JPS6152733B2 - - Google Patents

Info

Publication number
JPS6152733B2
JPS6152733B2 JP55014546A JP1454680A JPS6152733B2 JP S6152733 B2 JPS6152733 B2 JP S6152733B2 JP 55014546 A JP55014546 A JP 55014546A JP 1454680 A JP1454680 A JP 1454680A JP S6152733 B2 JPS6152733 B2 JP S6152733B2
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
carrier
combustion
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55014546A
Other languages
Japanese (ja)
Other versions
JPS56111024A (en
Inventor
Masao Maki
Yasunori Kaneko
Ikuo Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1454680A priority Critical patent/JPS56111024A/en
Publication of JPS56111024A publication Critical patent/JPS56111024A/en
Publication of JPS6152733B2 publication Critical patent/JPS6152733B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Incineration Of Waste (AREA)
  • Combustion Of Fluid Fuel (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【発明の詳細な説明】 本発明は主として開放型燃焼器具の排気系に適
用して、その排ガスを浄化するための燃焼器具の
排気浄化方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an exhaust gas purification method for a combustion appliance, which is mainly applied to the exhaust system of an open combustion appliance to purify the exhaust gas thereof.

ポータブル石油ストーブ、あるいはフアンヒー
タなどの燃焼器具においては、とくにその点火、
消火時に生成するCO,HC′が嫌われ、これを酸
化触媒を用いて接触酸化させて浄化させる触媒を
実装した器具が登場するに到つた。これらの触媒
はC,Hの化合物を完全酸化して、CO2,H2Oへ
と転換させるものである。酸化触媒としてはセラ
ミツクなどの耐熱性の優れた担体上に白金属元素
を担持させた触媒などが代表的な触媒である。こ
れらの触媒を用いた酸化反応に必要な温度は
HC′を対象とする場合、250℃以上の温度が必要
である。炭化水素と酸化触媒とを250℃以上で接
触反応させた場合、完全酸化反応以外に脱水素反
応が起こり、触媒表面上で、炭素が折出する現
象、いわゆるコーキング現象が起こる。また、燃
焼が不安定で、燃料/空気の混合比が何等かの原
因で変動した場合、ススを生成したりすることが
よくある。この様な結果、触媒の使用が進むと共
に、この炭素によつて、触媒の反応が阻害され、
触媒の性能は著しく低下してしまう。このカーボ
ンは高温で空燃きすれば、燃焼させて除去できる
ものであるが、この様な高温処理は触媒、担体の
シンタリング、構造変化、組成変化などを起こ
し、永久的な劣化に繁がる懸念がある。
For combustion appliances such as portable kerosene stoves or fan heaters, the ignition,
The CO and HC' generated during fire extinguishing were disliked, and equipment equipped with a catalyst that catalytically oxidizes and purifies this using an oxidation catalyst has begun to appear. These catalysts completely oxidize C and H compounds and convert them into CO 2 and H 2 O. A typical oxidation catalyst is a catalyst in which a platinum metal element is supported on a heat-resistant carrier such as ceramic. The temperature required for the oxidation reaction using these catalysts is
When targeting HC′, a temperature of 250°C or higher is required. When a hydrocarbon and an oxidation catalyst are subjected to a contact reaction at 250°C or higher, a dehydrogenation reaction occurs in addition to a complete oxidation reaction, and a phenomenon in which carbon is precipitated on the catalyst surface, a so-called coking phenomenon, occurs. Furthermore, combustion is unstable and soot is often produced if the fuel/air mixture ratio fluctuates for some reason. As a result, as the use of catalysts progresses, this carbon inhibits the catalytic reaction, and
The performance of the catalyst will be significantly reduced. This carbon can be removed by burning it by burning it in the air at high temperatures, but such high-temperature treatment causes sintering, structural changes, and compositional changes in the catalyst and carrier, which often leads to permanent deterioration. There are concerns that

この炭素析出は、単に触媒能力を低下させ失な
わせるのみならず、触媒層の圧力を増大させ、燃
焼自体に影響を与え、不安定な燃焼を起こさせる
懸念もある。この様に、酸化触媒の燃焼排気系へ
の適用は炭素析出という面倒な問題を含んでいる
訳である。
This carbon deposition not only reduces and destroys the catalytic ability, but also increases the pressure in the catalyst layer, affecting the combustion itself, and there is a concern that it may cause unstable combustion. As described above, the application of oxidation catalysts to combustion exhaust systems involves the troublesome problem of carbon deposition.

本発明は、この様な問題の懸念をほぼ完全に解
決した触媒系を用いることを特徴とする方法であ
る。
The present invention is a method characterized by using a catalyst system that almost completely solves such concerns.

本発明は酸化触媒を担持させるべき担体として
極めて新しい担体系を用いるものである。
The present invention uses an extremely new carrier system as a carrier on which an oxidation catalyst is to be supported.

本発明は水蒸気と炭素との下記の反応 (1) C+H2O=CO+H2(△H=32Kcal/mo) (2) C+2H2O=CO2+2H2(△H=24Kcal/mo
) を利用して炭素質をガス化する機構によつて、浄
化しようとするものである。
The present invention deals with the following reaction between water vapor and carbon (1) C+H 2 O=CO+H 2 (△H=32Kcal/mo) (2) C+2H 2 O=CO 2 +2H 2 (△H=24Kcal/mo
) is used to gasify carbonaceous matter.

アルカリ塩類、或いは族の遷移金属化合物な
どは、上記のガス化反応のための有効な触媒とし
て用いるものである。
Alkali salts or group transition metal compounds are used as effective catalysts for the above gasification reactions.

アルカリ塩類(とくにアルカリ炭酸塩)による
触媒反応機構は下記の様であると考えられてい
る。
The catalytic reaction mechanism by alkali salts (particularly alkali carbonates) is thought to be as follows.

M2CO3+2C=2M(g)+3CO(g) 2M(g)+2H2O(g)=2MOH+H2(g) 2MOH+CO(g)=M2CO3+H2(g) というサイクルを経由してガス化反応に寄与する
と考えられている。
M 2 CO 3 + 2C = 2M (g) + 3CO (g) 2M (g) + 2H 2 O (g) = 2MOH + H 2 (g) 2MOH + CO (g) = M 2 CO 3 + H 2 (g) It is thought that it contributes to the gasification reaction.

他方遷移金属の場合には、 M+H2O=M−Oa+2M−Ha C+M−Oa=M+CO 2M−Ha=M+H2 (但し、aは吸着種を示す。) の様な反応に寄与すると考えられる。 On the other hand, in the case of transition metals, they contribute to reactions such as M+H 2 O=M-O a +2M-H a C+M-O a = M+CO 2M-H a =M+H 2 (where a indicates the adsorbed species). It is thought that then.

本発明の担体系の構成は、以下の様にして行な
う。酸化触媒を用いての高温下での接触酸化反応
は多くの場合、外部拡散支配となるため、担体の
形状、或いは、その表面上での触媒の分散状態が
重要である。したがつて、排気系に適用して用い
る担体の形状は、ハニカムないしは、それに準じ
た形状が望ましい。金属を加工して、もしくは、
セラミツクを成型して、まず担体の原型を得る。
この担体の原型となる、金属またはセラミツク面
上に、アルカリ塩類および遷移金属化合物の群か
ら選んだ1種以上の化合物を分散させた無機耐熱
塗料を噴霧して吹付け、この無機塗料系のコーテ
イング層を形成する。この塗膜が乾燥してしまわ
ないうちに、その表面上に耐熱性多孔質担体上に
担持させた酸化触媒の粉体を吹付ける。その後、
300〜400℃の温度で、被覆体を焼成して仕上げ
る。
The structure of the carrier system of the present invention is carried out as follows. Since catalytic oxidation reactions using oxidation catalysts at high temperatures are often dominated by external diffusion, the shape of the carrier or the state of dispersion of the catalyst on its surface is important. Therefore, the shape of the carrier used in the exhaust system is preferably a honeycomb or a similar shape. Processing metal or
First, a prototype of the carrier is obtained by molding the ceramic.
An inorganic heat-resistant paint in which one or more compounds selected from the group of alkali salts and transition metal compounds are dispersed is sprayed onto the metal or ceramic surface that serves as the prototype of this carrier, and this inorganic paint-based coating is applied. form a layer. Before this coating film dries, powder of an oxidation catalyst supported on a heat-resistant porous carrier is sprayed onto its surface. after that,
Finish by firing the coating at a temperature of 300-400°C.

貴金属を用いる場合には、被覆体のみ先に焼付
けて硬化させた後に、これを貴金属塩化物水溶液
中に浸漬して担持させ、これを還元して担持させ
ても良い。
When a noble metal is used, only the coating may be baked and hardened first, and then immersed in a noble metal chloride aqueous solution to be supported, and then reduced and supported.

被覆体を形成するための結合剤としては、無機
化合物を用いるのが望ましい。被覆体としての物
性として良好な物性が得られる無機バインダーの
系としては、金属リン酸を用いる系およびアルカ
リ金属硅酸塩を用いる系がある。アルカリ塩類を
多量に分散させて用いようとすれば、前者の系で
はバインダーのゲル化を生じたりするため、後者
のアルカリ金属硅酸塩を用いた方がより優れた効
果が得られる。
As the binder for forming the coating, it is desirable to use an inorganic compound. Examples of inorganic binder systems that provide good physical properties as a coating include systems that use metal phosphoric acid and systems that use alkali metal silicates. If a large amount of alkali salts are dispersed and used, the former system may cause gelation of the binder, so the use of the latter alkali metal silicates provides better effects.

以下に実施例に基づいて、本発明の効果につい
て記載する。市販のハニカム触媒150mmφ、肉厚
20mm、3mmφの穴が開孔率60%にて形成された触
媒、これはムライトを担体として、白金を0.2wt
%担持したもの(試料1)および同じムライト担
体を用いて、表面全体を約50μの膜厚にて、被覆
して、その被覆体の上に0.2wt%の白金を担持さ
せた触媒(試料2)を準備した。後者の被覆条件
はアルカリ金属硅酸塩塗料として四国化研工業の
「セラミタイトSMA−2000」を用いて、これに
5wt%K2CO3、および2wt%Fe2O3、1wt%CaOを
添加してボールミルにて1時間混合して調整した
塗料にてスプレーガンを用いて吹付けて行なつ
た。これをポータブル石油ストーブの天板部に配
置した。この天板部の温度は定常燃焼時で320℃
であつた。定常燃焼時における、ポータブルスト
ーブの排気中のCO濃度は触媒をつけない場合に
は、15ppmであつたが、触媒を配置した場合に
は6ppmとなり、試料1,2の効果は差がなく、
一応の効果が認められた。触媒の活性を定量的に
評価するため、100ppmのCOを含む空気を送
り、当触媒を配置して触媒温度を150℃として、
SV=24000〔h-1〕の条件下で、流通試験を実施し
たところ、試料1は85%、試料2は92%の転換率
を示した。当触媒を先のポータブル石油ストーブ
に取付け、20h燃焼、4h消火のサイクルで、間欠
的に燃焼を繰返して耐久性を評価した。100日経
過時点で、触媒の活性を上の流通試験で評価した
結果は、試料1が58%の転換率、試料2が95%の
転換率を示した。
The effects of the present invention will be described below based on Examples. Commercially available honeycomb catalyst 150mmφ, wall thickness
A catalyst with holes of 20mm and 3mmφ formed with a porosity of 60%.This catalyst uses mullite as a carrier and 0.2wt of platinum.
% (sample 1) and the same mullite carrier was used to coat the entire surface with a film thickness of approximately 50μ, and a catalyst with 0.2wt% platinum supported on the coating (sample 2). ) was prepared. For the latter coating condition, Shikoku Kaken Kogyo's Ceramitite SMA-2000 was used as the alkali metal silicate paint.
A paint prepared by adding 5wt% K 2 CO 3 , 2wt% Fe 2 O 3 , and 1wt% CaO and mixing in a ball mill for 1 hour was sprayed using a spray gun. This was placed on the top plate of a portable kerosene stove. The temperature of this top plate is 320℃ during steady combustion.
It was hot. During steady combustion, the CO concentration in the exhaust from a portable stove without a catalyst was 15 ppm, but with a catalyst, it was 6 ppm, and there was no difference in the effectiveness of samples 1 and 2.
Some effect was observed. In order to quantitatively evaluate the activity of the catalyst, air containing 100 ppm of CO was sent, the catalyst was placed, and the catalyst temperature was set to 150°C.
When a distribution test was carried out under the condition of SV=24000 [h -1 ], sample 1 showed a conversion rate of 85% and sample 2 showed a conversion rate of 92%. This catalyst was attached to the aforementioned portable kerosene stove, and its durability was evaluated by repeatedly burning it intermittently in a cycle of 20 hours of combustion and 4 hours of extinguishing. After 100 days, the activity of the catalyst was evaluated by the above flow test, and Sample 1 showed a conversion rate of 58% and Sample 2 showed a conversion rate of 95%.

以上に見られる様に、本発明の方法により触媒
の耐久性が飛躍的に向上することが分かる。ここ
での効果は、従来の場合には、H・C′の脱水素
の結果、コーキングを起こして、触媒が次第に劣
化して来るのに対して、本発明の場合には、燃焼
排気中に含まれる水蒸気によつて、この炭素がガ
ス化されてコーキングが防止されたことにより長
期間の耐久性が実現されたものと考えられる。
As seen above, it can be seen that the durability of the catalyst is dramatically improved by the method of the present invention. The effect here is that in the conventional case, coking occurs as a result of dehydrogenation of H/C' and the catalyst gradually deteriorates, whereas in the case of the present invention, the catalyst is gradually deteriorated. It is thought that long-term durability was achieved because this carbon was gasified by the water vapor contained, preventing coking.

Claims (1)

【特許請求の範囲】 1 排気ガス流路に、金属またはセラミツク面上
に無機バインダーを結合剤として、アルカリ塩類
および族の遷移金属化合物の群から選ばれた少
くとも1種の化合物を分散させて被覆し、その被
覆体を担体として用いて、その被覆体上に酸化触
媒を担持させたことを特徴とする触媒を配置し
て、当触媒と接触させて排ガス中の未然ガスを浄
化することを特徴とする燃焼器具の排気浄化方
法。 2 無機バインダーとして、硅酸塩系結合剤を用
いたことを特徴とする特許請求の範囲第1項記載
の燃焼器具の排気浄化方法。
[Claims] 1. At least one compound selected from the group of alkali salts and group transition metal compounds is dispersed in the exhaust gas flow path on a metal or ceramic surface using an inorganic binder as a binder. The catalyst is coated, and the coated body is used as a carrier, and a catalyst characterized in that an oxidation catalyst is supported on the coated body is disposed and brought into contact with the catalyst to purify unresolved gas in exhaust gas. A distinctive method for purifying exhaust gas from combustion appliances. 2. The method for purifying exhaust gas from a combustion appliance according to claim 1, characterized in that a silicate-based binder is used as the inorganic binder.
JP1454680A 1980-02-07 1980-02-07 Purification method for exhaust gas of combustion appliance Granted JPS56111024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1454680A JPS56111024A (en) 1980-02-07 1980-02-07 Purification method for exhaust gas of combustion appliance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1454680A JPS56111024A (en) 1980-02-07 1980-02-07 Purification method for exhaust gas of combustion appliance

Publications (2)

Publication Number Publication Date
JPS56111024A JPS56111024A (en) 1981-09-02
JPS6152733B2 true JPS6152733B2 (en) 1986-11-14

Family

ID=11864145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1454680A Granted JPS56111024A (en) 1980-02-07 1980-02-07 Purification method for exhaust gas of combustion appliance

Country Status (1)

Country Link
JP (1) JPS56111024A (en)

Also Published As

Publication number Publication date
JPS56111024A (en) 1981-09-02

Similar Documents

Publication Publication Date Title
JP2010510049A (en) NOx forming catalyst with little or no ammonia and carbon monoxide double oxidation catalyst
US4415537A (en) Catalytic combustor
TW200946228A (en) In-situ regeneration of a catalyst masked by calcium sulfate
JPS59199042A (en) Catalyst for reforming methanol
KR20110118137A (en) Method for producing alkali and alkaline earth alloys and use of the alkali and alkaline earth alloys
CN101514650B (en) Exhaust gas purification device for internal combustion engine
JPS6152733B2 (en)
JP2013180286A (en) Denitration catalyst for treating exhaust gas and method for treating exhaust gas
JP4508693B2 (en) Carbon monoxide combustion catalyst and method for producing the same
CN101405082A (en) Catalyst for exhaust gas purification and process for producing the same
WO2018021511A1 (en) Exhaust gas denitration catalyst, co oxidation catalyst, exhaust gas treatment system, and exhaust gas treatment method
JPS6022075A (en) Sub-combustion chamber type diesel engine
JPH08150336A (en) Waste gas purification material and method for purifying waste gas
JPS5845284B2 (en) Manufacturing method of catalyst for gas purification
JPS63209751A (en) Production of oxidation catalyst
JP3854325B2 (en) Exhaust gas purification material and exhaust gas purification method
JPH0554383B2 (en)
JPS62125855A (en) Exhaust gas purifying catalyst
US20060040824A1 (en) Nitrogen oxides-removing material and device
JPS58129493A (en) Sound absorbing material
JPS5821534B2 (en) catalyst body
JPS5840416A (en) Combustion of combustible gas
JPH07180836A (en) Combustion catalyst
JP3377382B2 (en) Exhaust gas purification catalyst for diesel engines
JPS57157007A (en) Sound absorbing material