、ガスクロマトグラフィー(GC)にて反応の進行を見たところ、原料のF2NAMと目的反応生成物の3-ブロモ-2,4-ジフルオロ-5-ニトロ安息香酸メチル(BF2NAM)の量は各々約50%であった。
引き続き、この反応液に臭素酸カリウム2.34g(14mmol)を13分かけて投入した(温度19〜23℃)。再度、反応液を採取し、GCにて測定したところF2NAMの残存量は約1.5%であった。反応液を氷40gに移し、塩化メチレン50mlを用いて2回(計100ml)抽出を行い、抽出液を併せて蒸留水100mlで洗浄し、次いで、2%濃度チオ硫酸ソーダ水溶液150mlで処理し、抽出液層を分液後、硫酸ナトリウムで乾燥し、ロータリーエバポレーターで濃縮して、重量4.19gの粗収物(目的物BF2NAMのGC純度97.4%,略収率68%)を得た。
【0023】
実施例2
容量200mlの三口フラスコ、機械式撹拌装置の他は実施例1と同様の装置を用い、F2NAM43.4g(約0.2mol)および90重量%硫酸140mlを仕込み、実施例1と同様にして溶解させ、冷却後、臭素酸カリウム56.8g(0.34mol)を230分かけて投入し、反応させた(最高温度24℃)。反応途中の分析は行わず、臭素酸カリウムの投入終了後10分間冷却および撹拌を続けた。反応液を氷500gに移し、塩化メチレン200mlで1回、100mlで2回(計400ml)の抽出を行い、抽出液を併せて蒸留水500mlで洗浄し、次いで2%チオ硫酸ソーダ水溶液500mlで処理し、抽出液層を分液後硫酸ナ卜リウムで乾燥し、ロータリーエバポレーターで濃縮して、重量42.35gの粗収物(目的物BF2NAMのGC純度98.9%、略収率71%)を得た。
粗収物の全量をメタノール/水(5:1)240mlに溶解して再結晶精製し、更に濾液を再結晶した2番晶と合わせて、減圧乾燥して目的生成物BF2NAM 41.37g(純度99.1重量%,収率約69%)を得た。このBF2NAMの物性は以下のとおりである。
融点:36〜37℃
質量スペクトル(EI):m/z=295
1H-NHR(270MHz,CDCl3)
δ値(ppm):4.00(3H,S)、8.74(1H,dd,J=8.3Hz,7.3Hz)
【0024】
実施例3(BF2NAMの還元によるBF2AAMの製造:図3)
機械式撹拌機、圧力計および温度計を備えたモネル製の300mlオートクレーブにBF2NAM 44.4g(純度99.1重量%,約0.15mol)、酢酸エチル100ml、5%パラジウムカーボン触媒(含水50%)5gを仕込み、窒素置換、水素置換後、水素にて5kg/cm2に加圧し保持して接触水素還元を行った。この反応は室温で行ったが、内温が30℃を越えない様に適宜外部から冷却した。30分毎に反応器での水素の吸収を確認し、水素の吸収が止み、発熱が収まった時点を終了とした(反応時間5時間)。
反応終了後、系内を室素置換し、反応液をビーカーに移し、酢酸エチル900mlを加えて結晶を溶解させた後、触媒を濾別した。濾液をロータリーエバボレーターで濃縮し、乾固させ、メタノール200mlを加えて再結晶を行った。濾液を濃縮し、再度再結晶を行った2番晶と合わせて滅圧乾燥し、重量29.5gの粗収物(3-ブロモ-2,4-ジフルオロ-5-アミノ安息香酸メチル(BF2AAM)、純度98.1%,略収率72%)を得た。
粗収物全量を塩化メチレン600mlに溶解させ、35%塩酸14gを滴下してBF2AAM塩酸塩として結晶を析出させ、外部から氷冷後濾過し、結晶を塩化メチレン100mlで洗浄した後、吸引乾燥した。結晶をビーカーに移し、塩化メチレン600mlおよび水200ml加え分散させ、10%炭酸カリウム水溶液を滴下して中和した(pH8)。
塩化メチレン層を分液し、硫酸ナトリウムで乾燥後、ロータリーエバポレーターで濃縮し、更に減圧乾燥を行い、BF2AAM 28.6g(純度99重量%,収率約70%)を得た。このBF2AAMの物性は以下のとおりである。
融点:161〜163℃
質量スペクトル(EI):m/z=265
1H-NMR(270MHz,CDCl3)
δ値(ppm):3.80(2H,brs,NH2)、3.92(3H,S)、7.33(1H,dd,J=9.3Hz,6.4Hz)
【0025】
実施例4(BF2AAMのフッ素化によるBF3AMの製造:図4)
マグネット回転子を備えた100mlの透明フッ素樹脂容器に、70重量%フッ化水素/30重量%ピリジン100gを入れ、BF2AAM 5.35g(純度99重量%,約19mmol)を加え、室温で溶解させた。
この反応液を外部から冷却し、−22〜−3℃の温度で亜硝酸ソーダ1.52g(22mmol)を加え(4分)、室温で撹拌(60分,〜12℃)してジアゾ化反応を行った。次いで、室温で1kw高圧水銀灯(理工科学産業製UVL-1000HC)で紫外線を20時間照射し、光脱ジアゾフッ素化反応を行わせた。反応液を氷100g中に移し、塩化メチレン50mlで1回、20mlで2回(計90ml)の抽出を行い、抽出液を併せて蒸留水100mlで洗浄し、10%炭酸カリウム水溶液で中和した(pH7)。
再度蒸留水100mlで洗浄し、抽出液層を分液して硫酸ナトリウムで乾燥後、ロータリーエバポレーターで濃縮し、5.3gの反応粗収物(3-ブロモ-2,4,5-トリフルオロ安息香酸メチル(BF3AM)のGC純度96.5%,反応略収率98%)を得た。この反応粗収物を約0.53kpaの減圧下に分留して、4.6gの目的生成物BF3AM(純度99.6重量%,BF3AAMからの収率約90%)を得た。このBF3AMの物性は以下のとおりである。
沸点:88〜90℃(0.53kpa)
質量スペクトル(EI):M/Z=268
1H-NMR(270MHz,CDCl3)
δ値(ppm):3.95(3H,s)、7.80(1H,ddd,J=10.0Hz,8.5Hz,6.4Hz)
【0026】
実施例5(C2NAMの臭素化によるBC2NAMの製造:図5)
実施例2において、反応器を500mlのセパラブルフラスコおよび4口カバーに代えた他は同様の装置を用い、2,4-ジクロロ-5-ニトロ安息香酸メチル(C2NAM)75.0g(純度約99重量%,約0.3mol)、および90重量%硫酸300mlを仕込み、臭素酸カリウム40.1g(0.24mol)を84分かけて投入し、反応させ(投入温度12〜14℃)、GCで反応の進行を観察した(原料C2NAM14.6%,目的反応生成物3-ブロモ-2,4-ジクロロ-5-ニトロ安息香酸メチル(BC2NAM)81.4%)。
更に、臭素酸カリウム10g(0.06mol)を20分かけて投入し、反応させた(投入温度12〜14℃)。20分間撹拌を継続後、反応液を氷1kgに移し、塩化メチレン1lで3回に分けて抽出し、水1lで洗浄し、2%チオ硫酸ナトリウム水溶液1lで処理し、抽出液を分液後硫酸ナトリウムで乾燥し、濃縮して、65.8gの粗収物(目的物BC2NAMのGC純度95.2%,略収率63%)を得た。
粗収物の全量をメタノール/水(5:1)500mlに溶解して再結晶精製し、更に濾液を再結晶した2番晶と合わせて、減圧乾燥して目的生成物BC2NAM 57.5g(純度98.4重量%,収率約57%)を得た。このBC2NAMの物性は以下のとおりである。
融点:71〜73℃
質量スペクトル(EI):M/Z=327
1H-NMR(270MHz,CDCl3)
δ値(ppm):3.99(3H,s)、8.21(1H,s)
【0027】
実施例6(BC2NAMの還元によるBC2AAMの製造:図6)
実施例3と同様の装置を用い、BC2NAM49.3g(純度約98.4重量%,約0.147mol)、酢酸エチル150mlおよび5%-パラジウムカーボン触媒(含水50%)5gを仕込み、室温で2.5時間接触水素還元反応を行った(内温26〜28℃)。反応終了後、結晶を溶解するための酢酸エチルの追加量を600mlとした他は実施例3と同様の操作を行い、43.8gの粗収物(目的物BC2AAMのGC純度96%,略収率95%)を得た。この粗収物の全量をメタノール400mlに溶解して実施例3と同様の再結晶操作をし、35重量%塩酸を30g使用した以外は実施例3と同様の精製操作を行い、36.77gの目的生成物(3-ブロモ-2,4-ジクロロ-5-アミノ安息香酸メチル(BC2AAM)、純度98重量%,収率約81%)を得た。このBC2AAMの物性値は以下のとおりである。
融点:164〜167℃
質量スペクトル(EI):m/z=297
1H-NMR(270MHz,CDCl3)
δ値(ppm):3.92(3H,s)、4.32(2H,brs,NH2)、7.13(1H,S)
【0028】
実施例7(BC2AAMのフッ素化によるBC2FAMの製造:図7)
実施例4と同様の装置に、70重量%フッ化水素/30重量%ピリジン33.4gを取り、BC2AAM6.01g(純度重量98%,約19.7mmol)を加えて攪拌した、このスラリー状の反応液を外部から冷却し、−2〜−8℃の温度範囲で亜硝酸ソーダ1.52g(約22mmol)を加え(4分)、室温で撹拌し(60分,〜25℃)、ジアゾ化反応を行った。この反応液を−40℃に冷却し、攪拌しながら、−20℃に冷却された無水フッ化水素酸66.6gを5分かけて滴下し、約90wt%フッ化水素/10wt%ピリジン100gの反応液とした。
次いで、室温で1Kw高圧水銀灯(理工科学産業製UVL-1000HC)で紫外線を8時間照射し、光脱ジアゾフッ素化反応を行わせた。反応液を氷150gに移し、塩化メチレン20mlで3回(計60ml)の抽出を行い、抽出液を併せて実施例4と同様の後処理をし、6.0gの反応粗収物(3-ブロモ-2,4-ジクロロ-5-フルオロ安息香酸メチル(BC2FAM)のGC純度94.3%,反応略収率95%)を得た。このBC2FAMの物性は以下のとおりである。
融点:85〜87℃
質量スペクトル(EI):m/z=300
1H-NMR(270MHz,CDCl3)
δ値(ppm):3.95(3H,s)、7.59(1H,d,J=8.3Hz)
【0029】
比較例1(F3AMの臭素化)
容量25mlである他は実施例1と同様な装置に、2,4,5-トリフルオロ安息香酸メチル(F3AM)1.9g(純度99.6重量%,約10mmol)および90重量%硫酸7.5mlを仕込み、加えた臭素酸カリウム量2.8g(17mmol)、臭素酸カリウムの投入に要した時間35分(温度15〜26℃)以外は実施例1とほぼ同様の操作をした。得られた反応粗収物は0.69gであり、目的物BF3AM約45%の他、原料F3AM約30%およびジブロモ体約4%、その他を含んでおり、仕込みF3AMからのBF3AM略収率約11%、原料転化率約80%であった。
【0030】
比較例2(F3AMの臭素化)
実施例1の装置に還流冷却器を追加し、F3AM 1.9g(純度99.6重量%,約10mmol)および鉄粉0.07gを仕込み、80℃に加熱した。臭素1.0g(6mmol)を5分かけて滴下した後80℃で1時間反応させた。更に、鉄粉0.07gを追加し臭素1.0g(6mmol)を5分かけて滴下し、100℃に昇温して2時間反応させ、冷却した。反応内容物に塩化メチレン10mlを入れ溶解し、濾過により固形物を除き、水50mlで洗浄し、3%チオ硫酸ナトリウム水溶液200mlで処理し、更に水50mlで洗浄し、有機層を分液し、硫酸ナトリウムで乾燥し、ロータリーエバポレーターで濃縮した。反応粗収物量は0.3gであり、GC分析結果によれば、目的物BF3AMは2.1%、原料F3AMは97.2%であった。
【0031】
比較例3(F2NAMの臭素化)
マグネット回転子および還流冷却器を備えた10mlナスフラスコにF2NAM 2.17g(純度約99.3重量%,約10mmol)、25%発煙硫酸(オリウム)5ml、無水塩化アルミニウム0.1gおよび臭素3.2g(20mmol)を仕込み、70℃で4時間反応させ、比較例2と同様の後処理を行った。反応粗収物量は0.4gであり、GC分析結果によれば、目的物BF2NAMは僅か0.7%であり、原料F3NAMは95.3%であった。
【0032】
比較例4(F2NAMの臭素化)
比較例1と同様の装置に水8mlおよび98%濃硫酸8mlを仕込み氷で冷却し、F2NAM2.17g(純度約99.3重量%,約10mmol)および臭素酸カリウム1.67g(10mmol)を仕込み、10〜20℃で90分間反応させた。反応内容物を氷30gに移した後は実施例1と同様の操作をした。反応粗収物量は2.1gであり、GC分析結果によれば、目的物BF2NAMは13.4%、原料F2NAMは83.7%であり、原料F2NAMの転化率は14%、原料F2NAMからの目的物BF2NAMの略収率は9%、原料転化率からの略収率は69%であった。
【0033】
比較例5(F2AAMの臭素化:図8)
比較例1と同様な装置に、15%塩酸12.2g(塩酸として約50mmol)仕込み、外部から氷冷し、これに2,4-ジフルオロ-5-アミノ安息香酸メチル(F3AAM)1.87g(純度約100重量%,約10mmol)を投入した。内温を5℃以下に保ち、臭素1.6g(10mmol)を滴下し(3分)、1〜4℃で70分反応させた。反応液を氷水50gに移し、10%炭酸カリウム水溶液で中和し(pH8)、塩化メチレン30mlで1回、20mlで2回(計70ml)の抽出を行い、抽出液を3%チオ硫酸ナトリウム水溶液200mlで洗浄し、硫酸ナトリウムで乾燥し、ロータリーエバボレーターで濃縮し、反応粗収物2.58gを得た。ガスクロ質量分析(GC-MS)により、これはブロモ-2,4-ジフルオロ-5-アミノ安息香酸メチル(BF2AAM)であることを確認した(BF2AAMのGC純度98.0%,反応略収率95%)。
この反応粗収物を塩化メチレン5mlに溶解し、35重量% 塩酸1.2gを滴下しBF2AAM塩酸塩として結晶を析出させ、外部から氷冷後に濾過し、結晶を塩化メチレン2mlで洗浄した後、吸引乾燥した。結晶をビーカーに移し、塩化メチレン10mlおよび水5ml加え分散させ、10%炭酸カリウム水溶液を滴下して中和した(pH8)。塩化メチレン層を分液し、硫酸ナトリウムで乾燥後、ロータリーエバポレーターで濃縮し、更に減圧乾燥を行い、BF2AAM2.47g(純度98.6重量%,収率約91%)を得た。このBF2AAMを詳細に分析した結果、目的物の3-ブロム体ではなく、6-ブロモ-2,4-ジフルオロ-5-ニトロ安息香酸メチル(6i-BF2AAM)であることが確認された。この物性は以下のとおりである。
融点:77〜79℃
質量スペクトル(EI):m/z=265
1H-NMR(270MHz,CDCl3)
Figure 0004956760
【0034】
比較例6(C2NAMの臭素化)
還流冷却管を追加した以外は実施例1と同様の装置を用い、C2NAM5.0g(純度約99重量%,約20mmol)、水14mlおよび臭素酸カリウム3.3g(20mmol)を仕込み65℃に加熱し、濃硫酸16mlを82分かけて滴下し(60〜69℃)、70℃で更に1時間反応させた。反応液を採取し、GCで反応の進行を観察したところ、原料のC2NAMは95%であり、目的物のBC2NAMは僅か3.4%であった。
【0035】
【発明の効果】
本発明の製造方法によれば医薬、農薬等の中間体として有用な3-ブロモ-5-フルオロ-2,4-ジハロゲノ安息香酸誘導体を入手容易な原材料を使用して安価に工業的に効率よく製造することが可能である。
【図面の簡単な説明】
【図1】 本発明の製造工程を示す説明図。
【図2】 実施例1の合成方法を示す説明図。
【図3】 実施例3の合成方法を示す説明図。
【図4】 実施例4の合成方法を示す説明図。
【図5】 実施例5の合成方法を示す説明図。
【図6】 実施例6の合成方法を示す説明図。
【図7】 実施例7の合成方法を示す説明図。
【図8】 比較例5の合成方法を示す説明図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a 3-bromo-5-fluorobenzoic acid derivative, and a novel intermediate thereof. 3-Bromobenzoic acid derivatives are used as intermediates for pharmaceuticals, agricultural chemicals and the like, and are particularly important as intermediates for fluoroquinoline-based synthetic antibacterial agents.
[0002]
[Prior art]
3-Bromo-2,4-dihalogeno-5-fluorobenzoic acid derivative is a fluoroquinolone synthetic antibacterial agent for producing 8-bromo-6-fluoro-4-oxo-3-quinolinecarboxylic acid derivative It is an important intermediate.
As a method for producing this 3-bromo-2,4-dihalogeno-5-fluorobenzoic acid derivative, for example, 3-bromo-2,4,5-trifluoro is obtained from 3-chloro-4-fluoroaniline through a number of steps. A method of synthesizing benzoic acid (EP216-245) or substituting one fluorine of tetrafluorophthalonitrile with bromine to form 4-bromo-3,5,6-trifluorophthalic acid. A method for synthesizing 3-bromo-2,4,5-trifluorobenzoic acid (JP-A-3-284649) is known.
[0003]
However, since the former method has many manufacturing steps, the final yield is extremely low. In the latter method, when bromination of tetrafluorophthalonitrile, expensive lithium bromide is used, and the reaction rate of tetrafluorophthalonitrile needs to be suppressed to 20 to 50%. Therefore, productivity is extremely low. There is a problem.
[0004]
In addition, 2- (2,4,5-trifluorophenyl) -4,4-dimethyl-2-oxazoline is brominated and hydrolyzed to synthesize 3-bromo-2,4,5-trifluorobenzoic acid. Method (J. Heterocyc1ic Chem., 33, 1407, 1996) or a method of synthesizing 3-bromo-2,4,5-trifluorobenzoic acid by bromination of 2,4,5-trifluorobenzoic acid ( No. 9-67303) is known, but none of them is suitable for industrial implementation because it requires expensive organolithium compounds or requires reaction at low temperatures.
[0005]
[Problems to be solved by the invention]
Thus, 5-fluoro-3-bromo-2,4There is no prior known method suitable for industrial production of dihalogenobenzoic acid derivatives. The present invention solves the above-mentioned conventional problems, and includes 5-fluoro-3-bromo-2,4Provided is a method for easily producing a dihalogenobenzoic acid derivative with good yield. In the description of the present invention, 3-bromobenzoic acid or its alkyl ester is referred to as a 3-bromobenzoic acid derivative for convenience.
[0006]
[Means for solving problems]
That is, this invention relates to the following manufacturing methods.
[1]2,4-dihalogeno-5-nitrobenzoic acid or an alkyl ester thereof (halogens at positions 2 and 4 are fluorine or chlorine) and bromate in a mixture of 70 to 100% by weight sulfuric acid to By brominating 4-dihalogeno-5-nitrobenzoic acid or its alkyl ester, the following formula (I) (wherein X 1 , X 2 Is fluorine or chlorine,R is hydrogen or a C1-C6 linear or branched alkyl group)A process for producing 3-bromo-2,4-dihalogeno-5-nitrobenzoic acid represented by the formula (1) or an alkyl ester thereof (halogens at the 2nd and 4th positions are fluorine or chlorine).
Figure 0004956760
[2] The production method according to the above [1], wherein the bromate is an alkali metal salt or alkaline earth metal salt of bromic acid.
[0007]
  Moreover, this invention relates to the following manufacturing methods based on the manufacturing method of said [1]-said [2].
[3] 3-Bromo-2,4-dihalogeno-5-nitrobenzoic acid or an alkyl ester thereof produced by the method according to [1] or [2] above (the halogens at the 2- and 4-positions are fluorine or Chlorine) to form 3-bromo-2,4-dihalogeno-5-aminobenzoic acid or an alkyl ester thereof in which the above nitro group is substituted with an amino group, which is further diazotized and then dediazofluorinated. To produce 3-bromo-2,4-dihalogeno-5-fluorobenzoic acid or an alkyl ester thereof (halogens at the 2- and 4-positions are fluorine or chlorine).
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be specifically described based on embodiments.
The 3-bromo-2,4-dihalogeno-5-fluorobenzoic acid derivative can be obtained by brominating the 2,4-dihalogeno-5-fluorobenzoic acid derivative. As understood from the prior art, 2,4- Bromination of dihalogeno-5-fluorobenzoic acid derivatives is not easy, and the present inventors have made various studies so far, but industrially sufficient results could not be obtained. To prepare 3-bromo-2,4-dihalogeno-5-fluorobenzoic acid derivatives, what structure of the compound is used as a starting material, and at what stage bromination and fluorination are carried out is important.
[0009]
As shown in FIG. 1, the present invention uses a 2,4-dihalogeno-5-nitrobenzoic acid derivative as a starting material, and passes through the steps of (1) bromination, (2) reduction, and (3) fluorination. This is a method for producing a bromo-2,4-dihalogeno-5-fluorobenzoic acid derivative. The starting 2,4-dihalogeno-5-nitrobenzoic acid derivative can be easily obtained, for example, by nitration of a 2,4-dihalogenobenzoic acid derivative. Hereinafter, each process will be described in detail.
[0010]
(1) Bromination
In the method of the present invention, as a first step, a 2,4-dihalogeno-5-nitrobenzoic acid derivative is brominated to give 3-bromo-2,4-dihalogeno-5-nitrobenzoic acid represented by the following formula (I): A derivative is produced.
Figure 0004956760
(Wherein X1 and X2 are halogen, R is hydrogen or a C1-C6 linear or branched alkyl group)
Here, since the aromatic ring of the 2,4-dihalogeno-5-nitrobenzoic acid derivative, which is a starting material, is remarkably inactivated by a nitro group, a carboxyl group, and a halogen, a general bromine source is used. It is difficult to obtain the target product by the bromination reaction method. Examples of methods for brominating such deactivated aromatic rings are known to use iron powder and various Lewis acids as catalysts, or to react in fuming sulfuric acid. In either case, the reaction hardly proceeds, or only a decomposed product is produced, resulting in a very low yield, and satisfactory results cannot be obtained.
[0011]
In addition, as another method for brominating such an inert aromatic compound, an example of using bromate as a bromine source and reacting in sulfuric acid has been reported (J. Org. Chem, 1981). , 46,2169). According to this report, bromination of nitrobenzene and benzoic acid, in which the aromatic ring is inactivated by an electron withdrawing group, is performed by using potassium bromate as a bromine source in 40 to 70% by weight of dilute sulfuric acid. It is said that it is possible with a yield of 88% and 62%, respectively. However, the concentration of sulfuric acid has a large effect on the yield, and when the concentration exceeds 70% by weight, potassium bromate decomposes at an uncontrollable rate, and the molecular bromine generated at this time no longer acts as a brominating agent. It is known that the yield decreases rapidly. In fact, in the example of bromination of nitrobenzene, the target product is obtained with a maximum yield of 88% at a sulfuric acid concentration of 68%, but it has been pointed out that when the sulfuric acid concentration reaches 70%, the yield decreases to 15%. It is suggested that this is because potassium bromate is decomposed before the reaction proceeds when the sulfuric acid concentration is 70%.
[0012]
In contrast to such a conventional example, the present invention dares to use high-concentration sulfuric acid having a concentration of 70 to 90% by weight. According to the method of the present invention, 3-bromo-2,4-dihalogeno-5 is used. -Nitrobenzoic acid derivatives are obtained in high yield.
The starting 2,4-dihalogeno-5-nitrobenzoic acid derivative is substituted with a carboxyl group or halogen in addition to the nitro group, so it is considered to be less reactive than nitrobenzene, and the bromination reaction proceeds However, when the sulfuric acid concentration was 70%, the yield was about 10%, but when the sulfuric acid concentration was further increased, the yield improved unexpectedly and the sulfuric acid concentration The yield was 71% when 90% and the best result was obtained.
Thus, as a fact that the present invention could not be predicted from conventional knowledge, a compound having an extremely inactivated aromatic ring as in the present case preferably has a higher sulfuric acid concentration, and is preferably 70 to 100. It has been found that a high concentration of% is suitable.
[0013]
As the reaction operation, (i) the raw material aromatic compound, bromate and water are mixed and stirred, and sulfuric acid is gradually added, and the order of bromate and sulfuric acid is changed. There is a method in which a bromate is gradually added with mixing and stirring a compound, sulfuric acid and water. When the sulfuric acid concentration is high as described above, the latter method is preferred in order to suppress decomposition of bromate.
[0014]
As the bromate which is a brominating agent, alkaline earth metal salts can be used in addition to alkali metal salts such as potassium and sodium. The addition ratio of bromate is 1.0 to 5 times equivalent, preferably 1.0 to 3 times equivalent to the starting aromatic compound. This makes it possible to sufficiently increase the conversion rate until almost all of the starting aromatic compound is consumed, which is convenient because it eliminates the need for purification and separation.
The reaction temperature is preferably −50 to 150 ° C., and preferably −20 to 100 ° C. Although the reaction time depends on the reaction temperature, 0.01 to 20 hours, usually 0.1 to 10 hours is appropriate.
[0015]
In the above bromination step, a 2,4-dihalogeno-5-aminobenzoic acid derivative was used as a starting material instead of the 2,4-dihalogeno-5-nitrobenzoic acid derivative, which was brominated to give 3-bromo- When an attempt is made to obtain a 2,4-dihalogeno-5-aminobenzoic acid derivative, the 6-bromo compound is produced with high selectivity, and the desired 3-bromo compound is hardly obtained.
[0016]
(2) Reduction
In the method of the present invention, as a second step, 3-bromo-2,4-dihalogeno-5-nitrobenzoic acid derivative of formula (I) is reduced to produce 3-bromo-2, which is represented by the following formula (II): 4-Dihalogeno-5-aminobenzoic acid derivative.
Figure 0004956760
(Where X1, X2 and R are the same as in formula I)
In order to obtain the amino compound of the formula (II) from the nitro compound of the formula (I), a usual reduction reaction can be used without any trouble. As an example, reduction can be performed in good yield by catalytic hydrogenation. As the catalyst, platinum, palladium, rhodium, ruthenium, iridium, rane-nickel and the like can be used, and these metals may be supported on an inert carrier such as activated carbon, alumina, barium sulfate or the like.
The amount of the catalyst used is suitably 0.1 to 10% by weight based on the starting aromatic compound. As the solvent, water, esters such as alcohol and ethyl acetate, ethers, aromatic or aliphatic carbonized water such as benzene and hexane, and the like can be used. The reaction temperature is preferably 0 to 50 ° C. The reaction time depends on the reaction temperature, but usually 0.5 to 20 hours is appropriate. The reaction pressure is preferably 0 to 10 atmospheres.
As a method other than catalytic hydrogenation, for example, a target product can be obtained in a high yield even in a reaction using iron, zinc, or tin chloride in hydrochloric acid.
[0017]
A 3-bromo-2,4-dihalogeno-5-nitrobenzoic acid derivative represented by the formula (I) and a 3-bromo-2,4-dihalogeno-5-aminobenzoic acid derivative represented by the formula (II) Are not described in chemical abstracts, etc., and are considered to be novel compounds.
[0018]
(3) Fluorination
In the method of the present invention, as a third step, 3-bromo-2,4-dihalogeno-5-aminobenzoic acid derivative of the formula (II) is reduced to give 3-bromo-2, A 4-dihalogeno-5-fluorobenzoic acid derivative is obtained.
Figure 0004956760
(Where X1, X2 and R are the same as in formula I)
Fluorination of the above compound is possible by combining a normal diazotization reaction and a dediazofluorination reaction. For example, diazotization can be performed by adding a nitrous acid imparting agent and hydrogen fluoride to an amino compound of formula (II), and the resulting diazonium salt can be decomposed by heat or light to perform fluorination. Moreover, you may use a base together with a nitrous acid providing agent and hydrogen fluoride.
[0019]
As the nitrous acid imparting agent, a normal diazotizing agent can be used, and specifically, anhydrous nitrous acid, sodium nitrite, potassium nitrite and the like are suitable. The amount of nitrous acid imparting agent added is at least equivalent to the amino compound of formula (II).
As the base, a base that forms a complex with hydrogen fluoride, that is, a compound containing oxygen, nitrogen, phosphorus, sulfur and the like can be used. Specifically, ethers such as ethyl ether, amines such as triethylamine and pyridine, ketones, aldehydes and esters are preferred.
The ratio of hydrogen fluoride to base is 5 to 90% by weight, preferably 5 to 45% by weight, based on the total amount of hydrogen fluoride and base. If the ratio is outside this range, the yield decreases. The temperature of the diazotization reaction is −100 to 100 ° C., preferably −50 to 50 ° C.
[0020]
The diazonium salt is dediazofluorinated to obtain the desired 3-bromo-5-fluorobenzoic acid derivative.
The reaction solution containing a diazonium salt can be subsequently subjected to a dediazofluorination reaction by heat or light without isolating the diazonium salt. When it is carried out by thermal decomposition, the reaction temperature is suitably 20 to 250 ° C, preferably 40 to 200 ° C. When carrying out by photolysis, a high pressure mercury lamp, a low pressure mercury lamp or the like is suitably used as the light source, and the irradiation time is preferably 0.5 to 20 hours. The reaction temperature is −50 to 150 ° C., preferably −20 to 100 ° C. In this reaction, when thermal decomposition and photolysis are compared, photolysis is more advantageous in terms of yield.
[0021]
Examples and Comparative Examples
Examples of the present invention are shown below together with comparative examples. % Is% by weight unless otherwise specified.
[0022]
Example 1(F2BF by bromination of NMA2Production of NAM: Fig. 2)
A 50 ml three-necked flask equipped with a magnet rotor, thermometer and exhaust vent was added to methyl 2,4-difluoro-5-nitrobenzoate (F2NMA) 4.34 g (purity about 99.3 wt%, about 20 mmol) and 85 wt% sulfuric acid 16 ml were charged and dissolved by stirring at room temperature. The flask was cooled from the outside to an internal temperature of 4.5 ° C., and potassium bromate (3.34 g, 20 mmol) was added to the flask using a funnel over 26 minutes to allow reaction (maximum temperature 32 ° C.). . Immediately after this addition, the reaction solution was collected and the progress of the reaction was observed by gas chromatography (GC).2NAM and the desired reaction product methyl 3-bromo-2,4-difluoro-5-nitrobenzoate (BF2The amount of NAM) was about 50% each.
Subsequently, 2.34 g (14 mmol) of potassium bromate was added to the reaction solution over 13 minutes (temperature 19 to 23 ° C.). When the reaction solution was collected again and measured by GC, F2The residual amount of NAM was about 1.5%. The reaction solution is transferred to 40 g of ice, extracted twice with 50 ml of methylene chloride (100 ml in total), the extracts are combined and washed with 100 ml of distilled water, and then treated with 150 ml of 2% strength aqueous sodium thiosulfate solution. The extract layer was separated, dried over sodium sulfate, and concentrated on a rotary evaporator to obtain a crude product (target BF) weighing 4.19 g.2The NAM GC purity was 97.4%, and the yield was about 68%.
[0023]
Example 2
Other than the 200 ml three-necked flask and the mechanical stirring device, the same apparatus as in Example 1 was used.2Charge 43.4 g (about 0.2 mol) of NAM and 140 ml of 90% by weight sulfuric acid, dissolve in the same manner as in Example 1, and after cooling, add 56.8 g (0.34 mol) of potassium bromate over 230 minutes to react. (Maximum temperature 24 ° C). Analysis during the reaction was not performed, and cooling and stirring were continued for 10 minutes after the addition of potassium bromate. The reaction solution is transferred to 500 g of ice, extracted once with 200 ml of methylene chloride and twice with 100 ml (400 ml in total). The extracts are combined and washed with 500 ml of distilled water, and then treated with 500 ml of 2% aqueous sodium thiosulfate solution. The extract layer was separated, dried with sodium sulfate, and concentrated with a rotary evaporator to obtain a crude product (target product BF) weighing 42.35 g.2GC purity of NAM 98.9%, approximately 71% yield) was obtained.
The total amount of the crude product was dissolved in 240 ml of methanol / water (5: 1) and purified by recrystallization. The filtrate was combined with the recrystallized second crystal and dried under reduced pressure to obtain the desired product BF.241.37 g of NAM (purity 99.1% by weight, yield about 69%) was obtained. This BF2The physical properties of NAM are as follows.
Melting point: 36-37 ° C
Mass spectrum (EI): m / z = 295
1H-NHR (270MHz, CDClThree)
δ value (ppm): 4.00 (3H, S), 8.74 (1H, dd, J = 8.3Hz, 7.3Hz)
[0024]
Example 3(BF2BF by reduction of NAM2Production of AAM: Fig. 3)
BF to Monel 300ml autoclave equipped with mechanical stirrer, pressure gauge and thermometer2Charge 44.4 g of NAM (purity 99.1% by weight, approx. 0.15 mol), 100 ml of ethyl acetate, 5 g of 5% palladium on carbon catalyst (water content 50%), nitrogen substitution, hydrogen substitution, 5 kg / cm with hydrogen2The mixture was pressurized and held to perform catalytic hydrogen reduction. This reaction was performed at room temperature, but was appropriately cooled from the outside so that the internal temperature did not exceed 30 ° C. The absorption of hydrogen in the reactor was confirmed every 30 minutes, and the time when the absorption of hydrogen ceased and the exotherm ceased was terminated (reaction time 5 hours).
After completion of the reaction, the inside of the system was replaced with nitrogen, the reaction solution was transferred to a beaker, 900 ml of ethyl acetate was added to dissolve the crystals, and the catalyst was filtered off. The filtrate was concentrated on a rotary evaporator, dried to dryness, and recrystallized by adding 200 ml of methanol. The filtrate was concentrated, combined with the recrystallized second crystal, and vacuum-dried to give a crude product (methyl 2-bromo-2,4-difluoro-5-aminobenzoate (BF) weighing 29.5 g.2AAM), 98.1% purity, approximately 72% yield).
The total amount of the coarse product is dissolved in 600 ml of methylene chloride, and 14 g of 35% hydrochloric acid is added dropwise to BF.2Crystals were precipitated as AAM hydrochloride, filtered from the outside with ice cooling, washed with 100 ml of methylene chloride, and then suction dried. The crystals were transferred to a beaker, dispersed by adding 600 ml of methylene chloride and 200 ml of water, and neutralized by adding dropwise a 10% aqueous potassium carbonate solution (pH 8).
The methylene chloride layer was separated, dried over sodium sulfate, concentrated with a rotary evaporator, and dried under reduced pressure.228.6 g of AAM (purity 99% by weight, yield about 70%) was obtained. This BF2The physical properties of AAM are as follows.
Melting point: 161-163 ° C
Mass spectrum (EI): m / z = 265
1H-NMR (270 MHz, CDClThree)
δ value (ppm): 3.80 (2H, brs, NH2), 3.92 (3H, S), 7.33 (1H, dd, J = 9.3Hz, 6.4Hz)
[0025]
Example 4(BF2BF by fluorination of AAMThreeManufacturing of AM: Fig. 4)
A 100 ml transparent fluororesin container equipped with a magnet rotor is charged with 100 g of 70 wt% hydrogen fluoride / 30 wt% pyridine, and BF25.35 g of AAM (purity 99% by weight, about 19 mmol) was added and dissolved at room temperature.
This reaction liquid is cooled from the outside, 1.52 g (22 mmol) of sodium nitrite is added at a temperature of −22 to −3 ° C. (4 minutes), and stirred at room temperature (60 minutes, to 12 ° C.) for diazotization reaction. Went. Next, ultraviolet light was irradiated for 20 hours at room temperature with a 1 kw high-pressure mercury lamp (UVL-1000HC, manufactured by Riko Kagaku Sangyo) to carry out a photo-dediazofluorination reaction. The reaction solution was transferred into 100 g of ice and extracted once with 50 ml of methylene chloride and twice with 20 ml (total of 90 ml). The extracts were combined and washed with 100 ml of distilled water and neutralized with 10% aqueous potassium carbonate solution. (PH 7).
The extract was washed again with 100 ml of distilled water, and the extract layer was separated, dried over sodium sulfate, concentrated on a rotary evaporator, and 5.3 g of crude reaction product (3-bromo-2,4,5-trifluorobenzoate). Methyl acid (BFThreeAM) with a GC purity of 96.5% and a reaction yield of approximately 98%. The crude reaction product was fractionally distilled at a reduced pressure of about 0.53 kpa to give 4.6 g of the desired product BF.ThreeAM (purity 99.6% by weight, about 90% yield from BF3AAM) was obtained. This BFThreeThe physical properties of AM are as follows.
Boiling point: 88-90 ° C (0.53 kpa)
Mass spectrum (EI): M / Z = 268
1H-NMR (270 MHz, CDClThree)
δ value (ppm): 3.95 (3H, s), 7.80 (1H, ddd, J = 10.0Hz, 8.5Hz, 6.4Hz)
[0026]
Example 5(C2BC by bromination of NAM2Production of NAM: Fig. 5)
In Example 2, a similar apparatus was used except that the reactor was replaced with a 500 ml separable flask and a 4-neck cover, and methyl 2,4-dichloro-5-nitrobenzoate (C2NAM) 75.0 g (purity about 99% by weight, about 0.3 mol) and 90% by weight sulfuric acid 300 ml were charged, and potassium bromate 40.1 g (0.24 mol) was added over 84 minutes and reacted (input temperature 12). The progress of the reaction was observed with GC (raw material C)2NAM 14.6%, target reaction product methyl 3-bromo-2,4-dichloro-5-nitrobenzoate (BC2NAM) 81.4%).
Furthermore, 10 g (0.06 mol) of potassium bromate was added over 20 minutes to cause the reaction (input temperature: 12 to 14 ° C.). After stirring for 20 minutes, the reaction mixture is transferred to 1 kg of ice, extracted with 1 l of methylene chloride in three portions, washed with 1 l of water, treated with 1 l of 2% aqueous sodium thiosulfate, and the extract is separated. Dry over sodium sulfate and concentrate to 65.8 g of crude product (target BC2A GC purity of NAM of 95.2% and an approximate yield of 63%) was obtained.
The total amount of the crude product was dissolved in 500 ml of methanol / water (5: 1) and purified by recrystallization. The filtrate was combined with the recrystallized second crystal and dried under reduced pressure to obtain the desired product BC.257.5 g of NAM (purity 98.4% by weight, yield about 57%) was obtained. This BC2The physical properties of NAM are as follows.
Melting point: 71-73 ° C
Mass spectrum (EI): M / Z = 327
1H-NMR (270 MHz, CDClThree)
δ value (ppm): 3.99 (3H, s), 8.21 (1H, s)
[0027]
Example 6(BC2BC by reduction of NAM2Production of AAM: Fig. 6)
Using the same device as in Example 3, BC249.3 g of NAM (purity: about 98.4% by weight, about 0.147 mol), 150 ml of ethyl acetate and 5 g of 5% -palladium carbon catalyst (water content: 50%) were charged, and catalytic hydrogen reduction reaction was carried out at room temperature for 2.5 hours (internal temperature) 26-28 ° C). After completion of the reaction, the same operation as in Example 3 was carried out except that the additional amount of ethyl acetate for dissolving the crystals was 600 ml, and 43.8 g of a crude product (target product BC2AAM GC purity of 96% was obtained (approximately 95% yield). The total amount of this crude product was dissolved in 400 ml of methanol and recrystallized in the same manner as in Example 3. The same purification procedure as in Example 3 was carried out except that 30 g of 35% by weight hydrochloric acid was used. The desired product (methyl 3-bromo-2,4-dichloro-5-aminobenzoate (BC2AAM), a purity of 98% by weight, and a yield of about 81%. This BC2The physical property values of AAM are as follows.
Melting point: 164-167 ° C
Mass spectrum (EI): m / z = 297
1H-NMR (270 MHz, CDClThree)
δ value (ppm): 3.92 (3H, s), 4.32 (2H, brs, NH)2), 7.13 (1H, S)
[0028]
Example 7(BC2BC by fluorination of AAM2Production of FAM: Fig. 7)
In the same apparatus as in Example 4, 33.4 g of 70 wt% hydrogen fluoride / 30 wt% pyridine was taken and BC26.01 g of AAM (purity weight 98%, about 19.7 mmol) was added and stirred. The slurry-like reaction liquid was cooled from the outside, and 1.52 g (about 22 mmol) of sodium nitrite at a temperature range of −2 to −8 ° C. ) Was added (4 minutes), and the mixture was stirred at room temperature (60 minutes, ˜25 ° C.) to conduct a diazotization reaction. The reaction solution was cooled to −40 ° C., and 66.6 g of anhydrous hydrofluoric acid cooled to −20 ° C. was added dropwise over 5 minutes while stirring, and about 90 wt% hydrogen fluoride / 10 wt% pyridine 100 g was added. It was set as the reaction liquid.
Next, ultraviolet light was irradiated for 8 hours at room temperature with a 1 Kw high-pressure mercury lamp (UVL-1000HC, manufactured by Riko Kagaku Sangyo) to carry out a photodeazo difluorination reaction. The reaction solution was transferred to 150 g of ice, extracted three times with 20 ml of methylene chloride (total 60 ml), and the extract was combined and subjected to the same post-treatment as in Example 4 to obtain 6.0 g of a crude reaction product (3- Methyl bromo-2,4-dichloro-5-fluorobenzoate (BC2FAM) was obtained with a GC purity of 94.3% and a reaction yield of approximately 95%. This BC2The physical properties of FAM are as follows.
Melting point: 85-87 ° C
Mass spectrum (EI): m / z = 300
1H-NMR (270 MHz, CDClThree)
δ value (ppm): 3.95 (3H, s), 7.59 (1H, d, J = 8.3 Hz)
[0029]
Comparative Example 1(FThreeAM bromination)
Except for the volume of 25 ml, an apparatus similar to that of Example 1 was used to add methyl 2,4,5-trifluorobenzoate (FThreeAM) 1.9 g (purity 99.6 wt%, about 10 mmol) and 90 wt% sulfuric acid 7.5 ml were charged, the amount of potassium bromate added 2.8 g (17 mmol), and the time required for charging the potassium bromate 35 minutes ( The operation was almost the same as in Example 1 except that the temperature was 15 to 26 ° C. The obtained crude reaction product was 0.69 g, and the desired product BF.ThreeAbout 45% AM, raw material FThreeContains about 30% AM, about 4% dibromo, and others.ThreeBF from AMThreeThe AM yield was about 11%, and the raw material conversion rate was about 80%.
[0030]
Comparative Example 2(FThreeAM bromination)
A reflux condenser is added to the apparatus of Example 1, and FThree1.9 g of AM (purity 99.6% by weight, about 10 mmol) and 0.07 g of iron powder were charged and heated to 80 ° C. Bromine (1.0 g, 6 mmol) was added dropwise over 5 minutes, followed by reaction at 80 ° C. for 1 hour. Further, 0.07 g of iron powder was added, and 1.0 g (6 mmol) of bromine was added dropwise over 5 minutes, the temperature was raised to 100 ° C., the mixture was reacted for 2 hours, and cooled. 10 ml of methylene chloride was dissolved in the reaction contents, the solid was removed by filtration, washed with 50 ml of water, treated with 200 ml of 3% aqueous sodium thiosulfate solution, and further washed with 50 ml of water, and the organic layer was separated. The extract was dried over sodium sulfate and concentrated on a rotary evaporator. The reaction crude yield is 0.3 g. According to the GC analysis result, the target product BFThreeAM is 2.1%, raw material FThreeAM was 97.2%.
[0031]
Comparative Example 3(F2Bromination of NAM)
F was added to a 10 ml eggplant flask equipped with a magnet rotor and reflux condenser.22.17 g of NAM (purity of about 99.3 wt%, about 10 mmol), 5 ml of 25% fuming sulfuric acid (orium), 0.1 g of anhydrous aluminum chloride and 3.2 g (20 mmol) of bromine were reacted and reacted at 70 ° C. for 4 hours. The post-treatment as in Example 2 was performed. The reaction crude yield is 0.4 g. According to the GC analysis result, the target product BF2NAM is only 0.7% and raw material FThreeThe NAM was 95.3%.
[0032]
Comparative Example 4(F2Bromination of NAM)
In the same apparatus as in Comparative Example 1, 8 ml of water and 8 ml of 98% concentrated sulfuric acid were charged and cooled with ice.22.17 g of NAM (purity about 99.3% by weight, about 10 mmol) and 1.67 g (10 mmol) of potassium bromate were charged and reacted at 10 to 20 ° C. for 90 minutes. After the reaction contents were transferred to 30 g of ice, the same operation as in Example 1 was performed. The reaction gross yield is 2.1 g. According to the GC analysis result, the target product BF2NAM is 13.4%, raw material F2NAM is 83.7%, raw material F2NAM conversion is 14%, raw material F2Target BF from NAM2The approximate yield of NAM was 9%, and the approximate yield from the raw material conversion was 69%.
[0033]
Comparative Example 5(F2Bromination of AAM: Fig. 8)
The same apparatus as in Comparative Example 1 was charged with 12.2 g of 15% hydrochloric acid (about 50 mmol as hydrochloric acid), cooled with ice from the outside, and added with methyl 2,4-difluoro-5-aminobenzoate (FThreeAAM) 1.87 g (purity about 100% by weight, about 10 mmol) was added. While maintaining the internal temperature at 5 ° C. or less, 1.6 g (10 mmol) of bromine was added dropwise (3 minutes), and the reaction was carried out at 1-4 ° C. for 70 minutes. The reaction solution was transferred to 50 g of ice water, neutralized with 10% aqueous potassium carbonate solution (pH 8), extracted once with 30 ml of methylene chloride and twice with 20 ml (total 70 ml), and the extracted solution was 3% aqueous sodium thiosulfate solution. Washing with 200 ml, drying with sodium sulfate, and concentration with a rotary evaporator gave 2.58 g of crude reaction product. According to gas chromatography mass spectrometry (GC-MS), this is methyl bromo-2,4-difluoro-5-aminobenzoate (BF2AAM) (BF2GC purity of AAM 98.0%, reaction yield 95%).
This reaction crude product was dissolved in 5 ml of methylene chloride, and 1.2 g of 35% by weight hydrochloric acid was added dropwise to add BF.2Crystals were precipitated as AAM hydrochloride, filtered after cooling with ice from the outside, and the crystals were washed with 2 ml of methylene chloride and dried by suction. The crystals were transferred to a beaker, dispersed by adding 10 ml of methylene chloride and 5 ml of water, and neutralized by adding dropwise a 10% aqueous potassium carbonate solution (pH 8). The methylene chloride layer was separated, dried over sodium sulfate, concentrated with a rotary evaporator, and dried under reduced pressure.22.47 g of AAM (purity 98.6% by weight, yield about 91%) was obtained. This BF2As a result of detailed analysis of AAM, methyl 6-bromo-2,4-difluoro-5-nitrobenzoate (6i-BF2AAM). The physical properties are as follows.
Melting point: 77-79 ° C
Mass spectrum (EI): m / z = 265
1H-NMR (270 MHz, CDClThree)
Figure 0004956760
[0034]
Comparative Example 6(C2Bromination of NAM)
Except for the addition of the reflux condenser, the same apparatus as in Example 1 was used.2NAM 5.0 g (purity about 99% by weight, about 20 mmol), water 14 ml and potassium bromate 3.3 g (20 mmol) were charged and heated to 65 ° C., and concentrated sulfuric acid 16 ml was added dropwise over a period of 82 minutes (60-69 ° C.). The mixture was further reacted at 70 ° C. for 1 hour. The reaction solution was collected and the progress of the reaction was observed by GC.2NAM is 95%, the target BC2NAM was only 3.4%.
[0035]
【The invention's effect】
According to the production method of the present invention, a 3-bromo-5-fluoro-2,4-dihalogenobenzoic acid derivative useful as an intermediate for pharmaceuticals, agricultural chemicals and the like can be industrially efficiently produced at low cost using readily available raw materials. It is possible to manufacture.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a manufacturing process of the present invention.
2 is an explanatory diagram showing a synthesis method of Example 1. FIG.
3 is an explanatory diagram showing a synthesis method of Example 3. FIG.
4 is an explanatory diagram showing a synthesis method of Example 4. FIG.
5 is an explanatory diagram showing a synthesis method of Example 5. FIG.
6 is an explanatory diagram showing a synthesis method of Example 6. FIG.
7 is an explanatory diagram showing a synthesis method of Example 7. FIG.
8 is an explanatory diagram showing a synthesis method of Comparative Example 5. FIG.

Claims (3)

2,4-ジハロゲノ-5-ニトロ安息香酸またはそのアルキルエステル(2位および4位のハロゲンはフッ素または塩素)と、70〜100重量%硫酸の混合物中に臭素酸塩を添加して上記2,4-ジハロゲノ-5-ニトロ安息香酸またはそのアルキルエステルを臭素化することによって、次式(I)(式中のX 1 ,X 2 はフッ素または塩素、Rは水素またはC1〜C6の直鎖または分岐のアルキル基)で表される3-ブロモ-2,4-ジハロゲノ-5-ニトロ安息香酸またはそのアルキルエステル(2位および4位のハロゲンはフッ素または塩素)を製造することを特徴とする製造方法。
Figure 0004956760
2,4-dihalogeno-5-nitrobenzoic acid or an alkyl ester thereof (halogens at positions 2 and 4 are fluorine or chlorine) and bromate in a mixture of 70 to 100% by weight sulfuric acid to By brominating 4-dihalogeno-5-nitrobenzoic acid or its alkyl ester, the following formula (I) (wherein X 1 and X 2 are fluorine or chlorine, R is hydrogen or C 1 -C 6 linear or Production of 3-bromo-2,4-dihalogeno-5-nitrobenzoic acid represented by a branched alkyl group) or an alkyl ester thereof (halogens at 2 and 4 positions are fluorine or chlorine) Method.
Figure 0004956760
臭素酸塩が臭素酸のアルカリ金属塩またはアルカリ土類金属塩である請求項1に記載する製造方法。The process according to claim 1, wherein the bromate is an alkali metal salt or alkaline earth metal salt of bromic acid. 請求項1または請求項2の何れかの方法によって製造した3-ブロモ-2,4-ジハロゲノ-5-ニトロ安息香酸またはそのアルキルエステル(2位および4位のハロゲンはフッ素または塩素)を還元して上記ニトロ基がアミノ基に置換された3-ブロモ-2,4-ジハロゲノ-5-アミノ安息香酸またはそのアルキルエステルとし、さらにこれをジアゾ化した後に脱ジアゾフッ素化することによって、3-ブロモ-2,4-ジハロゲノ-5-フルオロ安息香酸またはそのアルキルエステル(2位および4位のハロゲンはフッ素または塩素)を製造する方法。 Reduction of 3-bromo-2,4-dihalogeno-5-nitrobenzoic acid or an alkyl ester thereof produced by the method of claim 1 or claim 2 (halogens at the 2- and 4-positions are fluorine or chlorine). 3-bromo-2,4-dihalogeno-5-aminobenzoic acid or an alkyl ester thereof in which the above nitro group is substituted with an amino group, and diazotized and then dediazofluorinated to give 3-bromo A method for producing -2,4-dihalogeno-5-fluorobenzoic acid or an alkyl ester thereof (halogens at the 2-position and 4-position are fluorine or chlorine) .
JP18046598A 1998-06-26 1998-06-26 Method for producing 3-bromobenzoic acid or alkyl ester thereof Expired - Fee Related JP4956760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18046598A JP4956760B2 (en) 1998-06-26 1998-06-26 Method for producing 3-bromobenzoic acid or alkyl ester thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18046598A JP4956760B2 (en) 1998-06-26 1998-06-26 Method for producing 3-bromobenzoic acid or alkyl ester thereof

Publications (2)

Publication Number Publication Date
JP2000016971A JP2000016971A (en) 2000-01-18
JP4956760B2 true JP4956760B2 (en) 2012-06-20

Family

ID=16083707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18046598A Expired - Fee Related JP4956760B2 (en) 1998-06-26 1998-06-26 Method for producing 3-bromobenzoic acid or alkyl ester thereof

Country Status (1)

Country Link
JP (1) JP4956760B2 (en)

Also Published As

Publication number Publication date
JP2000016971A (en) 2000-01-18

Similar Documents

Publication Publication Date Title
JP4872668B2 (en) Process for producing 2-amino-5-iodobenzoic acid
JPH0625125A (en) Benzoic acid derivative
JPH022869B2 (en)
JPH0114225B2 (en)
JP4511359B2 (en) A novel method for preparing synthetic intermediates for pesticides
JP4956760B2 (en) Method for producing 3-bromobenzoic acid or alkyl ester thereof
JP5036243B2 (en) Method for producing 3,5-bis (1,1,1,3,3,3-hexafluoro-2-hydroxyisopropyl) phenol
KR20020061111A (en) Process for the Preparation of Trifluoromethyl-Substituted Biphenylcarboxylic Acids and Novel Trichloromethyl- and Trifluoromethyl-Substituted Biphenylcarbonitriles
JP3390476B2 (en) Method for producing halogenanthranilic acid
JPS6335548A (en) Production of triarylamine
JP3261474B2 (en) Method for producing 2-chloro-4,5-difluorobenzoic acid
JP2002284755A (en) New fluorine-containing anthracene compound and method for manufacturing the same
JP2706554B2 (en) 4-trifluoromethylaniline derivative and method for producing the same
JPWO2003062187A1 (en) Method for producing 2,5-bis (trifluoromethyl) nitrobenzene
JP4801271B2 (en) Novel fluorine-containing naphthalene compounds and methods for producing them
CN116178198A (en) Preparation method of cyflufenapyr
JP2001151736A (en) Method for producing trifluoromethylaniline
JPH10168051A (en) Production of 2,3-dihalogeno-6-trifluoromethylbenzonitrile
JP2006045095A (en) 3-formyl-5-trifluoromethylbenzonitrile derivative and method for producing the same
JPH01228943A (en) Production of 2,4-dichloro-3-alkyl-6-nitrophenol
JPH08169868A (en) Production of 4-cyano-4'-hydroxybiphenyl
JPH0625122A (en) Aniline derivative and its production
JPH06239810A (en) Production of 3,5-difluoroaniline
JPH069509A (en) Selective dehalogenation of ortho-halogenonitrobenzene
JPH02121952A (en) Production of 4-fluoroaniline derivative

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090430

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090706

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees