JPS6152657B2 - - Google Patents

Info

Publication number
JPS6152657B2
JPS6152657B2 JP58234618A JP23461883A JPS6152657B2 JP S6152657 B2 JPS6152657 B2 JP S6152657B2 JP 58234618 A JP58234618 A JP 58234618A JP 23461883 A JP23461883 A JP 23461883A JP S6152657 B2 JPS6152657 B2 JP S6152657B2
Authority
JP
Japan
Prior art keywords
heating
steam
raw material
heat treatment
granular materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58234618A
Other languages
Japanese (ja)
Other versions
JPS60241859A (en
Inventor
Yoshiro Yamanaka
Sunao Tsukada
Masanori Terayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kikkoman Corp
Original Assignee
Kikkoman Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kikkoman Corp filed Critical Kikkoman Corp
Priority to JP58234618A priority Critical patent/JPS60241859A/en
Publication of JPS60241859A publication Critical patent/JPS60241859A/en
Publication of JPS6152657B2 publication Critical patent/JPS6152657B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Cereal-Derived Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本願発明は穀物、食品、化粧品等の粉粒物質を
加熱処理する方法及び装置に係り、特に該粉粒物
質原料をほぼ大気圧の飽和水蒸気もしくは過熱水
蒸気又はそれらの混合水蒸気を落下させながら加
熱殺菌、あるいは加熱変性等を行うようにした粉
粒物質の落下式加熱処理方法及び装置に関する。 本出願人は粉粒物質原料の処理方法或いは装置
として、先に穀物原料の粒子を分散浮遊させなが
ら加熱処理する「気流加熱方式に依る膨化食品製
造方法及び装置」(特公昭46−34747号、以下気流
式加熱処理方法と称する)「膨化食品の製造装
置」(特公昭45−26695号)を既に提案している。 さらに気流式加熱処理方法の応用として「粉粒
物の加熱殺菌方法」(特開昭56−26180)あるいは
「殺菌装置」(特開昭57−153654)を出願した。 しかし前記装置においては、いずれも原料を加
熱開始から終了まで強制的に気流により加圧下に
て分散浮遊させているため高圧でかつ大型の送風
機を必要とし装置費あるいはランニングコストが
高価であり、又粒子相互の衝突のため例えばパン
粉の如くもろい原料にあつては本来の形状が崩れ
て商品価値が喪失する等の欠点があり必ずしも満
足のいくものではなかつた。 又最近の例として「穀類の熱処理方法及びその
装置」(特開昭57−159463)が挙げられる。この
方法は加熱媒体として高圧空気を使用し穀類をサ
イクロン内にて加熱処理して成る装置であるが、
これによるとサイクロンの内部全体が均一な温度
にならず特に空気の滞留部においては外気により
冷却されて低温化し、サイクロン内部の原料が実
質的に高温の空気と接触する時間が限定され、さ
らには被加熱物質の酸化等があり必ずしも有効な
方法とは云えない。 本発明は上述した従来の問題点を改善すべく成
したものであり、その目的とする処は従来の如く
大型の送風機等を付加することなく簡単な構成
で、且つ原料を破損等することなく、殺菌等の加
熱処理を充分に行うことができる粉粒物質の落下
式加熱処理方法及び装置を提供するにある。 斯る目的を達成すべく本発明に係る処理方法
は、ほぼ大気圧と等しい加熱用水蒸気を筒状加熱
缶内に導くとともに、加熱缶内に原料を投入し、
加熱用水蒸気中を落下せしめるようにしたことを
その要旨とし、また本発明に係る処理装置は上部
に原料投入口を下部に原料回収口を備え且つ大気
に開放されれた筒状缶に、加熱用水蒸気入口パイ
プと熱交換の済んだ水蒸気の回収パイプを接続し
たことをその要旨とする。 以下添付図面に従つて本願をさらに詳細に説明
する。まず第1図に原料の加熱媒体として飽和水
蒸気を用いた実施例について述べる。1は原料を
加熱処理する加熱缶で、その全体的形状は垂直円
筒状である。尚、横断面形状は装置の配置上短形
あるいは多角形でもよいが、後述の如く原料の旋
回運動による滞留時間を考慮すると円形状が最も
適している。加熱缶1の上端部は大気に開放され
ており、その開口2は本実施例においては原料の
入口かつ加熱媒体すなわち飽和水蒸気の出口とな
る。一方加熱缶1の下端部3は、原料のスムーズ
な排出のためロート状に形成することが好まし
い。 そして加熱缶1の下部側面に水蒸気入口パイプ
4が接続され、下端部の垂直方向に原料排出口5
が設けられ、排出口5にはドラフト防止のため原
料の排出バルブ6が設けられている。一方、水蒸
気入口パイプ4は水蒸気供給パイプ7を介してボ
イラーと連通しており、さらに第2図に示す如く
加熱缶1における側面の接線方向から加熱缶1に
接続するのが好ましい。このように構成すること
により飽和水蒸気が加熱缶1内で旋回上昇するた
め原料はその気流により分散浮遊しながら落下す
るので飽和水蒸気との接触時間を長くすることが
でき、さらに分散により接触面積を増大すること
もでき、効果的な加熱処理が可能となる。又、加
熱缶1の高さ及び断面積の大きさについては原料
の種類あるいは粒度に応じて適宜決定すればよ
い。 10は原料を定量的に加熱缶1へ供給するベル
トフイーダで、該加熱缶1の開口2に臨んで設置
されている。 11は加熱缶1の開口2より排出される飽和水
蒸気を補集するための吸引口で、該開口2を覆う
如く配置されておりその吸引は送風機12にて成
される。吸引された飽和水蒸気は大気へ放出され
るが、水あるいは空気と熱交換し排気熱を有効に
利用する方が好ましい。 本願発明は以上のように構成されており、まず
ボイラーで発生した飽和水蒸気は水蒸気入口パイ
プ4を通つて加熱缶1内へ導入される。 一方ホツパー8に貯留されている原料はベルト
フイダー10を通つて加熱缶1内へ供給され、加
熱缶1を分散浮遊しながら自然落下し加熱処理さ
れる。次いで原料は排出バルブ6を通つて外部へ
放出され製品として回収される。以上の加熱処理
の際発生する飽和水蒸気の凝縮水は原料に吸収さ
れるかあるいは製品とともに外部へ放出される。 原料を加熱した飽和水蒸気は上部開口2より排
出され、該部付近での凝縮防止のため必要に応じ
て送風機2にて吸引される。 次に第3図に加熱媒体として過熱水蒸気を用い
た例を示す。本実施例においてスーパーヒーター
(過熱器)13により飽和水蒸気を過熱水蒸気に
して原料を加熱処理する以外は第1図の構成と同
じであり、加熱缶1に流入した過熱水蒸気は原料
を加熱しながら飽和水蒸気に変化し、以後この平
衡状態が保持され、加熱缶1は飽和水蒸気と水蒸
気で充満されることになる。この際過熱水蒸気の
温度をある程度以上に設定すれば、加熱缶1は過
熱水蒸気で満たされることは云うまでもない。こ
のように本願においては加熱媒体として飽和水蒸
気及び過熱水蒸気を利用することができる。 尚、第1図及び第3図で示した水蒸気入口パイ
プ4は水平方向に加熱缶1に接続するようにした
が、若干傾斜させた状態、つまり加熱缶1内に流
入する水蒸気が若干上向きの状態で流入するよう
にしてもよい。このようにすれば加熱缶1内にお
ける加熱水蒸気の旋回に乱れが生じることがな
い。 次に第4図に他の実施例を示す。本実施例は過
熱水蒸気を加熱缶1へ高速度で吹き込みその速度
エネルギーで原料を分散させて熱交換を効果的に
行なわしめる例である。 加熱缶1は上部側面に水蒸気入口パイプ4、下
部側面に水蒸気回収パイプ14、そして上端部に
開口2、下端部に原料排出口5をそれぞれ備えて
成り、開口2に臨んで原料ホツパー8及びそれに
連通する投入バルブ15、一方原料排出口5には
排出バルブ6がそれぞれ設置されている。そして
水蒸気入口パイプ4と回収パイプ14を送風機1
6を介して連通し、過熱水蒸気を循環させる。 本実施例においても水蒸気入口パイプ4は第2
図の如く加熱缶1の外周面に対し接線方向から接
続しており、また原料は加熱缶1の直上部より原
料を供給するよう構成しているため、原料の分散
及び旋回上落下による滞留時間の増加等に関して
有効である。 ところで、水蒸気入口パイプ4は吹き込み過熱
水蒸気が高速度になるように細く、又水蒸気回収
パイプ14は原料を送風機16が吸引しないよう
にその出口径を大にしかつその先端を加熱缶1内
において下方に向けて開口すれば一層効果的であ
る。 さらに本実施例の変更として第5図に示す如
く、落下する原料に対してその下方より上方に向
けて水蒸気を吹き付けるのも原料の分散には有効
である。 次に第6図に示す実施例は、加熱缶1内を大気
圧よりわずかに高圧(数mmAq)にして外気が缶
内へ侵入するのを防止するよう構成した例であ
る。 過熱水蒸気はブロワ16により循環させ、缶1
内の圧力を検出機17で検出しコントローラ18
及び水蒸気供給パイプ7に介装されている制御弁
19にて飽和水蒸気の供給量を調整する。 本実施例においては水蒸気回収パイプ14を開
口2を通して缶1内に挿入している。このように
構成することによつて第4図もしくは第5図にお
ける水蒸気回収パイプ14の缶内水平部20に原
料が付着するのを防止できる。 次に複数の加熱缶を上流から下流に亘つて直列
に配設し原料を2段階に分けて処理する実施例を
第7図及び第8図に示す。 最初に第7図に単一の熱源により2段で原料を
処理する実施例を示す。本実施例において加熱缶
は第1段目(上流側)及び第2段目(下流側)と
も第4図の実施例のものを用い、第2段目の加熱
缶1bにおける開口2bに臨ませてサイクロン2
1及びその原料排出口22に連通させて投入バル
ブ23を設け第2段目の投入装置24を形成す
る。 まず第1段目の加熱缶1aにおける水蒸気回収
パイプ14aと投入装置24とをブロア25を備
えた搬送パイプ26で連結し、このパイプ26の
途中に原料排出口5aから伸びるパイプ26aを
接続する。そしてサイクロン21のガス出口27
と加熱缶1bの水蒸気入口パイプ4bを連通し、
さらに水蒸気出口14bとスーパーヒーター13
をブロワ28を回して連通して循環系を構成し、
加熱缶1aからブロワ25で吸引排出された水蒸
気流により該缶1aである程度加熱された原料を
加熱缶1bへ供給しそこでさらに加熱する実施例
である。 本実施例においては加熱缶1aに附随するスー
パーヒーター13の過熱度により加熱缶1aでは
過熱水蒸気、加熱缶1bでは飽和水蒸気による加
熱も可能である。 本実施例は、加熱缶1の高さに制限があつて、
加熱時間を長くしなければならない時等に有効で
ある。 又加熱缶1bの投入装置24を省略し、ブロワ
25の吐出口と水蒸気入口4bを直接連通して水
蒸気流と共に原料を加熱缶1b内へ導入してもよ
い。 さらに第8図に示す実施例は熱源を異にする例
で加熱缶1aには過熱水蒸気、加熱缶1bには飽
和水蒸気がそれぞれ独立的にブロワ29及び30
により循環して成り、特に第2段目の循環系31
は加熱缶1aで加熱処理された原料を加熱缶1b
へ輸送する手段も兼ねている。 次に第9図に排出バルブを省略した実施例を示
す。本実施例は水蒸気入口パイプ4とは別にもう
一基の水蒸気入口4′を設け、加熱缶1内におけ
るその先端32を原料排出口5に臨ませて開口
し、該排出口5に向けて水蒸気を噴出するよう構
成する。これによりドラフト効果で原料排出口5
より外気が浸入するのを防止でき、排出バルブが
なくても本願の目的を達成することができる。も
ちろん水蒸気入口4と4′を一体化して一基にし
てもよい。 次に第10図及び第11図に原料の分散を効果
的にする実施例について示す。本実施例は破壊し
にくい原料、あるいは破壊してもよい原料に有効
である。 第10図には撹拌機33を加熱缶1の上部に設
けた例を示し、第11図には原料を水蒸気流に乗
せて分散し加熱缶1へ投入バルブ34を介して供
給する例をそれぞれ示す。さらに第11図におい
ては開口2を絞つて小さく形成してあるが、これ
により排気に抵抗が増し加熱缶1内の圧力を上昇
させ外気の流入を防止することができる。 そして次に加熱缶1の他の実施例を第12〜1
5図に示す。 まず第12〜14図に示す実施例は、加熱缶1
における下部の逆円錐状部を方向性をもつた多孔
板35で構成してその外部を覆つて半密閉状の水
蒸気室36を形成し、該蒸気室36に連通して接
線状に水蒸気入口4を設けて成る例である。本実
施により水蒸気入口4を設けて成る例である。本
実施により水蒸気の旋回流が促進される。 次に第15図に示す実施例は、加熱缶1の内部
に同心的に内筒37を設置して、加熱缶1の外壁
38と内筒37で区画されたドーナツツ状の外室
39及び内筒37で区画された内室40が水蒸気
で充満されるように形成して装置の保温を効果的
にし、さらに必要に応じて加熱缶1における水蒸
気の凝縮水を外室39へ導き外部へ排出するよう
構成した例である。本実施例並びに第12図の実
施例により原料と凝縮水を分離し、必要以上に原
料に水分が吸収されるのを防止することができ
る。 ところで本願発明に用いられる粉粒物質原料と
しては特に限定されることはなく大豆、脱脂大
豆、大豆ミール、小麦、大麦、米、玄米、トウモ
ロコシ等の穀類及びそれらの粉粒化物、魚粉、野
菜等の細片、パン粉、デンプン粉、コシヨー、カ
レー粉、香辛料等の食品原料、あるいは薬品又は
薬品原料及びその増量材、さらには飼料や化粧品
原料等が挙げられ、又必要に応じて通常の手段に
より加水された前記原料も用いることができる。 また、加熱処理の条件はまず原料の殺菌処理を
目的とする場合は400℃以下で1〜15秒、好まし
くは300℃以下で2〜5秒間加熱処理する。 一方原料の変性処理を目的とする場合は、原料
として特に穀類を取扱うことが多く450℃以下で
1〜10秒、好ましくは400℃以下で2〜7秒間加
熱処理する。 次に本発明による方法を殺菌装置として応用し
た場合殺菌効果、装置コスト、ランニングコス
ト、さらには製品の破損割合等の点で如何に有効
であるかを従来法(気流式加熱処理方法)との比
較において実験例により以下に示す。 尚、実験は第3図に示す装置にて、又気流式加
熱処理方法は特公昭46−34747号公報に開示され
ている装置にて夫々実施した。 そしてパン粉を加熱処理した場合についてその
処理条件と結果について第1表、第2表及び第1
6図に示す。
The present invention relates to a method and apparatus for heat-treating particulate materials such as grains, foods, cosmetics, etc., and in particular, heat-sterilizes the raw materials of the particulate materials by dropping saturated steam, superheated steam, or mixed steam thereof at approximately atmospheric pressure. The present invention also relates to a method and apparatus for drop-type heat treatment of powder or granular materials for performing thermal denaturation or the like. As a method or apparatus for processing powdery material raw materials, the present applicant has proposed "Method and Apparatus for Producing Puffed Foods Using Air Stream Heating Method" (Japanese Patent Publication No. 46-34747), in which grain raw material particles are first heat-treated while being dispersed and suspended. We have already proposed an apparatus for producing puffed foods (hereinafter referred to as the airflow heat treatment method) (Japanese Patent Publication No. 26695/1983). Furthermore, as an application of the airflow heat treatment method, he applied for a ``method for heat sterilization of powder and granular materials'' (Japanese Patent Laid-Open No. 56-26180) or a ``sterilization device'' (Japanese Patent Laid-Open No. 57-153654). However, in all of the above devices, the raw materials are dispersed and suspended under pressure by forced airflow from the start to the end of heating, which requires a high-pressure and large blower, resulting in high equipment costs and running costs. Due to the mutual collision of particles, for example, in the case of fragile raw materials such as bread crumbs, the original shape is destroyed and the commercial value is lost, and the results are not always satisfactory. A recent example is ``Method and Apparatus for Heat Treatment of Cereals'' (Japanese Unexamined Patent Publication No. 57-159463). This method uses high-pressure air as a heating medium and heat-processes grains in a cyclone.
According to this, the entire interior of the cyclone does not have a uniform temperature, and especially in the air retention area, it is cooled by the outside air and becomes low temperature, and the time that the raw material inside the cyclone comes into contact with the high-temperature air is limited, and furthermore, This method cannot necessarily be said to be effective since it may cause oxidation of the substance to be heated. The present invention was made to improve the above-mentioned conventional problems, and its purpose is to provide a simple structure without adding a large blower or the like as in the conventional method, and without damaging the raw material. The object of the present invention is to provide a method and apparatus for drop-type heat treatment of particulate matter, which can sufficiently perform heat treatment such as sterilization. In order to achieve such an object, the processing method according to the present invention introduces heating steam having a pressure substantially equal to atmospheric pressure into a cylindrical heating can, and introduces a raw material into the heating can,
The gist is that the heating water vapor is allowed to fall through the heating water vapor, and the processing apparatus according to the present invention has a cylindrical can that is equipped with a raw material input port in the upper part, a raw material recovery port in the lower part, and is open to the atmosphere. The gist is that the steam inlet pipe and the steam recovery pipe that has undergone heat exchange are connected. The present application will be described in more detail below with reference to the accompanying drawings. First, an example in which saturated steam is used as the heating medium for the raw material will be described with reference to FIG. 1 is a heating can for heating raw materials, and its overall shape is a vertical cylinder. Note that the cross-sectional shape may be rectangular or polygonal depending on the arrangement of the apparatus, but a circular shape is most suitable in consideration of the residence time due to the swirling movement of the raw material as described later. The upper end of the heating can 1 is open to the atmosphere, and the opening 2 serves as an inlet for the raw material and an outlet for the heating medium, ie, saturated steam, in this embodiment. On the other hand, the lower end 3 of the heating can 1 is preferably formed into a funnel shape for smooth discharge of raw materials. A steam inlet pipe 4 is connected to the lower side of the heating can 1, and a raw material outlet 5 is connected to the vertical direction of the lower end.
A raw material discharge valve 6 is provided at the discharge port 5 to prevent drafts. On the other hand, the steam inlet pipe 4 communicates with the boiler via a steam supply pipe 7, and is preferably connected to the heating can 1 from the tangential direction of the side surface of the heating can 1, as shown in FIG. With this configuration, the saturated steam swirls and rises in the heating can 1, and the raw materials fall while being dispersed and suspended by the air current, so the contact time with the saturated steam can be extended, and furthermore, the contact area can be increased by dispersion. It is also possible to increase the amount of heat, making effective heat treatment possible. Further, the height and cross-sectional area of the heating can 1 may be appropriately determined depending on the type or particle size of the raw material. A belt feeder 10 quantitatively supplies raw materials to the heating can 1, and is installed facing the opening 2 of the heating can 1. Reference numeral 11 denotes a suction port for collecting saturated steam discharged from the opening 2 of the heating can 1, which is disposed so as to cover the opening 2, and the suction is performed by the blower 12. The sucked saturated steam is released into the atmosphere, but it is preferable to exchange heat with water or air to effectively utilize exhaust heat. The present invention is constructed as described above, and first, saturated steam generated in the boiler is introduced into the heating can 1 through the steam inlet pipe 4. On the other hand, the raw material stored in the hopper 8 is supplied into the heating can 1 through the belt feeder 10, and is dispersed and suspended in the heating can 1 while falling naturally and is heated. The raw material is then discharged to the outside through the discharge valve 6 and recovered as a product. The condensed water of saturated steam generated during the above heat treatment is either absorbed by the raw material or released to the outside together with the product. The saturated steam that heated the raw material is discharged from the upper opening 2, and sucked in by the blower 2 as necessary to prevent condensation near the upper opening 2. Next, FIG. 3 shows an example in which superheated steam is used as the heating medium. In this embodiment, the configuration is the same as that shown in FIG. 1 except that the raw material is heated by converting saturated steam into superheated steam using a super heater (superheater) 13, and the superheated steam flowing into the heating can 1 heats the raw material The water changes to saturated water vapor, and thereafter this equilibrium state is maintained, and the heating can 1 is filled with saturated water vapor and water vapor. At this time, it goes without saying that if the temperature of the superheated steam is set above a certain level, the heating can 1 will be filled with the superheated steam. As described above, in the present application, saturated steam and superheated steam can be used as the heating medium. Although the steam inlet pipe 4 shown in FIGS. 1 and 3 is connected to the heating can 1 in a horizontal direction, it is placed at a slight incline, that is, the steam flowing into the heating can 1 is directed slightly upward. It may also be configured to flow in the state. In this way, the swirling of the heated steam in the heating can 1 will not be disturbed. Next, FIG. 4 shows another embodiment. This embodiment is an example in which superheated steam is blown into the heating can 1 at high speed, and the raw material is dispersed by the velocity energy, thereby effectively performing heat exchange. The heating can 1 is equipped with a steam inlet pipe 4 on the upper side, a steam recovery pipe 14 on the lower side, an opening 2 at the upper end, and a raw material outlet 5 at the lower end. A discharge valve 6 is installed at the communicating input valve 15 and at the raw material discharge port 5, respectively. Then, the steam inlet pipe 4 and the recovery pipe 14 are connected to the blower 1.
6 to circulate superheated steam. In this embodiment as well, the water vapor inlet pipe 4 is
As shown in the figure, it is connected tangentially to the outer peripheral surface of the heating can 1, and the raw material is supplied from directly above the heating can 1, so the residence time due to dispersion of the raw material and falling on the rotation is It is effective for increasing the number of people. By the way, the steam inlet pipe 4 is made thin so that the blown superheated steam can reach a high velocity, and the steam recovery pipe 14 has a large outlet diameter so that the blower 16 does not suck in the raw material, and its tip is placed downward in the heating can 1. It is even more effective if the opening is directed towards the Furthermore, as a modification of this embodiment, as shown in FIG. 5, spraying water vapor from below to above the falling raw material is also effective for dispersing the raw material. Next, the embodiment shown in FIG. 6 is an example in which the pressure inside the heating can 1 is slightly higher than atmospheric pressure (several mmAq) to prevent outside air from entering the can. The superheated steam is circulated by the blower 16 and
The pressure inside is detected by the detector 17 and the controller 18
A control valve 19 interposed in the steam supply pipe 7 adjusts the amount of saturated steam supplied. In this embodiment, the water vapor recovery pipe 14 is inserted into the can 1 through the opening 2. With this configuration, it is possible to prevent the raw material from adhering to the horizontal portion 20 inside the can of the steam recovery pipe 14 in FIG. 4 or 5. Next, FIGS. 7 and 8 show an embodiment in which a plurality of heating cans are arranged in series from upstream to downstream to process raw materials in two stages. First, FIG. 7 shows an embodiment in which raw materials are treated in two stages using a single heat source. In this example, both the first stage (upstream side) and the second stage (downstream side) of the heating cans are those of the embodiment shown in Fig. 4, and the heating cans face the opening 2b of the second stage heating can 1b. Te cyclone 2
1 and its raw material discharge port 22, a charging valve 23 is provided to form a second stage charging device 24. First, the steam recovery pipe 14a and the charging device 24 in the first-stage heating can 1a are connected by a conveying pipe 26 equipped with a blower 25, and a pipe 26a extending from the raw material outlet 5a is connected in the middle of this pipe 26. and the gas outlet 27 of the cyclone 21
and the steam inlet pipe 4b of the heating can 1b,
Furthermore, the steam outlet 14b and the super heater 13
is connected by rotating the blower 28 to form a circulation system,
This is an embodiment in which the raw material heated to some extent in the heating can 1a by the steam flow suctioned and discharged from the heating can 1a by the blower 25 is supplied to the heating can 1b and further heated there. In this embodiment, depending on the degree of superheating of the superheater 13 attached to the heating can 1a, it is possible to use superheated steam in the heating can 1a and to use saturated steam in the heating can 1b. In this embodiment, there is a limit on the height of the heating can 1,
This is effective when heating time must be extended. Alternatively, the charging device 24 of the heating can 1b may be omitted, and the discharge port of the blower 25 and the steam inlet 4b may be directly communicated to introduce the raw material together with the steam flow into the heating can 1b. Furthermore, the embodiment shown in FIG. 8 is an example in which the heat sources are different, and superheated steam is supplied to the heating can 1a, and saturated steam is supplied to the heating can 1b by blowers 29 and 30, respectively.
In particular, the second stage circulation system 31
The raw material heat-treated in the heating can 1a is transferred to the heating can 1b.
It also serves as a means of transportation. Next, FIG. 9 shows an embodiment in which the discharge valve is omitted. In this embodiment, another steam inlet 4' is provided in addition to the steam inlet pipe 4, and its tip 32 in the heating can 1 is opened so as to face the raw material discharge port 5, and steam is directed toward the discharge port 5. Configure it to eject. As a result, the raw material discharge port 5 is
Infiltration of outside air can be further prevented, and the object of the present invention can be achieved even without a discharge valve. Of course, the steam inlets 4 and 4' may be integrated into one unit. Next, FIGS. 10 and 11 show examples for effective dispersion of raw materials. This embodiment is effective for materials that are difficult to destroy or materials that can be destroyed. FIG. 10 shows an example in which the stirrer 33 is installed at the top of the heating can 1, and FIG. 11 shows an example in which the raw material is dispersed in a steam flow and supplied to the heating can 1 via the input valve 34. show. Furthermore, in FIG. 11, the opening 2 is narrowed and made small, which increases the resistance to exhaust gas, increases the pressure inside the heating can 1, and prevents the inflow of outside air. Next, other examples of the heating can 1 are shown in 12th to 1st examples.
It is shown in Figure 5. First, in the embodiment shown in FIGS. 12 to 14, the heating can 1
The lower inverted conical portion of the is constructed with a directional perforated plate 35, the outside of which is covered to form a semi-hermetic steam chamber 36, and a steam inlet 4 is connected to the steam chamber 36 tangentially. This is an example in which This is an example in which a water vapor inlet 4 is provided in this embodiment. This implementation promotes the swirling flow of water vapor. Next, in the embodiment shown in FIG. 15, an inner cylinder 37 is installed concentrically inside the heating can 1, and a donut-shaped outer chamber 39 and an inner chamber are partitioned by an outer wall 38 and an inner cylinder 37 of the heating can 1. The inner chamber 40 divided by the cylinder 37 is formed to be filled with water vapor to effectively keep the device warm, and if necessary, the condensed water of the water vapor in the heating can 1 is guided to the outer chamber 39 and discharged to the outside. This is an example of a configuration configured to do so. According to this embodiment and the embodiment shown in FIG. 12, raw material and condensed water can be separated and water can be prevented from being absorbed into the raw material more than necessary. By the way, the granular material raw material used in the present invention is not particularly limited, and may include grains such as soybeans, defatted soybeans, soybean meal, wheat, barley, rice, brown rice, and corn, and their pulverized products, fishmeal, vegetables, etc. Food raw materials such as bread crumbs, starch powder, koshiyo, curry powder, and spices, medicines or pharmaceutical raw materials and their fillers, as well as feed and cosmetic raw materials, etc., and if necessary, by normal means. The raw materials added with water can also be used. The conditions for the heat treatment are such that if the purpose is to sterilize the raw materials, heat treatment is performed at 400° C. or lower for 1 to 15 seconds, preferably at 300° C. or lower for 2 to 5 seconds. On the other hand, when the purpose is to modify raw materials, grains are often used as raw materials, and heat treatment is performed at 450°C or lower for 1 to 10 seconds, preferably at 400°C or lower for 2 to 7 seconds. Next, when the method of the present invention is applied as a sterilization device, we will compare it with the conventional method (airflow heat treatment method) to see how effective it is in terms of sterilization effect, device cost, running cost, and product damage rate. For comparison, an experimental example is shown below. The experiment was carried out using the apparatus shown in FIG. 3, and the airflow heat treatment method was carried out using the apparatus disclosed in Japanese Patent Publication No. 46-34747. Tables 1, 2, and 1 show the processing conditions and results when bread crumbs are heat-treated.
It is shown in Figure 6.

【表】【table】

【表】【table】

【表】 第1表より本発明方法の方が装置コスト、ラン
ニングコストも従来方法に比較してかなり易く、
又殺菌効果についても無圧処理(ゲージ圧力)に
もかかわらず加圧処理の従来方法と実質的にほぼ
同様な効果が得られる。 又第2表及び第16図より明らかな如く本発明
方法によれば原料の破損がほとんどないため、加
熱処理前の原料とほぼ同一の粒度分布を示す。し
かるに一方従来方法である気流式加熱処理方法に
よれば原料の破損のため加熱処理前の原料に比較
して細粒化されている。 次に更に具体的な実施例を示し本願の効果を明
確にする。なお実施例の1〜7は殺菌、8〜9は
加熱変性の例をそれぞれ示す。 実施例 1 厚さ5mmに切断した後凍結乾燥したスライスカ
マボコ(水分;7.5%w/w)を過熱水蒸気が通
気されている加熱缶(内径;600mm、高さ;8
m)へ原料投入口を介して50.0Kg/h)の割合で
供給する。原料を加熱缶にて落下させながら約
2.1秒間過熱処理した後、排出バルブを介して回
収し水分10.4%w/wの製品を得た。 ここで加熱水蒸気の供給量は120Kg/hで、入
口温度は210℃であつた。 実施例 2 フスマ(水分;8.5%w/w、粒度;16メツシ
ユ〜32メツシユ)を飽和水蒸気が通気されている
加熱缶(内径;600mm、高さ;8m)へ投入バル
ブ及び原料投入口を介して60Kg/hの割合で供給
する。原料を加熱缶にて落下させながら約1.6秒
間加熱処理した後、排出口を介して回収し、水分
12.5%w/wの製品を得た。原料中に2.4×104
個/gあつた一般生菌数は1.8×102個/gに減少
した。 本実施例では飽和水蒸気を用いたため、加熱缶
内はほぼ100℃が保持された。又その補給量は80
Kg/hであつた。 実施例 3 パン粉(水分;11.7%w/w、粒度;6メツシ
ユ〜40メツシユ)の加熱水蒸気が通気されている
加熱缶(内径;600mm、高さ;8m)へ原料投入
口を介して50Kg/hの割合で供給する。原料を加
熱缶にて落下させながら約2.1秒間加熱処理した
後排出バルブを介して回収し、水分9.7%w/w
の製品を得た。原料中に1.4×104個/gあつた一
般生菌数は5×10/gに減少し、粒子の破損もな
く良好な製品が得られた。 ここで過熱水蒸気の供給量は50Kg/hで、入口
温度は165℃であつた。 実施例 4 加熱缶(内径;800mm、高さ;12m)上部の接
線方向に設けられた水蒸気入口より加熱水蒸気を
供給して下方より吸引する循環系を形成し、ブロ
ワにより該系内を循環させる。 そして粉末ニンニク(水分;7.1%w/w、粒
度24メツシユ〜60メツシユ)を原料投入口から前
記水蒸気流の直上部より分散させつつ40Kg/hの
割合で供給する。次いで原料を加熱缶にて旋回落
下させながら約2.4秒間加熱処理した後排出バル
ブを介して回収し、水分8.5%w/wの製品を得
た。原料中に4.3×104個/gあつた一般菌数は
3.1×102個/gに減少した。そして原料中の大腸
菌群は全て陰性となつた。 ここで循環系における加熱水蒸気の循環量は
120Kg/hで補給飽和水蒸気量は75Kg/hであつ
た。又その入口温度は355℃、出口温度は220℃で
あつた。 実施例 5 加熱缶(内径;800mm、高さ;12m)上部の接
線方向に設けられた水蒸気入口より加熱水蒸気を
提供して下方より吸引する循環系を形成し、ブロ
ワにより該系内を循環させる。さらに圧力コント
ローラにより水蒸気補給系統を制御し加熱缶内を
3mmAqの微少圧力に保持する。 そして厚さ3mmの輪切りにされた後凍結乾燥さ
れた長ネギ(水分;7.5%)を原料投入口から前
記水蒸気流の直上部より分散させつつ60Kgの割合
で供給する。次いで原料を加熱缶にて旋回落下さ
せながら約2.8秒間加熱処理した後排出バルブを
介して回収し、水分7.7%w/wの製品を得た。
原料中に6.3×104個/gあつた一般菌数は3.0×
10個/gに減少した。 ここで循環系における加熱水蒸気の循環量は
110Kg/hで、補給飽和水蒸気量は65Kg/hであ
つた。又その入口温度は190℃、出口温度は120℃
であつた。 実施例 6 小麦(水分;11.8%w/w、全粒)を加熱水蒸
気が通気されている加熱缶(内径;600mm、高
さ;8m)へ原料投入口を介して130Kg/hの割
合で供給する。原料を加熱缶にて落下させながら
約2.4秒間加熱処理した後排出バルブを介して回
収し、水分12.0w/wの製品を得た。原料中に8.5
×104個/gあつた一般生菌数は2.1×10個/gに
減少した。 ここで加熱水蒸気の供給量は120Kg/gで、入
口温度は180℃、出口温度は142℃であつた。 実施例 7 加工脱脂大豆(水分;10.5%w/w、粒度;12
メツシユ〜48メツシユ)を加熱水蒸気が通気され
ている加熱缶(内径;800mm)へ原料投入口を介
して130Kg/hの割合で供給する。原料を加熱缶
にて落下させながら約2.4秒間加熱処理した後排
出バルブを介して回収し、水分11.4%w/wの製
品を得た。原料中に4.0×104個/gあつた一般生
菌数は2.1×10個/gに減少し、大腸菌群も全て
陽性から陰性となつた。 ここで加熱水蒸気の供給量は130Kg/hで入口
温度は210℃であつた。 実施例 8 本実施例は第7図の2段式装置により行つた。
第1段と第2段の加熱缶及びブロワ等で形成され
る循環系に過熱水蒸気を通気する。 次に粉砕した加工脱脂大豆(水分;10.8%w/
w、粒度;32メツシユ以下)に90℃の熱湯を散水
して水分25%w/wにした後、まず第1段目の加
熱缶(内径;600mm、高さ;8m)へ原料投入口
を介して50Kg/hの割合で供給し約2.1秒間加熱
処理した後、第2段目の加熱缶(内径;800mm、
高さ;12m)へ供給する。該加熱缶にてさらに約
2.7秒間加熱処理した後、排出バルブを介して回
収し、水分22.5w/wの変性加工脱脂大豆を得
た。該脱脂大豆を原料として通常の手段により醤
油を製造して良好な製品を得た。 ここで過熱水蒸気の循環量は150Kg/hで、補
充量は125Kg/hであつた。又その温度はそれぞ
れ第1段目の過熱缶の入口で285℃、出口で217
℃、第2段目の過熱缶の入口で175℃、出口で130
℃であつた。 実施例 9 小麦粉(水分;12.8%w/w)を過熱水蒸気が
通気されている過熱缶(内径;800mm、高さ;12
m)へ原料投入口を介して100Kg/hの割合で供
給する。原料を過熱缶にて落下させながら約2.6
秒間過熱処理した後、排出バルブを介して回収し
水分10.4%w/w、α化度40.1%の変性小麦粉を
得た。 ここで過熱水蒸気の供給は240Kg/hで、入口
温度は350℃、出口温度は210℃であつた。 またα化度は以下の式によつて算出される。 α化度=測定区の糖量/完全α化区の糖量×100(%
) そして具体的な測定方法としては、原料分析で
調整される32メツシユ通過の調製資料を150ml容
三角フラスコ2本に500mgづつ採取し、各々に水
40mlを加えよく撹拌する。一方を測定区として、
測定用緩衝液20mlを加える。他方を完全α化と
し、2N・NaOH5mlを加え、次に1M酢酸16mlを加
える。 37℃恒温槽中で両検液に酵素液5mlを加えて反
応させ、60分後2N・NaOH4mlを加えて反応を停
止する。反応物を100mlメスフラスコの洗い込め
定容とし、No.5Aの濾紙で濾過する。濾液8mlに
ついてBOMOGYI変法により生成糖を定量する。
そして、定量した値を上式に代入してα化度を得
る。 以上に説明した如く本発明によれば、従来に比
べ簡単な構造の装置により、粉粒物質の加熱処理
を容易に行うことができ、従来装置と比較殺菌効
果等も同等以上のものが得られ、また高温の水蒸
気と接触する時間が長くなるので、充分な加熱処
理が行え、特にパン粉の如く形状が崩れることを
きらう原料にあつては、加圧下で強制的に分散浮
遊させないため、加熱処理前と加熱処理後におい
て殆んどその粒度分布が異ならない等多くの効果
を発揮する。
[Table] Table 1 shows that the method of the present invention has significantly lower equipment costs and running costs than the conventional method.
Regarding the sterilization effect, substantially the same effect as the conventional method of pressure treatment can be obtained despite the non-pressure treatment (gauge pressure). Furthermore, as is clear from Table 2 and FIG. 16, according to the method of the present invention, there is almost no damage to the raw material, so that the raw material exhibits almost the same particle size distribution as the raw material before heat treatment. However, according to the conventional air flow heat treatment method, the raw material is broken and the particles are made finer than the raw material before the heat treatment. Next, more specific examples will be shown to clarify the effects of the present application. Examples 1 to 7 show examples of sterilization, and Examples 8 to 9 show examples of heat denaturation. Example 1 Sliced kamaboko (moisture: 7.5% w/w), which was cut to a thickness of 5 mm and freeze-dried, was placed in a heating can (inner diameter: 600 mm, height: 8 mm) through which superheated steam was vented.
m) through the raw material input port at a rate of 50.0 kg/h). While dropping the raw materials in a heating can, approx.
After heating for 2.1 seconds, it was collected through a discharge valve to obtain a product with a moisture content of 10.4% w/w. Here, the amount of heated steam supplied was 120 kg/h, and the inlet temperature was 210°C. Example 2 Bran (moisture: 8.5% w/w, particle size: 16 to 32 mesh) was introduced into a heating can (inner diameter: 600 mm, height: 8 m) through which saturated steam was vented through a valve and raw material input port. It is supplied at a rate of 60Kg/h. After heating the raw material for about 1.6 seconds while dropping it in a heating can, it is collected through the outlet and the water is removed.
A product of 12.5% w/w was obtained. 2.4× 104 in raw material
The number of general viable bacteria/g decreased to 1.8×10 2 cells/g. In this example, since saturated steam was used, the temperature inside the heating can was maintained at approximately 100°C. Also, the supply amount is 80
It was Kg/h. Example 3 Bread crumbs (moisture: 11.7% w/w, particle size: 6 to 40 mesh) were heated at 50 kg/kg through a raw material input port into a heating can (inner diameter: 600 mm, height: 8 m) that was ventilated with heated steam. Supply at a rate of h. The raw material is heated for about 2.1 seconds while falling in a heating can, then collected through a discharge valve, and the moisture content is 9.7% w/w.
products were obtained. The number of general viable bacteria in the raw material, which was 1.4 x 104 /g, was reduced to 5 x 10/g, and a good product was obtained with no particle damage. Here, the amount of superheated steam supplied was 50 kg/h, and the inlet temperature was 165°C. Example 4 A circulation system is formed in which heating steam is supplied from the steam inlet provided in the tangential direction at the top of a heating can (inner diameter: 800 mm, height: 12 m) and sucked from below, and the system is circulated by a blower. . Then, powdered garlic (water content: 7.1% w/w, particle size 24 to 60 mesh) is supplied from the raw material inlet directly above the steam flow at a rate of 40 kg/h while being dispersed. Next, the raw material was heated for about 2.4 seconds while rotating in a heating can, and then recovered through a discharge valve to obtain a product with a moisture content of 8.5% w/w. The general number of bacteria in the raw material was 4.3× 104 /g.
It decreased to 3.1×10 2 pieces/g. All of the coliform bacteria in the raw materials were negative. Here, the amount of heated steam circulating in the circulation system is
The amount of saturated steam supplied was 75 kg/h at 120 kg/h. The inlet temperature was 355°C and the outlet temperature was 220°C. Example 5 A heating can (inner diameter: 800 mm, height: 12 m) A circulation system is formed in which heated steam is provided from the steam inlet provided in the tangential direction at the top and sucked from below, and the system is circulated by a blower. . Furthermore, the steam supply system is controlled by a pressure controller to maintain the inside of the heating can at a minute pressure of 3 mmAq. Then, green onions (moisture content: 7.5%), which have been cut into rounds with a thickness of 3 mm and then freeze-dried, are supplied from the raw material input port directly above the steam flow at a rate of 60 kg while being dispersed. Next, the raw material was heated in a heating can for about 2.8 seconds while rotating and falling, and then recovered through a discharge valve to obtain a product with a moisture content of 7.7% w/w.
The number of general bacteria in the raw material was 6.3× 104 /g, which was 3.0×
It decreased to 10 pieces/g. Here, the amount of heated steam circulating in the circulation system is
110Kg/h, and the amount of saturated steam supplied was 65Kg/h. Also, the inlet temperature is 190℃ and the outlet temperature is 120℃.
It was hot. Example 6 Wheat (moisture: 11.8% w/w, whole grain) was fed at a rate of 130 kg/h through a raw material input port to a heating can (inner diameter: 600 mm, height: 8 m) that was vented with heated steam. do. The raw material was heated for about 2.4 seconds while being dropped in a heating can, and then recovered through a discharge valve to obtain a product with a moisture content of 12.0 w/w. 8.5 in raw materials
The number of general viable bacteria from × 104 cells/g decreased to 2.1×10 cells/g. Here, the amount of heated steam supplied was 120 kg/g, the inlet temperature was 180°C, and the outlet temperature was 142°C. Example 7 Processed defatted soybean (moisture: 10.5% w/w, particle size: 12
~48 mesh) is fed at a rate of 130 kg/h through a raw material input port to a heating can (inner diameter: 800 mm) through which heated steam is vented. The raw material was heated for about 2.4 seconds while falling in a heating can, and then recovered through a discharge valve to obtain a product with a moisture content of 11.4% w/w. The number of general viable bacteria in the raw material, which was 4.0 x 10 4 cells/g, decreased to 2.1 x 10 cells/g, and all coliform bacteria changed from positive to negative. Here, the amount of heated steam supplied was 130 kg/h, and the inlet temperature was 210°C. Example 8 This example was carried out using the two-stage apparatus shown in FIG.
Superheated steam is vented into a circulation system formed by first and second stage heating cans, blowers, etc. Next, crushed processed defatted soybeans (moisture; 10.8% w/
After making the moisture content 25% w/w by sprinkling boiling water at 90℃ on particles (particle size: 32 mesh or less), first insert the raw material inlet into the first stage heating can (inner diameter: 600 mm, height: 8 m). After being heated at a rate of 50 kg/h for about 2.1 seconds, the second heating can (inner diameter: 800 mm,
Height: 12m). Approx. further in the heating can
After heat treatment for 2.7 seconds, the soybeans were collected through a discharge valve to obtain modified defatted soybeans with a water content of 22.5 w/w. Soy sauce was produced using the defatted soybeans as a raw material by conventional means, and a good product was obtained. Here, the circulation rate of superheated steam was 150 kg/h, and the replenishment rate was 125 kg/h. The temperature is 285℃ at the inlet of the first stage superheater and 217℃ at the outlet.
℃, 175℃ at the inlet of the second stage superheater, 130℃ at the outlet
It was warm at ℃. Example 9 Flour (moisture: 12.8% w/w) was placed in a superheated can (inner diameter: 800 mm, height: 12 mm) through which superheated steam was vented.
m) through the raw material input port at a rate of 100 kg/h. Approximately 2.6 hours while dropping the raw material in a superheated can
After heating for seconds, the flour was collected through a discharge valve to obtain modified wheat flour with a water content of 10.4% w/w and a degree of gelatinization of 40.1%. Here, superheated steam was supplied at 240 kg/h, the inlet temperature was 350°C, and the outlet temperature was 210°C. Further, the degree of gelatinization is calculated by the following formula. Degree of gelatinization = Sugar amount in measurement area / Sugar amount in complete gelatinization area x 100 (%
) The specific measurement method is to collect 500 mg of the prepared material that has passed through 32 meshes into two 150 ml Erlenmeyer flasks, and add water to each.
Add 40ml and stir well. One side is the measurement area,
Add 20 ml of measurement buffer. Completely gelatinize the other side, add 5 ml of 2N NaOH, and then add 16 ml of 1M acetic acid. Add 5 ml of enzyme solution to both test solutions in a 37°C constant temperature bath and allow them to react, and after 60 minutes, add 4 ml of 2N NaOH to stop the reaction. Wash the reaction mixture into a 100 ml volumetric flask to a constant volume, and filter through No. 5A filter paper. The amount of sugar produced is determined using 8 ml of the filtrate using a modified BOMOGYI method.
Then, the quantified value is substituted into the above formula to obtain the degree of αization. As explained above, according to the present invention, it is possible to easily heat-treat powdery substances using an apparatus having a simpler structure than conventional apparatuses, and the sterilization effect, etc., is equivalent to or better than that of conventional apparatuses. In addition, since the contact time with high-temperature steam is longer, sufficient heat treatment can be performed.In particular, for raw materials such as bread crumbs that do not want to lose their shape, heat treatment is necessary because they are not forcibly dispersed and suspended under pressure. It exhibits many effects such as almost no difference in particle size distribution before and after heat treatment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す加熱処理装置の
フローシート図、第2図は第1図のA−A線断面
図、第3図〜第6図は他の実施例を示す加熱処理
装置のフローシート図、第7図〜第8図は加熱缶
を2段にした実施例を示すフローシート図、第9
図〜第11図は他の実施例を示す加熱処理装置の
フローシート図、第12図は加熱缶の他の実施例
図、第13図は第12図のB−B線断面図、第1
4図は第13図のC−C線断面図、第15図は加
熱缶の他の実施例図第16図は第2表に対応した
グラフである。 なお図面中1は加熱缶、2は開口、4は水蒸気
入口パイプ、5は原料排出口、6は排出バルブ、
7は水蒸気補充パイプ、13はスーパーヒータ
ー、14は水蒸気出口、15は投入バルブ、18
はコントローラ、19は制御弁である。
Fig. 1 is a flow sheet diagram of a heat treatment apparatus showing an embodiment of the present invention, Fig. 2 is a sectional view taken along the line A-A in Fig. 1, and Figs. 3 to 6 are heat treatment showing other embodiments. Flow sheet diagram of the device, Figures 7 to 8 are flow sheet diagrams showing an embodiment in which the heating cans are arranged in two stages, Figure 9
11 is a flow sheet diagram of a heat treatment apparatus showing another embodiment, FIG. 12 is a diagram of another embodiment of a heating can, FIG. 13 is a sectional view taken along the line B-B in FIG.
FIG. 4 is a sectional view taken along the line CC in FIG. 13, FIG. 15 is a diagram of another embodiment of the heating can, and FIG. 16 is a graph corresponding to Table 2. In the drawing, 1 is a heating can, 2 is an opening, 4 is a steam inlet pipe, 5 is a raw material outlet, 6 is a discharge valve,
7 is a steam replenishment pipe, 13 is a super heater, 14 is a steam outlet, 15 is an input valve, 18
is a controller, and 19 is a control valve.

Claims (1)

【特許請求の範囲】 1 大気に開放された筒状加熱缶内に飽和水蒸気
若しくは過熱水蒸気又はこれらの混合水蒸気を供
給しつつ粉粒物質原料を加熱缶上方から供給し、
この粉粒物質原料を加熱缶内で自然落下せしめて
加熱処理を行い、加熱処理が済んだ粉粒物質原料
を加熱缶下部から排出するようにしたことを特徴
とする粉粒物質の落下式加熱処理方法。 2 前記飽和水蒸気若しくは過熱水蒸気又はこれ
らの混合水蒸気は加熱缶内で旋回するように供給
されることを特徴とする特許請求の範囲第1項記
載の粉粒物質の落下式加熱処理方法。 3 前記加熱缶内に供給された飽和水蒸気若しく
は過熱水蒸気又はこれらの混合水蒸気は回収され
て再び新たな加熱用水蒸気とともに加熱缶内に供
給されることを特徴とする特許請求の範囲第1項
記載の粉粒物質の落下式加熱処理方法。 4 前記缶内に供給される飽和水蒸気若しくは加
熱水蒸気又はこれらの混合水蒸気は大気圧よりも
若干高圧となつていることを特徴とする特許請求
の範囲第1項記載の粉粒物質の落下式加熱処理方
法。 5 前記加熱缶は複数個設けられ、一の加熱缶か
ら回収した水蒸気を粉粒物質原料を他の加熱缶へ
搬送するために利用するようにしたことを特徴と
する特許請求の範囲第1項記載の粉粒物質の落下
式加熱処理方法。 6 上部に粉粒物質原料の投入口を備え、下部に
加熱処理された原料の排出口を備え更に大気に開
放された筒状加熱缶と、この加熱缶の一部に取付
けられる飽和水蒸気若しくは水蒸気又はこれらの
混合水蒸気の入口パイプとからなることを特徴と
する粉粒物質の落下式加熱処理装置。 7 前記缶は円筒状をなし、且つ前記入口パイプ
は缶の側壁に接線方向から結合されていることを
特徴とする特許請求の範囲第6項記載の粉粒物質
の落下式加熱処理装置。 8 前記加熱缶は上端を開口とし、この開口から
水蒸気回収パイプが加熱缶内に垂直に挿入されて
いることを特徴とする特許請求の範囲第6項記載
の粉粒物質の落下式加熱処理装置。 9 前記加熱缶は複数個設けられ、上流側の加熱
缶の水蒸気回収パイプと下流側の原料投入装置と
を送風機を備えた搬送パイプで接続し、この搬送
パイプの途中に上流側の加熱缶の原料排出口から
のパイプを接続したことを特徴とする特許請求の
範囲第6項記載の粉粒物質の落下式加熱処理装
置。 10 前記加熱缶は複数個設けられ、下流側の加
熱缶の水蒸気回収パイプと同じく下流側の原料投
入装置とを送風機を備えた搬送パイプで接続し、
この搬送パイプの途中に上流側の加熱缶の原料排
出口からのパイプを接続したことを特徴とする特
許請求の範囲第6項記載の粉粒物質の落下式加熱
処理装置。
[Scope of Claims] 1. Supplying saturated steam, superheated steam, or mixed steam of these into a cylindrical heating can opened to the atmosphere, and supplying a particulate material raw material from above the heating can;
Dropping type heating of powder and granular materials, characterized in that the powder and granular materials are allowed to fall naturally in a heating can, subjected to heat treatment, and the heat-treated powder and granular materials are discharged from the bottom of the heating can. Processing method. 2. The method for falling heat treatment of granular materials according to claim 1, wherein the saturated steam, superheated steam, or a mixture thereof is supplied in a swirling manner within a heating can. 3. The saturated steam, superheated steam, or mixed steam thereof supplied into the heating can is recovered and supplied again into the heating can together with new heating steam. A falling heat treatment method for powdery and granular materials. 4. Falling heating of granular material according to claim 1, characterized in that the saturated steam, heated steam, or mixed steam thereof supplied into the can is at a pressure slightly higher than atmospheric pressure. Processing method. 5. Claim 1, characterized in that a plurality of heating cans are provided, and the steam recovered from one heating can is used to transport the powdered material raw material to the other heating cans. The falling heat treatment method for powdery material described above. 6. A cylindrical heating can that is equipped with an input port for granular materials at the top and an outlet for heat-treated raw materials at the bottom and is open to the atmosphere, and a saturated steam or water vapor installed in a part of this heating can. or an inlet pipe for mixed steam of these. 7. The falling type heat treatment apparatus for granular materials according to claim 6, wherein the can has a cylindrical shape, and the inlet pipe is tangentially connected to a side wall of the can. 8. The falling-type heat treatment apparatus for powder and granular materials according to claim 6, wherein the heating can has an opening at its upper end, and a steam recovery pipe is vertically inserted into the heating can from this opening. . 9 A plurality of the heating cans are provided, and the steam recovery pipe of the upstream heating can and the raw material input device on the downstream side are connected by a conveying pipe equipped with an air blower, and the heating can of the upstream side is connected in the middle of this conveying pipe. 7. The falling type heat treatment apparatus for granular materials according to claim 6, further comprising a pipe connected to a raw material discharge port. 10 A plurality of the heating cans are provided, and the steam recovery pipe of the heating can on the downstream side and the raw material input device on the downstream side are connected by a conveying pipe equipped with a blower,
7. The drop-type heat treatment apparatus for powder and granular materials according to claim 6, wherein a pipe from a raw material discharge port of a heating can on the upstream side is connected in the middle of the conveying pipe.
JP58234618A 1983-12-13 1983-12-13 Method and apparatus for dropping and heat-treatment of powdery substance Granted JPS60241859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58234618A JPS60241859A (en) 1983-12-13 1983-12-13 Method and apparatus for dropping and heat-treatment of powdery substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58234618A JPS60241859A (en) 1983-12-13 1983-12-13 Method and apparatus for dropping and heat-treatment of powdery substance

Publications (2)

Publication Number Publication Date
JPS60241859A JPS60241859A (en) 1985-11-30
JPS6152657B2 true JPS6152657B2 (en) 1986-11-14

Family

ID=16973863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58234618A Granted JPS60241859A (en) 1983-12-13 1983-12-13 Method and apparatus for dropping and heat-treatment of powdery substance

Country Status (1)

Country Link
JP (1) JPS60241859A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6379567A (en) * 1986-09-24 1988-04-09 Kikkoman Corp Falling heat-treatment apparatus for powdery or granular substance
NL1022547C2 (en) * 2003-01-31 2004-08-03 Tno Method for roasting a food and a food obtainable with the method.
JP2010166855A (en) * 2009-01-22 2010-08-05 Toshihiko Hanai Processing method for long storage of cereal, cereals processed to be storable for long, and processing apparatus for long storage of cereal
JP5757548B2 (en) * 2009-03-30 2015-07-29 国立研究開発法人農業・食品産業技術総合研究機構 Grain seed disinfection device and disinfection method
JP5771443B2 (en) * 2011-05-17 2015-08-26 電気興業株式会社 Superheated steam reactor
JP5927986B2 (en) * 2012-02-28 2016-06-01 株式会社サタケ Cereal pest control device and control method
BR112014032812B1 (en) * 2012-06-29 2021-02-02 Hisaharu Oki process for obtaining rice bran oil from fresh rice bran, and apparatus for obtaining rice bran oil and defatted rice bran from fresh rice bran

Also Published As

Publication number Publication date
JPS60241859A (en) 1985-11-30

Similar Documents

Publication Publication Date Title
US4463022A (en) Method of grinding and cooking whole grain
US4478862A (en) Heat-treatment of cereal
JPS61199819A (en) Heat treatment method and apparatus
US8034298B2 (en) Fluid bed reactors and associated methods
US3500552A (en) Method and apparatus for drying foods
WO2006026752A1 (en) Process for selective grinding and recovery of dual-density foods and use thereof
JPS6152657B2 (en)
EP1814404A1 (en) Process for granulation of low-moisture processed foods and use thereof
JP2904779B1 (en) Granule sterilizer
JPS6225020B2 (en)
JPS6352845A (en) Production of cereal rolled flake and apparatus therefor
GB1567316A (en) Flour milling
EP0094448A1 (en) Method and apparatus for heat-treating powdered, granular and like materials
JP3941903B2 (en) Continuous stirring and sterilizing equipment for powder
JPS62144756A (en) Method and apparatus for removing skin of beam like seed
JPS6247500B2 (en)
EP1733811A1 (en) Process for packaging separation and granulation of processed food content thereof, and products and uses thereof
US4394394A (en) Process for producing dry discrete agglomerated garlic and onion and resulting products
WO2006049828A1 (en) Process for granulation of wet processed foods and use thereof
US4035925A (en) System for treating particulate material with gaseous media
JPS6411274B2 (en)
JP3979738B2 (en) Method and apparatus for sterilization of granular material
JPH08131878A (en) Pulverizing method of shell and pulverizing device therefor
Roberts et al. Application of a continuous centrifugal fluidized bed drier to the preparation of quick‐cooking rice products
JPH11103802A (en) Heat-treatment of powdery particulate substance and device therefor