【発明の詳細な説明】[Detailed description of the invention]
本発明はアンモニアの酸化的気相分解方法に関
する。
従来、燃焼炉の排ガス、各種工業装置あるいは
複写機などの排気ガス中には、周知のごとくアン
モニアを含有することが多く、かかる悪臭の強い
アンモニア含有排気ガスを直接、大気中に排出す
ることは環境保全、公害防止の見地からも好まし
くない。このため、種々な対策方法が採られては
いるが、何分にも種々な欠点が多く、いずれも実
用上好ましいものではない。
たとえば排気ガスを水や酸に吸収させる方法
は、吸収後の排水処理に大きな問題点を有し、ま
た、吸着剤などに吸着させる方法は吸着剤を再生
処理する際に、高濃度の離脱アンモニアを生じ、
また、アンモニアを吸着ししたままの状態ではそ
の処理が大変である。また、排気ガスを燃焼処理
する場合は、有害なNOxを生じ、いずれも二次
公害を引き起こす。
かかる二次公害を避けるため、最近、酸素を含
む排気ガス中のアンモニアを、触媒を利用して窒
素と水に気相分解する方法が種々提案されてはい
るが、いずれも欠点が多く、実用性に劣る。すな
わち、一般に使用される触媒の活性が低く、特に
排気ガス中に10%以上の水蒸気が共存する場合、
触媒活性が著しく劣化するので到底、実用的では
ない。
本発明者らは、かかる事情に鑑み、種々研究の
結果、本発明を完成するに至つた。
すなわち、本発明は、酸素を含む排気ガス中の
アンモニアを窒素と水に気相分解するに際し、排
気ガスを酸化マンガンおよび酸化チタンからなる
触媒に接触させることを特徴とするアンモニアの
気相分解方法である。
本発明では、上記、特定の組み合わせになる触
媒を使用することにより、すぐれた作用効果を発
揮しうる。しかも、これらの触媒は比較的低温
(200〜300℃)でも活性が高く、寿命が長くて熱
的にもきわめて安定であり、また、排気ガス中に
10%以上もの水蒸気が共存しても、たとえば空気
中の酸素を利用して、含有アンモニアを無害な窒
素と水に簡単に酸化分解でき、その際、有害な
NOxの生成がきわめて少ないのである。
次に、本発明で使用される触媒につき説明する
と、本発明の触媒は、前記した金属酸化物の混合
物もしくは化学的によく混ざり合つたものあるい
は複数酸化物のいずれかを活性成分とするもので
あり、いわゆる触媒担体に担持させた状態で用い
てもよい。
触媒の自体公知の固体触媒の製法によつて得ら
れるが、たとえば以下のようにして製造すること
ができる。
すなわち、化学反応や加熱により酸化物に変り
うるマンガン含有化合物を、必要により水、酸水
溶液、アルカリ水溶液、アルコールなどの溶媒に
溶かし、酸化チタン粉末(たとえば、和光純薬製
造、試薬一級)と均一に混和したのち、適宜成形
し、次いで250〜1000℃、好ましくは300〜800℃
で焼成する。この際、最終的な触媒の成形とし
は、通常の押出成形法、打錠成形法、転動造粒法
など目的に応じて任意の成形法が採用でき、ま
た、得られた成形物を必要に応じ、さらに適宜の
粒度に粉砕してもよい。
次に、前記マンガン含有化合物としては、たと
えば酸化マンガン(MnO,Mn3O4,Mn2O3,
MnO2,MnO3,Mn2O7など)、硝酸マンガン、塩
化マンガン、硫酸マンガン、リン酸マンガン、水
酸化マンガン、炭酸マンガン、マンガン有機酸塩
(酢酸マンガン、ギ酸マンガンなど)などが挙げ
られ、いずれも容易に酸化物に導きうる。
また、前記酸化チタンおよびそれに導きうるも
のとしては、たとえば酸化チタン(TiO2,Ti2O3
など)、ハロゲン化チタン(TiCl3,TiCl4,TiF4
など)、硫酸チタン、チタン酸(H2TiO3など)、
Ti(OR)4(但し、R=C2H5またはC3H7など)な
どが挙げられ、いずれも容易に酸化物に導きう
る。
前記触媒の活性成分の配合割合は、酸化マンガ
ン:酸化チタンが重量比で約10:1ないし1:
1000、好ましくは約5:1ないし1:100であ
る。
本発明で使用する触媒の具体的な調製法は、後
記各実施例に示すが、たとえば硫酸マンガンの水
溶液に、前記配合割合の酸化チタン粉末(たとえ
ば、和光純薬製造、試薬一級)を加え、アンモニ
ア水で中和後、水分を湯浴上でとばし、蒸発乾固
もしくは湿式成形したのち、300〜500℃で焼成す
ればよい。
次に、触媒担体としては、たとえばアルミナ、
シリカ、シリカ−アルミナ、マグネシア、シリコ
ンカーバイト、ケンソー土、軽石、酸化ジルコニ
ウム、酸化セリウム、石コウ、リン酸アルミニウ
ムなどや、これらの混合物などの耐熱性無機化合
物が用いられ、その担持量としては、担体の種
類、活性成分の種類、製法などによりやや異なる
が、通常触媒の3重量%以上、好ましくは10重量
%以上にするのがよい。
次に、本発明の処理対象となる排気ガスは、含
有アンモニアに対して酸素を0.75モル以上の割合
で含むものが適当であり、予めかかる割合で混和
しているもの、あるいは分解に際し、適宜の方法
により酸素を補充して前記割合となるように調整
してもよい。そして、排気ガス中には、たとえば
空気、水蒸気、CO2,N2,CO,SOx,NOx、炭
化水素などの気体成分や燐化合物、塩化ナトリウ
ム、ばいじんなどのダスト成分などが混在してい
ても差し支えない。
なお、排気ガス中のアンモニアの濃度は10モル
%以下、好ましくは2モル%であり、また、分解
の際の反応温度は、触媒組成、アンモニア濃度、
酸素濃度、水蒸気濃度などによりやや異なるが、
100〜500℃、好ましくは200〜300℃である。
また、処理対象排気ガスと触媒との接触は、通
常空間速度(標準状態に換算して)500〜100000
(hr-1)、好ましくは1000〜50000(hr-1)である。
本発明によれば、酸素を含む排気ガス中のアン
モニアを簡単かつ適確に無害な窒素と水に気相分
解し得、特に分解に際し、10%以上もの水蒸気が
混在しても、すぐれた高分解能を発揮しうるか
ら、産業上の有用性および実用性はきわめて大き
い。
次に、実施例および比較例を示し、さらに具体
的に説明するが、本発明はその要旨を超えない限
り以下の実施例に限定されるものではない。な
お、アンモニアの分解率は次式に従つて算出し
た。
NH分解率(%)=入口ガス中のNH3(%)−出口ガス中のNH3(%)/入口ガス中のNH3(%)×100
0反応条件
1 反応器形式:流通式固定触媒層
2 ガス空間速度:10000hr-1
3 反応圧力:常圧
4 反応温度:200℃,250℃,300℃
5 NH3分析法:インドフエノール法と酸滴定
法(JIS−K0099)
6 反応排気ガスの組成
The present invention relates to a method for oxidative vapor phase decomposition of ammonia. Conventionally, exhaust gas from combustion furnaces, various industrial equipment, copying machines, etc. often contains ammonia, and it is not possible to directly discharge such foul-smelling ammonia-containing exhaust gas into the atmosphere. It is also unfavorable from the standpoint of environmental conservation and pollution prevention. For this reason, various countermeasures have been taken, but they have many drawbacks and none of them are practically preferable. For example, the method of absorbing exhaust gas into water or acid has major problems in wastewater treatment after absorption, and the method of adsorbing exhaust gas with an adsorbent, etc., produces a high concentration of released ammonia when regenerating the adsorbent. arises,
Furthermore, it is difficult to dispose of ammonia while it is still adsorbed. Additionally, when exhaust gas is burned, harmful NOx is produced, both of which cause secondary pollution. In order to avoid such secondary pollution, various methods have recently been proposed to decompose ammonia in oxygen-containing exhaust gas into nitrogen and water using catalysts, but all of them have many drawbacks and are not practical. inferior to sex. In other words, the activity of commonly used catalysts is low, especially when 10% or more of water vapor coexists in the exhaust gas.
This is completely impractical since the catalytic activity deteriorates significantly. In view of the above circumstances, the present inventors completed the present invention as a result of various studies. That is, the present invention provides a method for vapor phase decomposition of ammonia, which comprises bringing the exhaust gas into contact with a catalyst made of manganese oxide and titanium oxide when ammonia in the exhaust gas containing oxygen is vapor phase decomposed into nitrogen and water. It is. In the present invention, excellent effects can be achieved by using the above-described specific combination of catalysts. Moreover, these catalysts are highly active even at relatively low temperatures (200 to 300°C), have a long life, are extremely thermally stable, and are not present in exhaust gas.
Even if more than 10% water vapor coexists, the ammonia contained in it can be easily oxidized and decomposed into harmless nitrogen and water using oxygen in the air, and at that time, harmful
The generation of NOx is extremely low. Next, to explain the catalyst used in the present invention, the catalyst of the present invention has as an active ingredient either a mixture of the above-mentioned metal oxides, a chemically well-mixed one, or a plurality of oxides. It may also be used in a state where it is supported on a so-called catalyst carrier. The catalyst can be obtained by a method for producing a solid catalyst which is known per se, and can be produced, for example, as follows. That is, a manganese-containing compound that can be converted into an oxide by chemical reaction or heating is dissolved in a solvent such as water, an acid aqueous solution, an alkali aqueous solution, or alcohol as necessary, and then homogeneously mixed with titanium oxide powder (e.g., Wako Pure Chemical Industries, Ltd., Reagent 1st Class). After mixing, it is appropriately molded and then heated to 250 to 1000℃, preferably 300 to 800℃.
Fire it with At this time, for the final molding of the catalyst, any molding method can be used depending on the purpose, such as the usual extrusion molding method, tablet molding method, or rolling granulation method. Depending on the requirements, it may be further ground to an appropriate particle size. Next, as the manganese-containing compound, for example, manganese oxide (MnO, Mn 3 O 4 , Mn 2 O 3 ,
MnO 2 , MnO 3 , Mn 2 O 7 , etc.), manganese nitrate, manganese chloride, manganese sulfate, manganese phosphate, manganese hydroxide, manganese carbonate, manganese organic acid salts (manganese acetate, manganese formate, etc.), etc. Both can be easily converted into oxides. In addition, examples of the titanium oxide and substances that can be derived therefrom include titanium oxide (TiO 2 , Ti 2 O 3
), titanium halides (TiCl 3 , TiCl 4 , TiF 4
), titanium sulfate, titanic acid (H 2 TiO 3 etc.),
Examples include Ti(OR) 4 (where R=C 2 H 5 or C 3 H 7 , etc.), and any of them can be easily converted into an oxide. The mixing ratio of the active components of the catalyst is about 10:1 to 1:1 by weight of manganese oxide:titanium oxide.
1000, preferably about 5:1 to 1:100. A specific method for preparing the catalyst used in the present invention is shown in each example below, but for example, titanium oxide powder (for example, Wako Pure Chemical Industries, Ltd., Reagent Grade 1) is added to an aqueous solution of manganese sulfate in the above-mentioned proportion, After neutralizing with aqueous ammonia, the moisture is removed on a hot water bath, and after evaporation to dryness or wet molding, it may be fired at 300 to 500°C. Next, as a catalyst carrier, for example, alumina,
Heat-resistant inorganic compounds such as silica, silica-alumina, magnesia, silicon carbide, Kenso earth, pumice, zirconium oxide, cerium oxide, gypsum, aluminum phosphate, and mixtures thereof are used, and the amount supported is The amount varies depending on the type of carrier, type of active ingredient, manufacturing method, etc., but it is usually 3% by weight or more, preferably 10% by weight or more of the catalyst. Next, the exhaust gas to be treated in the present invention should suitably contain oxygen in a ratio of 0.75 mol or more to the ammonia it contains, and either be mixed in this ratio in advance, or be mixed with an appropriate amount during decomposition. The above ratio may be adjusted by supplementing oxygen according to a method. Even if the exhaust gas contains gaseous components such as air, water vapor, CO 2 , N 2 , CO, SOx, NOx, and hydrocarbons, as well as dust components such as phosphorus compounds, sodium chloride, and dust. No problem. The concentration of ammonia in the exhaust gas is 10 mol% or less, preferably 2 mol%, and the reaction temperature during decomposition depends on the catalyst composition, ammonia concentration,
Although it varies slightly depending on oxygen concentration, water vapor concentration, etc.
The temperature is 100-500°C, preferably 200-300°C. In addition, the contact between the exhaust gas to be treated and the catalyst is normally at a space velocity of 500 to 100,000 (converted to standard conditions).
(hr -1 ), preferably 1000 to 50000 (hr -1 ). According to the present invention, ammonia in exhaust gas containing oxygen can be easily and accurately decomposed into harmless nitrogen and water in the gas phase, and in particular, even when 10% or more of water vapor is present during decomposition, excellent high Since it can exhibit high resolution, its industrial usefulness and practicality are extremely large. Next, Examples and Comparative Examples will be shown and more specifically explained, but the present invention is not limited to the following Examples unless the gist thereof is exceeded. Note that the decomposition rate of ammonia was calculated according to the following formula. NH decomposition rate (%) = NH 3 (%) in inlet gas - NH 3 (%) in outlet gas / NH 3 (%) in inlet gas × 100 0 Reaction conditions 1 Reactor type: flow-through fixed catalyst Layer 2 Gas space velocity: 10000hr -1 3 Reaction pressure: Normal pressure 4 Reaction temperature: 200℃, 250℃, 300℃ 5 NH3 analysis method: Indophenol method and acid titration method (JIS-K0099) 6 Reaction exhaust gas composition
【表】
実施例 1
硫酸マンガン〔Mn(NO3)2・4H2O〕47.7部
(重量)を水150部に溶解したのち酸化チタン粉末
(TiO2、和光純薬製造、試薬一級、以下同じ)35
部を加えて均一に懸濁させ、さらに約3Nのアン
モニア水150部を均一加え、湯浴上で撹拌しなが
ら水分をとばして均一なペースト状物を得た。次
に、得られたペースト状物を円柱状に押出し成形
し、約100℃で一夜乾燥したのち、空気流中(500
℃)で3時間焼成して、酸化マンガン/酸化チタ
ン系触媒を得た。
次に、前記排気ガス組成(A)を使用し、前記
反応条件に従い、触媒に接触させて排気ガス中の
含有アンモニアの気相分解を行つた。
試験の結果、反応温度200℃で43%、250℃で99
%、300℃で100%のアンモニアが分解した。
なお、分解反応時に副生したNOxをメーター
〔YANACO 製造(日本)、商品名NOX−
ANALYZER・ECL−7Sで測定した結果、
100ppm以下であつた。
実施例 2
四塩化チタンに硫酸アンモニア水溶液をアンモ
ニア水を加えて調製したTiO2ヒドロゲル(TiO2
として20wt%)225部(重量)に硫酸マンガン
15.9部を加え、撹拌しながら3Nのアンモニア水
50部を滴下した。次いで、湯浴上で水分をとばし
て均一なペースト状物としたのち、実施例1の方
法に準じて酸化マンガン/酸化チタン系触媒を調
製した。
次に、前記排気ガス組成(B)を使用し、前記
反応条件に従い、触媒に接触させて排気ガス中の
含有アンモニアの気相分解を行なつた。
試験の結果、反応温度200℃で98%、250℃で
100%のアンモニア分が分解した。
また、前記排気ガス(A)を使用し、前記と同
様に反応させて、排気ガス中の含有アンモニアの
気相分解を行なつた結果、反応温度250℃で78
%、300℃で100%のアンモニアが分解した。
実施例 3
実施例1で調製したペースト状物を100℃で一
夜乾燥したのち、粉砕して微粉状にした。次いで
微粉末60部(重量)を40部のアルミナ球(5m/
mφ)に転動造粒法でコーテイングしたのち、
500℃で3時間焼成して触媒を得た。
次に、実施例1と同じ反応条件で触媒に接触さ
せて排気ガス中の含有アンモニア(排気ガス組成
A)の気相分解を行つた。
試験の結果、反応温度250℃で98%、300℃で
100%のアンモニアが分解した。
比較例 1
硫酸マンガン15.9部(重量)を水50部に溶解し
たのち、アルミナヒドロゾル(日産化学工業株式
会社製造、商品名A−200,Al2O310wt%)450部
を均一に加え、さらに3Nのアンモニア水60部を
均一に加えてゲル化させたのち、円柱状に湿式成
形した。次いで、100℃で一夜乾燥したのち、500
℃で3時間焼成して、酸化マンガン/酸化アルミ
ニウム系の対照触媒1を得た。
また、前記アルミナヒドロゾル450部の代わり
にシリカヒドロゾル(日産化学工業株式会社製
造、商品名 スノーテツクス−O,SiO220wt
%)225部を均一に加え、以下同様に調製して酸
化マンガン/酸化ケイソ系の対照触媒2を得た。
また、前記アルミナヒドロゾル450部の代わり
に水酸化マグネシウム粉末(和光純薬製造)65.9
部を均一に加え、以下同様に調製して酸化マンガ
ン/酸化マグネシウム系の対照触媒3を得た。
次いで、実施例1と同じ反応条件で各触媒にそ
れぞれ接触させて、排気ガス中の含有アンモニア
(排気ガス組成A)の気相分解を行つた所、対照
触媒1の使用時においては反応温度250℃で0
%、300℃で27%のアンモニアが分解し、また、
対照触媒2の使用時においては反応温度250℃で
12%、300℃で67%のアンモニアが分解し、ま
た、対照触媒3の使用時においては反応温度250
℃で4%、300℃で34%のアンモニアが分解し、
いずれも本発明の触媒使用時に比較して、活性が
低く、著しく劣ることが認められた。
比較例 2
塩化銅(CuCl2)8.5部(重量)を水50部に溶解
したのち、酸化チタン粉末45部を加えて均一に懸
濁させ、さらに3Nのアンモニア水60部を均一に
加え、湯浴上で撹拌しながら水分をとばして均一
なペースト状物を得た。以下、実施例1の方法と
同様に調製して酸化銅/酸化チタン系の対照触媒
4を得た。
また、前記塩化銅8.5部を水50部に溶解する代
わりに、メタバナジン酸アンモニウム
(NH4VO3)9.0部を20%シユウ酸溶液50部に溶解
し、以下同様に調製して酸化バナジウム/酸化チ
タン系の対照触媒5を得た。
また、前記塩化銅8.5部の代わりにモリブテン
酸アンモニウム〔(NH4)6MO7O24・4H2O〕6.1部
を用い、以下同様に調製して酸化モリブテン/酸
化チタン系の対照触媒6を得た。
次いで、実施例1と同じ反応条件で各触媒にそ
れぞれ接触させて、排気ガス中の含有アンモニア
(排気ガス組成A)の気相分解を行なつた所、対
照触媒4の使用時においては反応温度250℃で8
%、300℃で86%のアンモニアが分解し、また、
対照触媒5の使用時においては反応温度250℃で
0%、300℃で10%のアンモニアが分解し、ま
た、対照触媒6の使用時においては反応温度250
℃で0%、300℃で7%のアンモニアが分解し、
いずれも本発明の触媒使用時に比較して活性が低
く、特に250℃において大差を生じ、著しく劣る
ことが認められた。
比較例 3
市販の酸化鉄/酸化クロム系触媒(日産ガード
ラー社製造、商品名G−3L)を10〜20メツシユ
に粉砕したのち、実施例1と同じ反応条件で触媒
に接触させて、排気ガス中の含有アンモニア(排
気ガス組成A)の気相分解を行なつた所、反応温
度250℃で63%、300℃で91%のアンモニアが分解
し、本発明の触媒使用時に比較して活性が低く、
特に250℃において著しく劣ることが認められ
た。[Table] Example 1 47.7 parts (weight) of manganese sulfate [Mn(NO 3 ) 2.4H 2 O] was dissolved in 150 parts of water, and then titanium oxide powder (TiO 2 , Wako Pure Chemical Industries, Ltd., reagent grade 1, the same applies hereinafter) was dissolved in 150 parts of water. )35
150 parts of about 3N ammonia water was added uniformly, and the water was evaporated while stirring on a hot water bath to obtain a uniform paste. Next, the resulting paste was extruded into a cylindrical shape, dried overnight at approximately 100°C, and then heated in an air stream (500°C).
℃) for 3 hours to obtain a manganese oxide/titanium oxide catalyst. Next, using the exhaust gas composition (A) and according to the reaction conditions described above, the ammonia contained in the exhaust gas was brought into contact with a catalyst to perform gas phase decomposition of ammonia contained in the exhaust gas. Test results showed that the reaction temperature was 43% at 200℃ and 99% at 250℃.
%, 100% of ammonia decomposed at 300℃. Note that NOx produced as a by-product during the decomposition reaction can be measured using a meter [manufactured by YANACO (Japan), product name NOX-].
As a result of measurement with ANALYZER・ECL-7S,
It was less than 100ppm. Example 2 TiO 2 hydrogel (TiO 2
as 20wt%) 225 parts (by weight) of manganese sulfate
Add 15.9 parts of 3N ammonia water while stirring.
50 parts were dropped. Next, water was evaporated on a hot water bath to obtain a homogeneous paste, and then a manganese oxide/titanium oxide catalyst was prepared according to the method of Example 1. Next, using the exhaust gas composition (B) and according to the reaction conditions described above, the ammonia contained in the exhaust gas was brought into contact with a catalyst to perform gas phase decomposition of ammonia contained in the exhaust gas. As a result of the test, the reaction temperature was 98% at 200℃ and 250℃.
100% of the ammonia content was decomposed. In addition, using the exhaust gas (A) and reacting in the same manner as described above, the ammonia contained in the exhaust gas was decomposed in the gas phase.
%, 100% of ammonia decomposed at 300℃. Example 3 The paste prepared in Example 1 was dried at 100° C. overnight and then ground into a fine powder. Next, 60 parts (weight) of fine powder was mixed with 40 parts of alumina balls (5m/
mφ) by rolling granulation method,
A catalyst was obtained by calcining at 500°C for 3 hours. Next, under the same reaction conditions as in Example 1, ammonia contained in the exhaust gas (exhaust gas composition A) was decomposed in the gas phase by contacting with a catalyst. As a result of the test, the reaction temperature was 98% at 250℃ and 300℃.
100% of ammonia was decomposed. Comparative Example 1 After dissolving 15.9 parts (weight) of manganese sulfate in 50 parts of water, 450 parts of alumina hydrosol (manufactured by Nissan Chemical Industries, Ltd., trade name A-200, Al 2 O 3 10 wt%) was added uniformly. Further, 60 parts of 3N ammonia water was added uniformly to form a gel, and then wet molded into a cylinder. Next, after drying at 100℃ overnight,
It was calcined at ℃ for 3 hours to obtain a manganese oxide/aluminum oxide based control catalyst 1. In addition, silica hydrosol (manufactured by Nissan Chemical Industries, Ltd., trade name: Snowtex-O, SiO 2 20wt) was used instead of 450 parts of the alumina hydrosol.
%) was uniformly added thereto and prepared in the same manner to obtain a manganese oxide/silica oxide control catalyst 2. Also, instead of 450 parts of the alumina hydrosol, 65.9 parts of magnesium hydroxide powder (manufactured by Wako Pure Chemical Industries, Ltd.)
The catalyst was prepared in the same manner as above to obtain a manganese oxide/magnesium oxide-based control catalyst 3. Next, the ammonia contained in the exhaust gas (exhaust gas composition A) was decomposed in the gas phase by contacting each catalyst under the same reaction conditions as in Example 1. When using the control catalyst 1, the reaction temperature was 250°C. 0 at °C
%, 27% of ammonia decomposes at 300℃, and
When using control catalyst 2, the reaction temperature was 250℃.
12% and 67% of ammonia decomposed at 300℃, and when using control catalyst 3, the reaction temperature was 250℃.
4% of ammonia decomposes at ℃ and 34% at 300℃,
In both cases, it was observed that the activity was lower and significantly inferior to that when the catalyst of the present invention was used. Comparative Example 2 After dissolving 8.5 parts (by weight) of copper chloride (CuCl 2 ) in 50 parts of water, 45 parts of titanium oxide powder was added and suspended uniformly, and then 60 parts of 3N ammonia water was added uniformly, and the mixture was boiled in hot water. Water was evaporated while stirring on the bath to obtain a homogeneous paste. Thereafter, a copper oxide/titanium oxide-based control catalyst 4 was prepared in the same manner as in Example 1. In addition, instead of dissolving 8.5 parts of copper chloride in 50 parts of water, 9.0 parts of ammonium metavanadate (NH 4 VO 3 ) was dissolved in 50 parts of 20% oxalic acid solution, and the same procedure was followed to dissolve vanadium oxide/vanadium oxide. A titanium-based control catalyst 5 was obtained. Further, a control catalyst 6 based on molybten oxide/titanium oxide was prepared in the same manner using 6.1 parts of ammonium molybutate [(NH 4 ) 6 MO 7 O 24 ·4H 2 O] in place of 8.5 parts of copper chloride. Obtained. Next, each catalyst was contacted under the same reaction conditions as in Example 1 to perform gas phase decomposition of ammonia contained in the exhaust gas (exhaust gas composition A). 8 at 250℃
%, 86% of ammonia decomposes at 300℃, and
When using Control Catalyst 5, 0% of ammonia was decomposed at a reaction temperature of 250°C and 10% at 300°C, and when using Control Catalyst 6, ammonia was decomposed at a reaction temperature of 250°C.
Ammonia decomposes at 0% at ℃ and 7% at 300℃,
In both cases, the activity was lower than when the catalyst of the present invention was used, and there was a large difference especially at 250°C, and it was recognized that the activity was significantly inferior. Comparative Example 3 A commercially available iron oxide/chromium oxide catalyst (manufactured by Nissan Girdler, trade name G-3L) was pulverized into 10 to 20 meshes, and then brought into contact with the catalyst under the same reaction conditions as in Example 1 to generate exhaust gas. When the ammonia contained in the catalyst (exhaust gas composition A) was subjected to gas phase decomposition, 63% of the ammonia was decomposed at a reaction temperature of 250°C and 91% at 300°C, and the activity was lower than when using the catalyst of the present invention. low,
In particular, it was observed that the temperature was significantly inferior at 250°C.