JPS6152126B2 - - Google Patents

Info

Publication number
JPS6152126B2
JPS6152126B2 JP12949080A JP12949080A JPS6152126B2 JP S6152126 B2 JPS6152126 B2 JP S6152126B2 JP 12949080 A JP12949080 A JP 12949080A JP 12949080 A JP12949080 A JP 12949080A JP S6152126 B2 JPS6152126 B2 JP S6152126B2
Authority
JP
Japan
Prior art keywords
extractive distillation
solvent
column
butadiene
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12949080A
Other languages
Japanese (ja)
Other versions
JPS5754129A (en
Inventor
Masatoshi Arakawa
Taro Okumura
Kazumi Nakazawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP12949080A priority Critical patent/JPS5754129A/en
Priority to BR8105109A priority patent/BR8105109A/en
Priority to MX18867181A priority patent/MX157384A/en
Publication of JPS5754129A publication Critical patent/JPS5754129A/en
Publication of JPS6152126B2 publication Critical patent/JPS6152126B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はナフサクラツキング又は脱水素反応等
の方法で得られたC4又はC5炭化水素混合物から
ブタジエン又はイソプレンを抽出蒸留法により高
純度に分離精製するプロセスに関するものであ
る。更に詳しく云えば一段目にパラフイン類、オ
レフイン類炭化水素を分離除去する為の抽出蒸留
工程を、二段目にブタジエン又はイソプレンより
も相対的に重いアセチレン類、シクロペンタジエ
ン、ジメチルスルフイド等を除去する為の抽出蒸
留工程を有する二段抽出蒸留プロセスに関するも
のである。 ブタジエン又はイソプレンを含むC4又はC5
化水素混合物から高純度のブタジエン又はイソプ
レンを高収率で分離回収する方法としては抽出蒸
留法が広く知られており工業的にも数多く実施さ
れている。そして選択的溶剤としては例えばアセ
トニトリル、ジメチルフオルムアミド、N−メチ
ルピロリドン、フルフラール、アセトン、ジメチ
ルアセトアミド等の極性物質が用いられている。 一段目でパラフイン類及び/又はオレフイン類
を塔頂留出物として除き、二段目で目的とするブ
タジエン又はイソプレンを塔頂留出物として分離
回収する二段抽出蒸留プロセスも広く知られ、工
業的実施例もある。この二段抽出蒸留プロセスは
大別して二種類に分類することが出来る。 一つは、一段目と二段目の抽出蒸留工程が独立
し、各抽出蒸留工程は独立の溶剤分離塔を有して
いるもので、例えばHydrocarbon Processing
Vol.47、No.11、p135〜138にはN−メチルピロリ
ドンを選択溶剤として用いるプロセスが、又同誌
Vol.46、No.5、p166〜168にはジメチルアセトア
ミドを選択溶剤として用いるプロセスが開示され
ている。 このプロセスでは、第一抽出蒸留塔においてブ
タジエンより溶剤との親和力の少いブタン類ブテ
ン類が軽留分として塔頂より留出し、塔底留分は
第一溶剤放散塔に送られる。第一溶剤放散塔の塔
頂よりは炭化水素留分(一部溶剤を含んでいる場
合もある)が留出し、これは第二抽出蒸留塔へ送
られる。一方第一溶剤放散塔の塔底からは炭化水
素を実質的に含まない溶剤が得られ、これは第一
抽出蒸留塔へ循環される。第二抽出蒸留塔の塔頂
からは実質的にアセチレン留分を含まないブタジ
エンが得られ、塔底からはブタジエンより溶剤に
親和力の強いアセチレン類と溶剤の混合溶液が得
られ、これは第二溶剤放散塔へ送られる。第二溶
剤放散塔の塔頂又は側流としてアセチレン類を主
体とした留分が得られ、一方塔底からは炭化水素
を実質的に含まない溶剤が得られ、これは第二抽
出蒸留塔へ循環される。 もう一つは、一段目と二段目の抽出蒸留塔が共
通の溶剤放散塔で結合されているもので、例えば
Hydrocarbon Processing Vol.47、No.11、p135
〜138にはN−メチルピロリドンを選択溶剤とし
て用いるプロセスが、又Chem.Techn.、28.Jg.、
Heft8(Aug.1976)p463〜466にはジメチルフオ
ルムアミドを選択溶剤としたプロセスが、又特開
昭47−34207には選択溶剤としてアセトニトリル
を用いたプロセスが開示されている。 これら後者のプロセスは第一抽出蒸留塔と第二
抽出蒸留塔に供給される選択溶剤は、共通の溶剤
放散塔の塔底から得られるため同質であるのに対
し、前者のプロセスでは一般的には同質ではな
い。 第二抽出蒸留塔においてアセチレン類を十分低
い濃度にした塔頂留分(ブタジエン又はイソプレ
ン)を得る為には該塔に循環供給される溶剤中の
アセチレン留分を十分に低く保つ必要があるが、
第一抽出蒸留塔へ循環される溶剤中のアセチレン
濃度にはそれ程厳しい制約は課せられていない。 一方溶剤放散塔で溶剤と炭化水素を分離する場
合アセチレン類は選択溶剤への親和力がジオレフ
イン類よりも強いため分離が相対的に困難である
が、後者のプロセスでは、第二抽出蒸留塔へ循環
する溶剤のみでなく第一抽出蒸留塔へ循環する溶
剤までも、アセチレン類の濃度を十分に低くした
ものとしている。しかも第一抽出蒸留塔へ循環す
る溶剤の方が、抽出蒸留工程に供給される原料
C4又はC5留分の組成にもよるが、通常第二抽出
蒸留塔へ循環される量に比しかなり多い。 従つて後者のプロセスは、溶剤放散塔を共用す
るというプロセスの簡略化の面で利点を有してい
るものの、溶剤と炭化水素の分離に関して無駄を
していることになり、この点に関しては前者のプ
ロセスの方が優れていることになる。 この様に両プロセスとも欠点を有しているが両
者の欠点を解消したものとして特開昭54−138508
に新しいプロセスが開示されている。このプロセ
スは溶剤放散塔を共用する型の二段抽出蒸留プロ
セスに属するものであるが、第二抽出蒸留塔の塔
底から得られるアセチレン類に富んだ炭化水素と
選択溶剤の混合物の一部をそのまま第一抽出蒸留
塔へ循環し、一部を溶剤放散塔へ送りアセチレン
類を放散することにより第二抽出蒸留塔へ循環す
るアセチレン類の濃度を十分に低くした溶剤を確
保するというものであつて、こうすることにより
前者のプロセスを簡略化すると同時に、第二抽出
蒸留塔へ循環する溶剤(特開昭54−138508の例で
は、全体の約30%をしめる)のみを溶剤放散塔で
処理してやれば良いことになりこの点で後者のプ
ロセスの欠点を克服しているといえる。 しかしながら、このプロセスも大きな欠点を有
していることが明らかになつた。すなわち、この
プロセスでは、溶剤放散塔における炭化水素と溶
剤の分離になお多大のエネルギーを要し、又設備
を要していることである。例えば特開昭54−
138508では還流比を140〜1300として運転するこ
とが示されているが、溶剤放散塔へ供給される流
れ中の炭化水素濃度が低いにしても、この塔での
エネルギー消費量はかなりのものになる。 本発明者らは以上述べた如き従来技術の問題点
を克服すべく鋭意検討を重ねた結果、前記溶剤放
散塔における機能、即ちアセチレン類に富んだ炭
化水素留分と実質的にアセチレン類を含まない溶
剤留分への分離を原料供給段を境に分割し、別々
に運転することで、より合理的なプロセスにし得
ることを見出した。即ち本発明者らは前記溶剤放
散塔におけるアセチレン類に富んだ炭化水素流と
溶剤の分離について詳細に解析した結果、この塔
における分離に必要な還流量を律しているのは原
料供給段より下の回収部であり、原料供給段より
上の濃縮部についてははかるかに少い還流量しか
必要としないという驚くべき事実を見出した。そ
こでこの事実をプロセスの合理化に生かす方途を
種々検討した結果、溶剤放散塔の機能を原料供給
段を境に分割し、回収部の最上部よりの蒸気流の
全部又は濃縮部で必要とする部分を除いた残部を
第二抽出蒸留塔へ戻し、濃縮部をはるかに少い還
流量で運転することによりアセチレン類の分離に
要するエネルギーをプロセス全体から見てほとん
ど無視しうる程度に少くすることを可能にした。
更に濃縮部を回収部と直接継ぐことなく、第二抽
出蒸留塔の回収部の一部を介して継ぐことにより
プロセスの設計上だけでなくプラント運転上の自
由度が増し、より合理的なプロセスにし得ること
も同時に見出した。 本発明はC4留分よりブタジエンを、C5留分よ
りイソプレンを、選択溶剤を用いた第一抽出蒸留
工程及び第二抽出蒸留工程と溶剤放散工程から本
質的に構成される二段抽出蒸留法を用いて分離精
製する方法において、第二抽出蒸留工程で得られ
る少量のアセチレン類炭化水素を含んだ溶剤の一
部を第一抽出蒸留工程に循環するとともに、残り
を溶剤放散工程に送つて本質的にアセチレン類を
含まない溶剤を得、そして該溶剤を第二抽出蒸留
工程へ循環するにあたり溶剤放散塔の機能を原料
供給段を境に分割し溶剤放散塔回収部の最上部よ
りの蒸気流の全部又は濃縮部で必要とする部分を
除いた残部を第二抽出蒸留工程に戻し濃縮部は直
接又は第二抽出蒸留工程を介して間接に回収部と
継ぐことにより、運転に必要なエネルギー量を減
じ、同時に設備費を節減したプロセスを提供する
ことを目的とするものである。 本発明の方法に使用出来る選択溶剤としては、
アセトニトリル、ジメチルフオルムアミド、N−
メチルピロリドン、フルフラール、アセトン、ジ
メチルアセトアミド又はこれらに水を少量加えた
水性混合物等があるが、アセトニトリル、アセト
ンの如き比較的低沸点のものが好適であり、アセ
トニトリル及び水をベースにしたものが更に好ま
しい。アセトニトリル及び水をベースとした溶剤
の例としては例えば特開昭52−33601に開示され
ている様なアリルアルコール、t−ブタノールの
如きアルコール類及び特開昭53−111001に開示さ
れている様なエチレングリコールモノメチルエー
テルの如きグリコール類を添加したものが挙げら
れる。 以下図面により本発明を詳細に説明する。図は
簡明を期する為、説明に特に必要のないポンプ、
熱交換器、容器等は大部分省略し、主要部分のみ
示してある。又、原料の種類によつては以下に示
した工程の前後に前処理工程及び/又は後処理工
程が必要になる場合があるが、これらは本発明の
趣旨とは無関係であるので省略してある。又以下
の各図において第一抽出蒸留塔、第二抽出蒸留
塔、溶剤放散塔の間に熱的結合が行われた場合、
各工程の区分けが必ずしも明確でなくなるので、
図の中に次の記号で示した。 記号 工 程 E 第一抽出蒸留工程 E 第二抽出蒸留工程 S 溶剤放散工程 第1図は溶剤放散工程の回収部と濃縮部が直接
継つている例である。原料炭化水素は導管1によ
り第一抽出蒸留塔2へ供給され、導管3を経て供
給される選択溶剤の存在下で抽出蒸留され塔頂か
らは主としてパラフイン類及びオレフイン類炭化
水素から構成される留分が導管4を経て得られ、
塔底からは主にジオレフイン類及びアセチレン類
から構成される炭化水素と溶剤から成る流れが導
管5を経て得られ、この流れは次の第二抽出蒸留
塔6へ送られる。第二抽出蒸留塔6には導管5の
供給段より上部に設けられた導管7より供給され
る選択溶剤の存在下に抽出蒸留が行われ塔頂より
は本質的にアセチレン類を含まないジオレフイン
が得られる。なおこの工程において原料として
C5留分が使われる場合にはアセチレン類以外に
シクロペンタジエン及びジメチルスルフイド等の
硫黄化合物もイソプレンより分離除去することが
可能である。一方塔6の塔底よりはアセチレン類
炭化水素(原料がC5の場合、前記シクロペンタ
ジエン、ジメチルスルフイド等も含む)を少量含
んだ溶剤の流れが導管9より得られ、一部は導管
3により第一抽出蒸留塔2へ循環され残りは導管
10により溶剤放散塔12へ供給される。溶剤放
散塔12の原料供給段より(原料供給段の付近で
あればよいが、原料供給段が好ましい)蒸気流が
導管11により抜き出され塔6の塔底に供給され
ており塔6の運転に必要な熱量の全部又は一部を
まかなつている。溶剤放散塔12の塔頂からはア
セチレン類炭化水素に富んだ留分(C5の場合前
記シクロペンタジエン、ジメチルスルフイド等も
含む)が導管13を経て留出し、塔底からは本質
的にアセチレン類を含まない溶剤の流れが得られ
これは導管7により第二抽出蒸留塔6へ循環され
る。アセトニトリル系の溶剤の場合、塔12は10
〜30段程度の段数を有しており、塔頂の還流比は
2〜20程度で十分である。 又、第1図において、破線で示した導管14は
第一抽出蒸留工程と第二抽出蒸留工程を熱的に結
合した場合を示したものであり、導管5が塔6に
開口している付近の段(同一段が好ましい)から
蒸気流が塔2の塔底に供給されている。この蒸気
流は塔2の運転に必要な熱量の全部又は一部を供
給しており、全量の場合には塔2の再沸器は不要
になる。 第2図は、第1図における溶剤放散塔の機能を
原料供給段を境に濃縮部と回収部で分割し第二抽
出蒸留工程の回収部を通して間接的に継いだケー
スを示したものである。 第2図において、第一抽出蒸留工程は第1図と
全く同じである(図の場合は1−15,2−1
6,3−17,4−18,5−19が対応す
る)。 第二抽出蒸留塔20には導管19の開口部より
上部に開口した導管21により供給される選択溶
剤の存在下に抽出蒸留が行われ塔頂よりは導管2
2を経て本質的にアセチレン類を含まないジオレ
フインの流れが得られる。塔20の導管19の開
口部より低い位置にある段より導管23により少
量のアセチレン類を含んだ溶剤蒸気流が抜き出さ
れ蒸留塔24の塔底部に供給する。塔24の塔頂
よりはアセチレン類に富んだ流れが導管25を経
て抜き出され、一方塔底よりはアセチレン類炭化
水素含有率の減少した溶剤の流れが導管26より
得られこれは塔30の導管23の開口部又はその
近くの段に戻される。塔20の塔底よりは少量の
アセチレン類炭化水素を含有した溶剤が導管27
を経て得られ一部は導管17を経て第一抽出蒸留
塔16へ循環され、残りは導管28を経て蒸留塔
29の塔頂段に供給される。塔29の塔頂から得
られた蒸気流は導管30により第二抽出蒸留塔2
0の塔底に供給されており、塔20の運転に必要
な熱量の全部又は一部をまかなつている。塔24
及び塔29はそれぞれ5〜10段程度の段を有し、
又塔24の塔頂の還流比は2〜20程度で十分であ
る。 第2図と第1図のプロセスの相違は導管23と
導管30の開口部の間に第二抽出蒸留塔の回収部
の一部が介在していることであり、この段数を変
更することにより、第一抽出蒸留工程へ循環され
る溶剤中のアセチレン類の濃度を第二抽出蒸留工
程と独立に変えることが出来る。溶剤中に含まれ
るアセチレン類は第一抽出蒸留塔の塔頂より一部
留出するので、この流れの中のアセチレン濃度に
制約のある場合には第2図の方法は第1図の方法
よりも好ましいと云える。又第2図において破線
で示した導管31は第一抽出蒸留工程と第二抽出
蒸留工程を熱的に結合した場合を示したものであ
り、導管19が塔20に開口している付近の段
(同一段が好ましい)から蒸気流が塔16の塔底
に供給されている。この蒸気流は塔16の運転に
必要な熱量の全部又は一部を供給しており、全量
供給している場合には、塔16には再沸器は不要
になる。 以上、第1図、第2図の説明において、循環溶
剤は使用中にポリマー等の運転の継続に不都合な
成分が次第に蓄積して来るので、一部を断続的又
は連続的に系外に抜き出して、これら不都合な成
分を除去、精製した後、再び系に戻している。抜
き出す量は、条件により異なるが、通常、循環溶
剤量の0.1〜5%程度である。 次に実施例により、さらに詳細に本発明を説明
する。 実施例 1 第2図の流れに沿つてアセトニトリル−アリル
アルコール−水の混合溶剤(重量比で75:15:
10)を用いてC5留分よりイソプレンを分離精製
する場合について示した。図には示していない
が、ナフサ分解により得られた原料C5留分はあ
らかじめ加熱処理して大部分のシクロペンタジエ
ンを二量化した後、予備濃縮塔で重質分を分離
し、ある程度イソプレンを濃縮した形で116段の
トレイを有する蒸留塔16の下から50段目に導管
15を経て蒸気流として供給された。 塔16,20,24及び29の運転条件は以下
の通りであつた。
The present invention relates to a process for separating and refining butadiene or isoprene to high purity from a C 4 or C 5 hydrocarbon mixture obtained by a method such as naphtha cracking or dehydrogenation using an extractive distillation method. More specifically, the first stage is an extractive distillation process to separate and remove paraffinic and olefinic hydrocarbons, and the second stage is a process for separating and removing acetylenes, cyclopentadiene, dimethyl sulfide, etc., which are relatively heavier than butadiene or isoprene. It relates to a two-stage extractive distillation process with an extractive distillation step for removal. Extractive distillation is widely known as a method for separating and recovering high-purity butadiene or isoprene from a C 4 or C 5 hydrocarbon mixture containing butadiene or isoprene in high yield, and is often practiced industrially. As the selective solvent, polar substances such as acetonitrile, dimethylformamide, N-methylpyrrolidone, furfural, acetone, and dimethylacetamide are used. A two-stage extractive distillation process in which paraffins and/or olefins are removed as an overhead distillate in the first stage, and target butadiene or isoprene is separated and recovered as an overhead distillate in the second stage is also widely known and industrially There are also practical examples. This two-stage extractive distillation process can be broadly classified into two types. One is that the first and second extractive distillation processes are independent, and each extractive distillation process has an independent solvent separation column. For example, Hydrocarbon Processing
Vol.47, No.11, p135-138 describes a process using N-methylpyrrolidone as a selective solvent.
Vol. 46, No. 5, pages 166-168 discloses a process using dimethylacetamide as a selective solvent. In this process, butanes and butenes, which have a lower affinity for solvents than butadiene, are distilled out from the top of the column as light fractions in the first extractive distillation column, and the bottom fraction is sent to the first solvent stripping column. A hydrocarbon fraction (sometimes containing solvent) is distilled from the top of the first solvent stripping column, and is sent to the second extractive distillation column. On the other hand, a solvent substantially free of hydrocarbons is obtained from the bottom of the first solvent stripping column, and is recycled to the first extractive distillation column. Butadiene containing virtually no acetylene fraction is obtained from the top of the second extractive distillation column, and a mixed solution of acetylenes and solvent, which have a stronger affinity for solvents than butadiene, is obtained from the bottom of the column. Sent to the solvent stripping tower. A fraction mainly composed of acetylenes is obtained as the top or side stream of the second solvent stripping column, while a solvent substantially free of hydrocarbons is obtained from the bottom of the column, which is sent to the second extractive distillation column. It is circulated. The other type is one in which the first and second extractive distillation columns are connected by a common solvent stripping column, for example.
Hydrocarbon Processing Vol.47, No.11, p135
~138, a process using N-methylpyrrolidone as a selective solvent is also described in Chem.Techn., 28.Jg.
Heft8 (Aug. 1976) p463-466 discloses a process using dimethylformamide as a selective solvent, and JP-A-47-34207 discloses a process using acetonitrile as a selective solvent. In these latter processes, the selective solvent supplied to the first extractive distillation column and the second extractive distillation column is obtained from the bottom of a common solvent stripping column and is therefore of the same quality, whereas in the former process, the selective solvent is generally are not homogeneous. In order to obtain an overhead fraction (butadiene or isoprene) with a sufficiently low concentration of acetylenes in the second extractive distillation column, it is necessary to keep the acetylene fraction in the solvent circulated to the column sufficiently low. ,
Less stringent constraints are placed on the acetylene concentration in the solvent recycled to the first extractive distillation column. On the other hand, when separating solvents and hydrocarbons in a solvent stripping column, it is relatively difficult to separate acetylenes because they have a stronger affinity for selective solvents than diolefins; however, in the latter process, they are recycled to the second extractive distillation column. The concentration of acetylenes is kept sufficiently low not only in the solvent used but also in the solvent recycled to the first extractive distillation column. Moreover, the solvent that is circulated to the first extractive distillation column is the raw material that is supplied to the extractive distillation process.
Although it depends on the composition of the C 4 or C 5 fraction, it is usually considerably larger than the amount recycled to the second extractive distillation column. Therefore, although the latter process has the advantage of simplifying the process by sharing a solvent stripping column, it is wasteful in separating the solvent and hydrocarbons, and in this respect, the former process This process would be superior. As described above, both processes have drawbacks, but as a method that eliminates the drawbacks of both, Japanese Patent Application Laid-Open No. 54-138508
A new process has been disclosed. This process belongs to a two-stage extractive distillation process that uses a shared solvent stripping column, but a portion of the mixture of acetylene-rich hydrocarbons and selective solvent obtained from the bottom of the second extractive distillation column is The solvent is circulated as it is to the first extractive distillation column, and a portion is sent to the solvent stripping column to diffuse the acetylenes, thereby ensuring that the solvent is circulated to the second extractive distillation column with a sufficiently low concentration of acetylenes. By doing this, the former process is simplified, and at the same time, only the solvent that is circulated to the second extractive distillation column (in the example of JP-A-138508, approximately 30% of the total) is treated in the solvent stripping column. In this respect, it can be said that the drawbacks of the latter process are overcome. However, it has become clear that this process also has major drawbacks. That is, in this process, separation of hydrocarbons and solvent in the solvent stripping tower still requires a large amount of energy and equipment. For example, JP-A-54-
138508 has been shown to operate with a reflux ratio of 140 to 1300, but even though the hydrocarbon concentration in the stream fed to the solvent stripping column is low, the energy consumption in this column is significant. Become. The present inventors have made extensive studies to overcome the problems of the prior art as described above, and as a result, the function of the solvent stripping tower is to combine hydrocarbon fractions rich in acetylenes and hydrocarbon fractions containing substantially acetylenes. It has been found that a more rational process can be achieved by dividing the separation into solvent fractions at the raw material supply stage and operating them separately. That is, as a result of a detailed analysis of the separation of the acetylene-rich hydrocarbon stream and the solvent in the solvent stripping column, the present inventors found that the reflux amount necessary for separation in this column is controlled by the raw material supply stage. The surprising fact has been found that the concentration section, which is the bottom recovery section and above the raw material supply stage, requires a much smaller reflux amount. Therefore, after considering various ways to utilize this fact to streamline the process, we decided to divide the function of the solvent stripping tower by the raw material supply stage, and collect all of the vapor flow from the top of the recovery section or the portion required by the concentration section. By returning the remainder to the second extractive distillation column and operating the concentration section at a much lower reflux rate, the energy required to separate acetylenes can be reduced to an almost negligible level in the overall process. made possible.
Furthermore, by connecting the concentrating section to the recovery section through a part of the recovery section of the second extractive distillation column, the degree of freedom not only in process design but also in plant operation increases, resulting in a more rational process. At the same time, we also discovered what could be done. The present invention is a two-stage extractive distillation process that essentially consists of a first extractive distillation process using a selective solvent, a second extractive distillation process, and a solvent dispersion process using a selective solvent to extract butadiene from the C4 fraction and isoprene from the C5 fraction. In a separation and purification method using a method, a part of the solvent containing a small amount of acetylenic hydrocarbons obtained in the second extractive distillation step is recycled to the first extractive distillation step, and the remainder is sent to the solvent diffusion step. To obtain a solvent that essentially does not contain acetylenes and to circulate the solvent to the second extractive distillation process, the function of the solvent stripping tower is divided at the raw material supply stage, and the steam from the top of the solvent stripping tower recovery section is The entire stream or the remainder except for the part required by the concentrating section is returned to the second extractive distillation process. The objective is to provide a process that reduces volume and at the same time saves equipment costs. Selective solvents that can be used in the method of the present invention include:
Acetonitrile, dimethylformamide, N-
Examples include methylpyrrolidone, furfural, acetone, dimethylacetamide, or aqueous mixtures of these with a small amount of water added, but those with relatively low boiling points such as acetonitrile and acetone are preferred, and those based on acetonitrile and water are even more suitable. preferable. Examples of acetonitrile and water-based solvents include alcohols such as allyl alcohol, t-butanol, as disclosed in JP-A-52-33601, and alcohols such as t-butanol, as disclosed in JP-A-53-111,001. Examples include those to which glycols such as ethylene glycol monomethyl ether are added. The present invention will be explained in detail below with reference to the drawings. For the sake of clarity, the diagram shows pumps that are not particularly necessary for explanation.
Most of the heat exchangers, containers, etc. are omitted, and only the main parts are shown. Also, depending on the type of raw material, a pre-treatment step and/or a post-treatment step may be necessary before or after the steps shown below, but these are omitted as they are unrelated to the purpose of the present invention. be. In addition, in each figure below, if thermal coupling is performed between the first extractive distillation column, the second extractive distillation column, and the solvent stripping column,
Since the division of each process is not necessarily clear,
It is indicated by the following symbol in the figure. Symbol Process E First extractive distillation process E Second extractive distillation process S Solvent dispersion process Figure 1 is an example in which the recovery section and concentration section of the solvent dispersion process are directly connected. Feedstock hydrocarbons are fed through a conduit 1 to a first extractive distillation column 2, where they are extracted and distilled in the presence of a selective solvent fed through a conduit 3, and from the top of the column a distillate consisting mainly of paraffinic and olefinic hydrocarbons is produced. minute is obtained via conduit 4,
A stream consisting of hydrocarbons and solvent, consisting mainly of diolefins and acetylenes, is obtained from the bottom of the column via line 5, which stream is then sent to a second extractive distillation column 6. Extractive distillation is carried out in the second extractive distillation column 6 in the presence of a selective solvent supplied from a conduit 7 provided above the supply stage of the conduit 5, and from the top of the column a diolefin containing essentially no acetylenes is produced. can get. In this process, as a raw material
When a C 5 fraction is used, in addition to acetylenes, sulfur compounds such as cyclopentadiene and dimethyl sulfide can also be separated and removed from isoprene. On the other hand, from the bottom of the column 6, a stream of solvent containing a small amount of acetylenic hydrocarbons (including the aforementioned cyclopentadiene, dimethyl sulfide, etc. when the raw material is C5 ) is obtained from the conduit 9, and some of it is passed through the conduit. 3 to the first extractive distillation column 2, and the remainder is supplied to the solvent stripping column 12 via conduit 10. A vapor stream is extracted from the raw material supply stage of the solvent stripping column 12 (it may be near the raw material supply stage, but preferably the raw material supply stage) through the conduit 11 and is supplied to the bottom of the column 6, thereby controlling the operation of the column 6. All or part of the heat required for this is covered. From the top of the solvent stripping column 12, a fraction rich in acetylenic hydrocarbons (in the case of C5 , it also includes the aforementioned cyclopentadiene, dimethyl sulfide, etc.) is distilled out via a conduit 13, and from the bottom of the column, essentially An acetylene-free solvent stream is obtained which is recycled via line 7 to the second extractive distillation column 6. In the case of acetonitrile-based solvents, column 12 is 10
It has about 30 stages, and a reflux ratio of about 2 to 20 at the top of the column is sufficient. In addition, in FIG. 1, a conduit 14 indicated by a broken line shows the case where the first extractive distillation step and the second extractive distillation step are thermally coupled, and the conduit 14 is located near where the conduit 5 opens into the column 6. A vapor stream is fed to the bottom of column 2 from stages (preferably identical stages). This vapor stream supplies all or part of the heat required for the operation of column 2, in which case the reboiler of column 2 is not required. Figure 2 shows a case in which the function of the solvent stripping column in Figure 1 is divided into a concentration section and a recovery section with the raw material supply stage as the border, and is indirectly inherited through the recovery section of the second extractive distillation process. . In Figure 2, the first extractive distillation process is exactly the same as in Figure 1 (in the case of Figure 1-15, 2-1
6, 3-17, 4-18, 5-19 correspond). Extractive distillation is carried out in the second extractive distillation column 20 in the presence of a selective solvent supplied through a conduit 21 opened above the opening of the conduit 19.
2, a stream of diolefin essentially free of acetylenes is obtained. A solvent vapor stream containing a small amount of acetylenes is withdrawn via conduit 23 from a stage below the opening of conduit 19 of column 20 and fed to the bottom of distillation column 24. From the top of the column 24 an acetylene-enriched stream is withdrawn via line 25, while from the bottom of the column a solvent stream with a reduced acetylenic hydrocarbon content is obtained via line 26, which is transferred to column 30. It is returned to the stage at or near the opening of conduit 23. From the bottom of the column 20, a solvent containing a small amount of acetylenic hydrocarbons flows into the conduit 27.
A portion of the distillate is recycled to the first extractive distillation column 16 via conduit 17, and the remainder is supplied to the top stage of distillation column 29 via conduit 28. The vapor stream obtained from the top of column 29 is transferred via conduit 30 to second extractive distillation column 2.
It is supplied to the bottom of the column 20, and covers all or part of the heat required for the operation of the column 20. tower 24
and tower 29 each have about 5 to 10 stages,
Further, a reflux ratio at the top of the column 24 of about 2 to 20 is sufficient. The difference between the processes in FIG. 2 and FIG. , the concentration of acetylenes in the solvent recycled to the first extractive distillation step can be changed independently from the second extractive distillation step. Acetylene contained in the solvent is partially distilled out from the top of the first extractive distillation column, so if there is a restriction on the acetylene concentration in this stream, the method shown in Figure 2 is more effective than the method shown in Figure 1. can also be said to be preferable. In addition, the conduit 31 indicated by a broken line in FIG. 2 shows the case where the first extractive distillation process and the second extractive distillation process are thermally coupled, and the conduit 31 is connected to a stage near where the conduit 19 opens to the column 20. A vapor stream (preferably the same stage) is fed to the bottom of column 16. This vapor stream supplies all or a portion of the heat required for the operation of column 16, and in the case of full supply, column 16 does not require a reboiler. In the explanation of Figures 1 and 2 above, as the circulating solvent gradually accumulates components that are inconvenient for continued operation, such as polymers, during use, some of the circulating solvent is intermittently or continuously drawn out of the system. After removing and purifying these undesirable components, it is returned to the system. The amount to be extracted varies depending on the conditions, but is usually about 0.1 to 5% of the amount of circulating solvent. Next, the present invention will be explained in more detail with reference to Examples. Example 1 A mixed solvent of acetonitrile-allyl alcohol-water (weight ratio: 75:15:
10) was used to separate and purify isoprene from the C5 fraction. Although not shown in the figure, the raw material C5 fraction obtained from naphtha cracking is heated in advance to dimerize most of the cyclopentadiene, and then the heavy fraction is separated in a preconcentration column, and a certain amount of isoprene is removed. In concentrated form, it was fed as a vapor stream via line 15 to the 50th stage from the bottom of a distillation column 16 having 116 trays. The operating conditions for columns 16, 20, 24 and 29 were as follows.

【表】 塔24への原料供給は塔20の下から20段目よ
り導管23により蒸気流の形で行われ、又塔24
の塔底留分は導管26により塔20の下から20段
目に戻された。 塔16,20及び24には塔頂凝縮器が又塔1
6,20及び29の塔底には再沸器が設けられて
いる。 主な導管の中の流量は次の通りであつた。
[Table] Raw material is supplied to the column 24 in the form of a vapor stream from the 20th stage from the bottom of the column 20 through a conduit 23.
The bottom fraction of the column was returned to the 20th column from the bottom of the column 20 via conduit 26. Columns 16, 20 and 24 have overhead condensers and column 1
Reboilers are provided at the bottoms of columns 6, 20 and 29. The flow rates in the main conduits were:

【表】 ルフイド
[Table] Rufid

【表】 水 〓
[Table] Water 〓

Claims (1)

【特許請求の範囲】[Claims] 1 1・3−ブタジエン(以下ブタジエンと略称
する)又は2−メチル−1・3−ブタジエン(以
下イソプレンと略称する)を含むC4又はC5留分
からブタジエン又はイソプレンを、選択溶剤を用
いたパラフイン類及び/又はオレフイン類炭化水
素の分離を目的とした第一抽出蒸留工程、アセチ
レン類炭化水素の分離を目的とした第二抽出蒸留
工程及び溶剤放散工程から本質的に構成される二
段抽出蒸留法を用いて分離精製する方法におい
て、第二抽出蒸留工程で得られる少量のアセチレ
ン類炭化水素を含んだ溶剤の一部を第一抽出蒸留
工程に循環し、残りを溶剤放散工程に送り、溶剤
放散塔の回収部の最上段よりの蒸気流の全部又は
濃縮部で必要とする部分を除いた残部を第二抽出
蒸留工程に戻し、濃縮部は直接又は第二抽出蒸留
塔を介して間接的に回収部に継ぐことを特徴とす
るブタジエン又はイソプレンの精製方法。
1. Butadiene or isoprene is extracted from the C4 or C5 fraction containing 1,3-butadiene (hereinafter abbreviated as butadiene) or 2-methyl-1,3-butadiene (hereinafter abbreviated as isoprene) using a selective solvent. Two-stage extractive distillation essentially consists of a first extractive distillation step for the purpose of separating hydrocarbons and/or olefins, a second extractive distillation step for the purpose of separating acetylene hydrocarbons, and a solvent dispersion step. In the separation and purification method using a method, a part of the solvent containing a small amount of acetylenic hydrocarbons obtained in the second extractive distillation step is circulated to the first extractive distillation step, and the remainder is sent to the solvent dispersion step to remove the solvent. All of the vapor stream from the top stage of the recovery section of the stripping column or the remainder excluding the part required by the concentration section is returned to the second extractive distillation step, and the concentration section is directly or indirectly passed through the second extractive distillation column. A method for purifying butadiene or isoprene, characterized in that the method is followed by a recovery section.
JP12949080A 1980-09-18 1980-09-18 Purification of butadiene or isoprene Granted JPS5754129A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP12949080A JPS5754129A (en) 1980-09-18 1980-09-18 Purification of butadiene or isoprene
BR8105109A BR8105109A (en) 1980-09-18 1981-08-07 PROCESS FOR THE SEPARATION AND PURIFICATION OF BUTADIENE OR ISOPRENE
MX18867181A MX157384A (en) 1980-09-18 1981-08-10 PROCEDURE FOR THE SEPARATION AND PURIFICATION OF BUTADIENE OR ISOPRENE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12949080A JPS5754129A (en) 1980-09-18 1980-09-18 Purification of butadiene or isoprene

Publications (2)

Publication Number Publication Date
JPS5754129A JPS5754129A (en) 1982-03-31
JPS6152126B2 true JPS6152126B2 (en) 1986-11-12

Family

ID=15010762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12949080A Granted JPS5754129A (en) 1980-09-18 1980-09-18 Purification of butadiene or isoprene

Country Status (3)

Country Link
JP (1) JPS5754129A (en)
BR (1) BR8105109A (en)
MX (1) MX157384A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5879932A (en) * 1981-11-06 1983-05-13 Japan Synthetic Rubber Co Ltd Purification of butadiene or isoprene
JP4134391B2 (en) * 1998-04-07 2008-08-20 日本ゼオン株式会社 Separation and purification apparatus and method for separation and purification of unsaturated hydrocarbons
DE10322655A1 (en) * 2003-05-20 2004-12-09 Basf Ag Process for the recovery of crude 1,3-butadiene from a C4 cut
DE10333756A1 (en) * 2003-07-24 2005-02-17 Basf Ag Process for the separation of a crude C4 cut
JP5010187B2 (en) * 2006-06-15 2012-08-29 中央化工機株式会社 Ethanol distillation method
MY148359A (en) * 2006-07-12 2013-03-29 Basf Se Method for separating a c4 fraction by means of extractive distillation using a selective solvent
DE102010011014A1 (en) * 2010-03-11 2011-09-15 Basf Se Process and apparatus for the distillative recovery of pure 1,3-butadiene from crude 1,3-butadiene

Also Published As

Publication number Publication date
JPS5754129A (en) 1982-03-31
BR8105109A (en) 1982-04-27
MX157384A (en) 1988-11-21

Similar Documents

Publication Publication Date Title
US5310480A (en) Processes for the separation of aromatic hydrocarbons from a hydrocarbon mixture
CN107001189B (en) Extractive distillation for aromatics recovery
EP0004658B1 (en) Acetylenes removal from diolefin streams by extractive distillation
KR101524956B1 (en) Energy conservation in heavy-hydrocarbon distillation
CN102190555B (en) Method for recovering styrene
US4277313A (en) Recovery of 1,3-butadiene
CN111954654B (en) Method for separating aromatic hydrocarbon by extractive distillation
JP2003096470A (en) Method for separating aromatic compound by extractive distillation and mixed solvent used in the method
US5225072A (en) Processes for the separation of aromatic hydrocarbons from a hydrocarbon mixture
US4038156A (en) Butadiene recovery process
JPH0578262A (en) Process for separating butene from butane by extractive distillation
JPS5914514B2 (en) Solvent recovery and recycling method
TWI615378B (en) Flexible butadiene extraction process
US5336840A (en) Process for the separation of aromatic hydrocarbons with energy redistribution
JPS6152126B2 (en)
US3763037A (en) Aromatic hydrocarbon
KR20120037488A (en) Processes and systems for recovery of styrene from a styrene-containing feedstock
US3714034A (en) Process for the separation of aromatic hydrocarbons from a mixed hydrocarbon feedstock
US5139651A (en) Aromatic extraction process using mixed polyalkylene glycol/glycol ether solvents
US5022981A (en) Aromatic extraction process using mixed polyalkylene glycol/glycol ether solvents
US3788980A (en) Process for the separation of aromatic hydrocarbons from a mixed hydrocarbon feedstock
EP0036735B1 (en) Process for producing 1,3-butadiene or 2-methyl-1,3-butadiene of high purity
US2766300A (en) Solvent extraction process
US3779904A (en) Process for the separation of aromatic hydrocarbons from a mixed hydrocarbon feedstock
US5191152A (en) Process for the separation of aromatic hydrocarbons with energy redistribution