JPS62149650A - Production of aromatic bisaniline - Google Patents

Production of aromatic bisaniline

Info

Publication number
JPS62149650A
JPS62149650A JP29083485A JP29083485A JPS62149650A JP S62149650 A JPS62149650 A JP S62149650A JP 29083485 A JP29083485 A JP 29083485A JP 29083485 A JP29083485 A JP 29083485A JP S62149650 A JPS62149650 A JP S62149650A
Authority
JP
Japan
Prior art keywords
aniline
reaction
aromatic
aromatic ketone
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29083485A
Other languages
Japanese (ja)
Inventor
Takeo Teramoto
武郎 寺本
Takashi Usami
隆志 宇佐美
Kazuaki Harada
和明 原田
Hiroharu Inoue
博晴 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Corp
Priority to JP29083485A priority Critical patent/JPS62149650A/en
Publication of JPS62149650A publication Critical patent/JPS62149650A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To obtain the titled compound useful for production of heat-resistant polyamide or polyimide resin in high yield, by reacting an aromatic ketone with an aniline while removing water condensed by the reaction from the reaction system. CONSTITUTION:An aromatic ketone (e.g., fluorenone, 1-indanone, 2-tetralone or benzophenone) is reacted with an aniline at 75-200 deg.C, preferably 120-150 deg.C while removing water condensed by the reaction from the reaction system (by azeotropic reaction) to give the aimed compound shown by formula I (X is halogen or lower aliphatic hydrocarbon group; R<1> and R<2> are phenyl or aromatic ketone residue shown by formula II - formula IV bonded to valences of R<1> and R<2>). 1mol aromatic ketone is preferably reacted with 2-100mol, especially 2-15mol aniline in 1/40-40mol based on 1 aniline of an aromatic solvent (e.g., benzene or toluene).

Description

【発明の詳細な説明】 産業上の利用分野 本発明は芳香族ビスアニリン類の製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing aromatic bisanilines.

従来の技術 カルボニル化合物と第一アミンとを反応させるとシンフ
塩基を4える事は広く知られている。本反応はカルボニ
ル化合物とアニリン類がシッフ塩基ではなく、ジアミン
化合物を与えるという点で特異的反応である。
BACKGROUND OF THE INVENTION It is widely known that the reaction of a carbonyl compound with a primary amine yields a Schiff base. This reaction is a specific reaction in that the carbonyl compound and aniline give a diamine compound rather than a Schiff base.

芳香族ケトンとアニリン類より芳香族ビスアニリン類を
製造する例としては、これまでにスチーレらによって報
告されている(マクロモルキュルズ(Mac romo
 1ecu 1es)、旦、486 、1981)。
An example of producing aromatic bisanilines from aromatic ketones and anilines has been reported by Steele et al.
1ecu 1es), Dan, 486, 1981).

すなわち、スチーレらの反応はフルオレノンとアニリン
とをアニリン溶剤中、 185℃の高温度で511rM
流を行うことによって、9.9−ビス(4−アミノフェ
ニル)フルオレンを得ているが、収率は54%と低いも
のであった。
That is, in the reaction of Steele et al., fluorenone and aniline were mixed at 511 rM in an aniline solvent at a high temperature of 185°C.
Although 9,9-bis(4-aminophenyl)fluorene was obtained by carrying out this process, the yield was as low as 54%.

発明が解決しようとする問題点 本発明は芳香族ケトンとアニリン類の反応において、よ
り温和な反応条件で収率向上を目指し、あわせて工業的
製造方法の確立を目的としたものである。
Problems to be Solved by the Invention The present invention aims to improve the yield under milder reaction conditions in the reaction of aromatic ketones and anilines, and also aims to establish an industrial production method.

問題点を解決するための手段 従来の方法は高温で行われていたため、発生する水の影
響を過少視しており、原料の使用量、目的物の収量に比
し、水の発生量は微少であることから、脱水により収率
向上を図ることは殆んど無視されていた。
Means to solve the problem Conventional methods are carried out at high temperatures, which underestimates the effect of water generated, and the amount of water generated is minimal compared to the amount of raw materials used and the yield of the target product. Therefore, attempts to improve yield through dehydration have been largely ignored.

しかしながら本発明者は、この微少の水を適当な溶剤を
用いて、たとえば共沸菖蒲により糸外に取り出すことに
より1反応収率の向上を試みたところ、著しい収率の向
上を見ると共に1反応温度を下げなお且つ反応時間も短
縮しうろことを見出した。さらに、低温・短時間反応が
可能となったため、副反応が減少し、精製段階を極めて
簡易化しうろことも併せて見出した。
However, the inventor of the present invention attempted to improve the yield of one reaction by extracting this small amount of water from the thread using an appropriate solvent, for example, using an azeotrope. It was discovered that the temperature could be lowered and the reaction time could also be shortened. Furthermore, it was also discovered that since the reaction can be carried out at low temperatures and in a short time, side reactions can be reduced and the purification step can be extremely simplified.

すなわち本発明は芳香族ケトンとアニリン類を反応させ
る際、反応により縮合生成した水を反応系より除去しつ
つ反応を行う事を特徴とする一般式CI)で示した芳香
族ビスアニリン類の製造方法である。
That is, the present invention provides a method for producing an aromatic bisaniline represented by the general formula CI), which is characterized in that when an aromatic ketone and an aniline are reacted, the reaction is carried out while removing water produced by condensation from the reaction system. It is.

本発明において製造される芳香族ビスアニリンとは、代
表的には次の一般式CI)で示される。
The aromatic bisaniline produced in the present invention is typically represented by the following general formula CI).

一般式(D ここでXはたとえば水素原子、ハロゲン原子、メチル基
、エチル基、ブチル基などの低級脂肪族の炭化水素基を
示す。
General formula (D Here, X represents a lower aliphatic hydrocarbon group such as a hydrogen atom, a halogen atom, a methyl group, an ethyl group, or a butyl group.

R1,R2は、たとえば第1表に示す芳香族ケトン残基
で、2つの結合手にそれぞれ結合するものである。
R1 and R2 are, for example, aromatic ketone residues shown in Table 1, each of which is bonded to two bonds.

(以下余白) 第1表 もよい。(Margin below) Table 1 Good too.

本発明は、第1表に示す如き芳香族ケトンとアニリン類
とがたとえば次のような反応式(TI)によって反応し
、一般式(I)で示すごとき芳香族ビスアニリン類とな
る。
In the present invention, aromatic ketones as shown in Table 1 and anilines react, for example, according to the following reaction formula (TI) to form aromatic bisanilines as shown in general formula (I).

この例はフルオレノンとアニリン塩酸塩とが反応して9
.9−ビス(4−アミンフェニル〕フルオレンを生成す
る反応式である6 芳香族ケトンとしては、フルオレノンの他、ベンゾフェ
ノン、インダノン、テトラノンなどである。
In this example, fluorenone and aniline hydrochloride react with 9
.. The reaction formula for producing 9-bis(4-aminephenyl)fluorene is 6. In addition to fluorenone, aromatic ketones include benzophenone, indanone, and tetraone.

原料に用いるアニリン類は、代表的には上記無置換のア
ニリンが挙げられるがアニリン誘導体、たとえば芳香核
やアミン基の水素原子をハロゲン原子やメチル基、エチ
ル基などの炭化水素基で塁換したものであってもよい。
Anilines used as raw materials typically include the unsubstituted aniline mentioned above, but aniline derivatives, such as those in which the hydrogen atom of an aromatic nucleus or amine group is substituted with a halogen atom or a hydrocarbon group such as a methyl group or an ethyl group, are used as raw materials. It may be something.

パラ位に反応性の水素を有すれば、メチル基やハロゲン
など不活性な置換基がオルト位に存在してもよい。
If it has a reactive hydrogen at the para position, an inert substituent such as a methyl group or halogen may be present at the ortho position.

芳香族ケトンに対するアニリン類の使用モル比は、化学
量無比、すなわち2倍モル量が適切であるが、反応収率
向上の面から過剰のアニリンを用いることが望ましい。
The appropriate molar ratio of aniline to aromatic ketone is stoichiometric, that is, twice the molar amount, but it is desirable to use an excess of aniline in order to improve the reaction yield.

しかし、あまり大過剰量用いても、収率は改善されない
、このような観点から好ましくは、芳香族ケトン1モル
に対してアニリン類2〜100モル、さらに好ましくは
2〜15モル程度である。なお、本発明の反応は無溶剤
あるいは溶剤中いずれでも進行するが過剰のアニリン類
は通常系の反応溶剤として働き好都合である。
However, even if a large excess amount is used, the yield will not be improved.From this viewpoint, the amount of aniline is preferably about 2 to 100 moles, more preferably about 2 to 15 moles, per mole of aromatic ketone. Although the reaction of the present invention proceeds either in the absence of a solvent or in a solvent, excess aniline conveniently acts as a reaction solvent in a normal system.

反応溶剤としては上記アニリン単独かまたは他に水と共
沸する共沸溶剤を共存させる。
As the reaction solvent, the above-mentioned aniline may be used alone, or an azeotropic solvent that is azeotropic with water may be used together.

共沸溶剤としては、ベンゼン、トルエン、キシレンなど
の芳香族系溶剤が好適である。これらの溶剤をこの系に
加え、生成した水を適当な減圧下、反応温度を制御し除
去する。ベンゼンなどの共沸溶剤を加えた場合、反応温
度をかなり下げる事ができ、高温における酸化などの副
反応は抑制され、精製も容易になる。またキシレン、ト
ルエンなどはベンゼンより沸点が多少高いので、反応系
を減圧にすることにより、還流温度を調節しても良い。
As the azeotropic solvent, aromatic solvents such as benzene, toluene, and xylene are suitable. These solvents are added to the system and the water produced is removed under appropriate reduced pressure and controlled reaction temperature. When an azeotropic solvent such as benzene is added, the reaction temperature can be significantly lowered, side reactions such as oxidation at high temperatures are suppressed, and purification becomes easier. Furthermore, since xylene, toluene, etc. have a somewhat higher boiling point than benzene, the reflux temperature may be adjusted by reducing the pressure of the reaction system.

共沸溶剤の使用量は、使用したアニリン類1モルに対し
て1/40〜40モル位が望ましい。
The amount of the azeotropic solvent to be used is desirably 1/40 to 40 moles per mole of the aniline used.

共沸溶剤の使用量がl/40モル未満では水を共沸する
には不十分であり、還流温度は共沸溶剤の増加とともに
低下するため反応温度との関係で40モル位までがよい
。たとえば、本発明で好ましい反応温度である130℃
近辺とするためには、アこリン3モルに対してベンセフ
1モル程度を使用する。
If the amount of azeotropic solvent used is less than 1/40 mol, it is insufficient to azeotropically distill water, and the reflux temperature decreases as the amount of azeotropic solvent increases, so it is preferable to use up to about 40 mol in relation to the reaction temperature. For example, 130°C, which is the preferred reaction temperature in the present invention.
To achieve a similar value, use approximately 1 mole of bencef per 3 moles of akoline.

反応温度は75〜200℃と広い範囲内で可変であるが
、本発明の目的である低温化からすれば好ましくは10
0〜170℃、さらに好ましくは120〜150℃であ
る。
The reaction temperature is variable within a wide range of 75 to 200°C, but from the viewpoint of lowering the temperature, which is the objective of the present invention, it is preferably 10°C.
The temperature is 0 to 170°C, more preferably 120 to 150°C.

反応時間は他の反応条件によって異るが、上記好適条件
下では、2〜5時間が適切であり、この時間で十分反応
が完結しており、これ以上長時間の反応を行っても、収
率向上にはあまり影響がない。
The reaction time varies depending on other reaction conditions, but under the above-mentioned preferred conditions, 2 to 5 hours is appropriate; the reaction is sufficiently completed within this time, and even if the reaction is carried out for a longer time, no yield will be obtained. It does not have much effect on rate improvement.

芳香族ケトンとアニリン類の反応に際しては、酸触媒を
使用することによってより反応を促進することができる
。酸触媒としては、アニリン塩酸塩のような化合物でも
、塩化水素ガスの反応系への吹込みや、塩酸、硫酸など
の添加によっても目的を達することができる。
In the reaction between aromatic ketones and anilines, the reaction can be further promoted by using an acid catalyst. As an acid catalyst, the purpose can be achieved by using a compound such as aniline hydrochloride, by blowing hydrogen chloride gas into the reaction system, or by adding hydrochloric acid, sulfuric acid, or the like.

反応終了後、吸引蘭過などによって溶剤を除去し、粗製
品を得る。この精製は極性の低い溶媒、たとえばトルエ
ン、キシレンなどを用いた再結晶が適切であるが、特に
トルエンの使用が好適である。
After the reaction is completed, the solvent is removed by suction filtration to obtain a crude product. For this purification, recrystallization using a less polar solvent such as toluene or xylene is appropriate, and toluene is particularly preferred.

本発明によって製造された芳香族ビスアニリン類は種々
の用途、例えば耐熱性ポリアミド、ポリイミド樹脂など
の製造に用いられる。
The aromatic bisanilines produced according to the present invention are used for various purposes, such as the production of heat-resistant polyamides, polyimide resins, and the like.

実施例1 攪拌装置、エステル縮合脱水管を備えた反応容器に、フ
ルオレノン37g、アニリン210g、触媒としてアニ
リン塩酸塩110g、共沸溶剤としてベンゼン80シを
仕込み、 130℃で3時間還流し、3.6シを脱水さ
せた。反応生成物を、8wt%水酸化カリウム(KOH
)水溶液1免中に注ぎ込み、中和後、温水にて洗浄、冷
却後、粗製品に含まれるアニリン分を濾過し、粗製品を
得た。
Example 1 A reaction vessel equipped with a stirring device and an ester condensation dehydration tube was charged with 37 g of fluorenone, 210 g of aniline, 110 g of aniline hydrochloride as a catalyst, and 80 g of benzene as an azeotropic solvent, and refluxed at 130° C. for 3 hours. 6 pieces were dehydrated. The reaction product was mixed with 8 wt% potassium hydroxide (KOH
) After neutralization, the mixture was poured into an aqueous solution, washed with warm water, cooled, and the aniline contained in the crude product was filtered to obtain a crude product.

粗製品は乾燥後、トルエンにより再結晶され、収率的9
0%で精製品を得た(層、p、234〜235℃、OS
C純度88.6%)。
After drying, the crude product was recrystallized with toluene to give a yield of 9.
A purified product was obtained at 0% (layer, p, 234-235 °C, OS
C purity 88.6%).

実施例1のフルオレノンにかえ、1−インダノン、2−
テトラロン、ベンゾフェノンを用いて反応を行った場合
にも同様の結果を得た。
In place of fluorenone in Example 1, 1-indanone, 2-
Similar results were obtained when the reaction was performed using tetralone and benzophenone.

実施例2 実施例1と同様の装置にフルオレノン37g、アニリン
塩酸塩110gを入れ、アニリ7210gに溶解させた
。さらにトルエン50シを加えて140℃で還流した。
Example 2 37 g of fluorenone and 110 g of aniline hydrochloride were placed in the same apparatus as in Example 1, and dissolved in 7210 g of aniline. Furthermore, 50 g of toluene was added and the mixture was refluxed at 140°C.

理論量の水が留出したところで反応をやめた。反応時間
は6時間を要した。精製は実施例1と同様にした。収率
的80%、融点234〜235℃であηた。
The reaction was stopped when the theoretical amount of water had been distilled off. The reaction time required 6 hours. Purification was carried out in the same manner as in Example 1. The yield was 80% and the melting point was 234-235°C.

実施例3 実施例2と同様の反応を僅か減圧下で行なった。 13
0℃以下で還流させ、理論量の水が留出したところで反
応をやめた0反応時間は6時間を要した。
Example 3 A reaction similar to Example 2 was carried out under slightly reduced pressure. 13
The reaction was refluxed at a temperature below 0°C and the reaction was stopped when the theoretical amount of water was distilled off.The zero reaction time required 6 hours.

精製は実施例1と同様にした。収率的80%、融点23
4〜235℃であった。
Purification was carried out in the same manner as in Example 1. Yield 80%, melting point 23
The temperature was 4-235°C.

実施例4 実施例1〜3と同様のスケールで、共沸溶剤をキシレン
に代え行った。この場合、僅かに系を減圧として、種々
の反応温度(140〜160℃)で反応を行なった。
Example 4 A test was conducted on the same scale as Examples 1 to 3, except that xylene was used as the azeotropic solvent. In this case, the reaction was carried out at various reaction temperatures (140 to 160° C.) with the system under slightly reduced pressure.

また、アニリン以外に共沸溶剤は特に加えずに反応を行
った。
Further, the reaction was carried out without adding any azeotropic solvent other than aniline.

精製は実施例1と同様にした。いずれの場合も収率的7
5%、融点233〜235℃であった。
Purification was carried out in the same manner as in Example 1. In either case, the yield is 7
5%, melting point 233-235°C.

比較例1 9−フルオレノン73.0 g 、アニリン塩酸塩22
2g、およびアニリン420gの混合物を撹拌下縮合生
成した水を除去することなく5時間還流した。
Comparative example 1 9-fluorenone 73.0 g, aniline hydrochloride 22
A mixture of 2 g of aniline and 420 g of aniline was stirred and refluxed for 5 hours without removing the condensed water.

まだ暖かいうちに反応混合物を10%水酸化カリウム水
溶液2免中に注いだ、この混合物を10分間加熱した後
、暗赤色水層部をデカンテーションした。この操作をさ
らに2度2Q、の水を用いて行った後、吸引濾過した。
While still warm, the reaction mixture was poured into two drops of 10% aqueous potassium hydroxide solution. After heating the mixture for 10 minutes, the dark red aqueous layer was decanted. This operation was repeated twice using 2Q of water, followed by suction filtration.

赤白色の固体を1.751のベンゼンを用いて洗浄した
。ベンゼン洗浄のみでは純度が向上せず、さらに収率も
低下するので、赤白色の固体を活性炭を用いトルエンに
より再結晶した。しかしながら、収率は60%を越える
ことはなかった。また、再結晶を3回行い98.5%の
純度を得た。
The red-white solid was washed with 1.751 g of benzene. Since washing with benzene alone did not improve the purity and also lowered the yield, the red-white solid was recrystallized from toluene using activated carbon. However, the yield never exceeded 60%. Further, recrystallization was performed three times to obtain a purity of 98.5%.

発明の効果 本発明は、従来技術に比し、高収率で、低温合成が可能
となり、又副反応、着色が少く、工業的製法として優れ
ており、産業上の価値は大である。
Effects of the Invention The present invention enables low-temperature synthesis with higher yield than conventional techniques, and has fewer side reactions and coloring, and is excellent as an industrial manufacturing method, and has great industrial value.

Claims (4)

【特許請求の範囲】[Claims] (1)芳香族ケトンとアニリン類を反応させる際、反応
により縮合生成した水を反応系より除去しつつ反応を行
う事を特徴とする一般式( I )で示した芳香族ビスア
ニリン類の製造方法。 一般式( I ) ▲数式、化学式、表等があります▼ 式中、Xは水素原子、ハロゲン原子、低級脂肪族の炭化
水素基であり、R^1、R^2は各々フェニル基である
かR^1、R^2の結合手に結合する以下に示す芳香族
ケトン残基のいずれかである。 ▲数式、化学式、表等があります▼▲数式、化学式、表
等があります▼▲数式、化学式、表等があります▼
(1) A method for producing aromatic bisanilines represented by general formula (I), which is characterized in that when reacting an aromatic ketone and an aniline, the reaction is carried out while removing water produced by condensation from the reaction system. . General formula (I) ▲There are mathematical formulas, chemical formulas, tables, etc.▼ In the formula, X is a hydrogen atom, a halogen atom, or a lower aliphatic hydrocarbon group, and R^1 and R^2 are each a phenyl group. It is any of the aromatic ketone residues shown below that binds to the bonds of R^1 and R^2. ▲There are mathematical formulas, chemical formulas, tables, etc.▼▲There are mathematical formulas, chemical formulas, tables, etc.▼▲There are mathematical formulas, chemical formulas, tables, etc.▼
(2)芳香族ケトンとアニリン類とから芳香族ビスアニ
リン類を製造する方法において、芳香族ケトン1モルに
対してアニリン類2〜100モル、さらにアニリン類1
モルに対して芳香族系溶剤1/40〜40モルを用い7
5〜200℃の加熱温度下、縮合水を共沸反応により除
去することを特徴とする特許請求の範囲第(1)項記載
の製造方法。
(2) In a method for producing aromatic bisanilines from an aromatic ketone and an aniline, 2 to 100 mol of aniline per 1 mol of aromatic ketone, and 1 mol of aniline
Using aromatic solvent 1/40 to 40 mol based on mol 7
The manufacturing method according to claim 1, characterized in that condensed water is removed by an azeotropic reaction at a heating temperature of 5 to 200°C.
(3)芳香族ケトンが、フルオレノン、1−インダノン
、2−テトラロン、ベンゾフェノンのいずれかであり、
アニリン類が無置換のアニリンである特許請求の範囲第
(1)項もしくは第(2)項記載の製造方法。
(3) the aromatic ketone is any one of fluorenone, 1-indanone, 2-tetralone, and benzophenone,
The manufacturing method according to claim (1) or (2), wherein the aniline is unsubstituted aniline.
(4)反応生成物をトルエン又はキシレンを用いた再結
晶法により精製することを特徴とする特許請求の範囲第
(2)項記載の製造方法。
(4) The manufacturing method according to claim (2), characterized in that the reaction product is purified by a recrystallization method using toluene or xylene.
JP29083485A 1985-12-25 1985-12-25 Production of aromatic bisaniline Pending JPS62149650A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29083485A JPS62149650A (en) 1985-12-25 1985-12-25 Production of aromatic bisaniline

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29083485A JPS62149650A (en) 1985-12-25 1985-12-25 Production of aromatic bisaniline

Publications (1)

Publication Number Publication Date
JPS62149650A true JPS62149650A (en) 1987-07-03

Family

ID=17761086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29083485A Pending JPS62149650A (en) 1985-12-25 1985-12-25 Production of aromatic bisaniline

Country Status (1)

Country Link
JP (1) JPS62149650A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011084502A (en) * 2009-10-14 2011-04-28 Jfe Chemical Corp Process for producing 9,9-bis(3-fluoro-4-aminophenyl)fluorene
JP2013515768A (en) * 2009-12-29 2013-05-09 コーロン インダストリーズ インク Aromatic diamine and method for producing the same, aramid fiber and method for producing the same
WO2022097609A1 (en) * 2020-11-06 2022-05-12 東レ・ファインケミカル株式会社 9,9-bis (3,5-dialkyl-4-aminophenyl) fluorene compound production method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011084502A (en) * 2009-10-14 2011-04-28 Jfe Chemical Corp Process for producing 9,9-bis(3-fluoro-4-aminophenyl)fluorene
JP2013515768A (en) * 2009-12-29 2013-05-09 コーロン インダストリーズ インク Aromatic diamine and method for producing the same, aramid fiber and method for producing the same
WO2022097609A1 (en) * 2020-11-06 2022-05-12 東レ・ファインケミカル株式会社 9,9-bis (3,5-dialkyl-4-aminophenyl) fluorene compound production method

Similar Documents

Publication Publication Date Title
US4758380A (en) Substituted 1,1,1-triaryl-2,2,2-trifluoroethanes and processes for their synthesis
JPS62149650A (en) Production of aromatic bisaniline
EP0448899B1 (en) Preparation of a para-aminodiphenylamine
JPS60132933A (en) Manufacture of nitrodiarylamine
JP3009245B2 (en) N-substituted maleimide and method for producing the same
JP3054482B2 (en) Bis (aminobenzoyloxy) naphthalene and method for producing the same
CA2140027A1 (en) Process for 2,5-diphenylterephthalic acid
JPS62255456A (en) Production of diethylformamide
JPH06116191A (en) Production of 1,3-dihydroxy-4,6-bis(alpha-methyl-alpha-@(3754/24)4&#39;-hydroxyphenyl)ethyl)benzene
JPH0140833B2 (en)
US3833648A (en) Process for preparing acylphenoxyaliphatic acid derivatives
WO1998011039A1 (en) Process for the chloromethylation or aromatic hydrocarbons
JP3025319B2 (en) N-substituted maleimide and method for producing the same
JPH0637465B2 (en) Method for producing bismaleimide compound
JP2612326B2 (en) Novel diamine compound and method for producing the same
JPS6341456A (en) Novel bismaleimide compound and production thereof
US4912238A (en) Substituted 1,1,1-triaryl-2,2,2-trifluoroethanes and processes for their synthesis
KR940006437B1 (en) Bismaleimide compound and method for their preparation
JP3876933B2 (en) Method for producing hydrogen sulfate ester
JPS60132936A (en) Manufacture of 4,4&#39;-diaminobenzophenone
JPS62155241A (en) Production of bis(p-aminocumyl)benzene compound
JPH08119939A (en) Production of highly pure ether type bismaleimide
JPH0583537B2 (en)
JPH06199808A (en) Production of 5-cyclohexylmethylhydantoin derivative and intermediate for production thereof
US5334733A (en) Substituted 1,1,1-triaryl-2,2,2-trifluoroethanes and processes for their synthesis