JP5010187B2 - Ethanol distillation method - Google Patents

Ethanol distillation method Download PDF

Info

Publication number
JP5010187B2
JP5010187B2 JP2006166336A JP2006166336A JP5010187B2 JP 5010187 B2 JP5010187 B2 JP 5010187B2 JP 2006166336 A JP2006166336 A JP 2006166336A JP 2006166336 A JP2006166336 A JP 2006166336A JP 5010187 B2 JP5010187 B2 JP 5010187B2
Authority
JP
Japan
Prior art keywords
distillation
tower
ethanol
solvent
extraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006166336A
Other languages
Japanese (ja)
Other versions
JP2007332077A (en
Inventor
英明 清川
静男 緑
新吉 伊藤
Original Assignee
中央化工機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中央化工機株式会社 filed Critical 中央化工機株式会社
Priority to JP2006166336A priority Critical patent/JP5010187B2/en
Publication of JP2007332077A publication Critical patent/JP2007332077A/en
Application granted granted Critical
Publication of JP5010187B2 publication Critical patent/JP5010187B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、共沸エタノールから無水エタノールを得るためのエタノール蒸留方法及びそれに好適な蒸留装置に関する。以下の説明で組成を示す「%」は、特に断らない限り、「質量百分率(%)」を意味する。また、減圧の単位を示す「kPa」は、特に断らない限り、「絶対圧」を意味する。 The present invention relates to an ethanol distillation method for obtaining absolute ethanol from azeotropic ethanol and a distillation apparatus suitable for it. “%” Indicating the composition in the following description means “mass percentage (%)” unless otherwise specified. In addition, “kPa” indicating a unit of reduced pressure means “absolute pressure” unless otherwise specified.

本明細書で「共沸エタノール」とは、特に断らない限り、常圧における共沸組成物ばかりでなくそれに近い組成の水(約10%以内)を含むエタノールを言う。   As used herein, “azeotropic ethanol” refers to ethanol containing not only an azeotropic composition at normal pressure but also water having a composition close to that (within about 10%) unless otherwise specified.

炭水化物(澱粉やセルロース)を発酵処理することにより得ることができるエタノールは、バイオエネルギーであり昨今、ガソリン等の代替燃料として着目されている。しかし、燃料として使用する場合は、燃料機関の効率の見地からエタノールは可及的に無水であることが望ましい。しかし、エタノールは水と共沸混合物(共沸エタノール:水約4%)を形成するため通常の蒸留では無水物を得ることはできない。   Ethanol that can be obtained by fermentation treatment of carbohydrates (starch and cellulose) is bioenergy and has recently attracted attention as an alternative fuel such as gasoline. However, when used as a fuel, it is desirable that ethanol be as anhydrous as possible from the viewpoint of the efficiency of the fuel engine. However, since ethanol forms an azeotrope with water (azeotrope ethanol: about 4% water), it is not possible to obtain an anhydride by ordinary distillation.

そこで、共沸エタノール類から蒸留によって無水エタノールを得る場合、1)ペンタンあるいはシクロヘキサンなどの共沸溶剤を用いて共沸蒸留を行う方法や、2)エチレングリコールなどの抽出溶剤を用いて抽出蒸留を行う方法が慣用的に行われている。   Therefore, when anhydrous ethanol is obtained from azeotropic ethanol by distillation, 1) a method of performing azeotropic distillation using an azeotropic solvent such as pentane or cyclohexane, or 2) extractive distillation using an extraction solvent such as ethylene glycol. The method of doing is routinely done.

エタノールと水の2成分が形成する共沸混合物の組成は、常圧においてはエタノール95.6%、水4.4%であり、抽出蒸留法では抽出溶剤の効果により気液平衡を変化させて、エタノールだけを留出させることができる。   The composition of the azeotrope formed by the two components of ethanol and water is 95.6% ethanol at normal pressure and 4.4% water, and the extractive distillation method changes the vapor-liquid equilibrium due to the effect of the extraction solvent. Can be distilled.

図2に先行例の共沸エタノールの抽出蒸留装置の一例を示す。   FIG. 2 shows an example of a conventional azeotropic ethanol extractive distillation apparatus.

当該蒸留装置は、抽出塔(多段常圧蒸留塔)21と溶剤回収塔(多段減圧蒸留塔)23とを備えている。   The distillation apparatus includes an extraction tower (multistage atmospheric distillation tower) 21 and a solvent recovery tower (multistage vacuum distillation tower) 23.

抽出塔21の内部は、それぞれ充填物が充填された6層(6段)の第1・第2・第3・第4・第5・第6充填層211、212、213、214、215、216(第1・2・・・は、塔頂から数えた数字である。:以下同じ)で形成されている。   The inside of the extraction tower 21 has six layers (six stages) of first, second, third, fourth, fifth, and sixth packed layers 211, 212, 213, 214, 215, each filled with a packing. 216 (1st, 2... Are numbers counted from the top of the tower: the same applies hereinafter).

溶剤回収塔23の内部は、それぞれ充填物が充填された3層(3段)の第1・2・第3充填層231、232、233で形成されている。   The inside of the solvent recovery tower 23 is formed of three layers (three stages) of first, second, and third packed layers 231, 232, and 233 each filled with a packing material.

共沸エタノール(原液)Fは、循環される抽出溶剤Sと熱交換器H21で熱交換後、抽出塔21の第4充填層214の上部に位置する一次原料供給口21aに供給され、他方、抽出溶剤Sは、第2充填層212の上部に位置する溶剤供給口21bに供給される。   Azeotropic ethanol (stock solution) F is supplied to the primary raw material supply port 21a located at the upper part of the fourth packed bed 214 of the extraction tower 21 after heat exchange with the circulating extraction solvent S and the heat exchanger H21, The extraction solvent S is supplied to the solvent supply port 21b located above the second packed bed 212.

抽出塔21の塔頂から排出された蒸気は成分の殆どがエタノールであり、凝縮器(コンデンサー)C21によって凝縮されて留出液(無水エタノール)となり、該留出液を抽出塔21の塔頂に部分還流させながら、残りは排出されて無水エタノールとして回収される。抽出塔21は通常、常圧で操作される。   Most of the components of the vapor discharged from the top of the extraction tower 21 are ethanol and are condensed by a condenser (condenser) C21 to form a distillate (anhydrous ethanol). The remainder is discharged while being partially refluxed and recovered as absolute ethanol. The extraction tower 21 is usually operated at normal pressure.

抽出塔21の塔底から排出された缶出液の成分は、水を3〜5%含む抽出溶剤である。この缶出液は、二次原液供給配管27を介して溶剤回収塔23の第2充填層232の上部位置である二次原液供給口23aに供給される。なお、抽出蒸留塔21の加熱は再沸器(リボイラー)R21によって行われる。   The component of the bottoms discharged from the bottom of the extraction tower 21 is an extraction solvent containing 3 to 5% of water. The bottoms are supplied to a secondary stock solution supply port 23 a that is an upper position of the second packed bed 232 of the solvent recovery tower 23 through a secondary stock solution supply pipe 27. The extractive distillation tower 21 is heated by a reboiler R21.

溶剤回収塔23の塔頂から排出される蒸気の成分は殆どが水である。該蒸気凝縮器C23によって凝縮させられて留出液となり、該留出液は、溶剤回収塔23の塔頂に部分還流しながら、残りは水として排出される。溶剤回収塔23の内部は、通常10〜20kPaの減圧に、凝縮器C23に接続された真空配管Vで制御(操作)されるようになっている。 The component of the vapor | steam discharged | emitted from the tower top of the solvent collection | recovery tower 23 is mostly water. It is condensed by the vapor condenser C23 to form a distillate, and the distillate is partially refluxed to the top of the solvent recovery tower 23, and the remainder is discharged as water. The inside of the solvent recovery tower 23 is controlled (operated) by a vacuum pipe V connected to a condenser C23 at a reduced pressure of usually 10 to 20 kPa .

溶剤回収塔23の塔底から排出された缶出液の成分は殆どが抽出溶剤である。この缶出液は、溶剤戻し配管28を介して抽出塔21の原液供給位置に至り、該位置に配された熱交換器H21で原液(共沸エタノール)Fと熱交換された後、抽出塔21の第2充填層212の上部に位置する溶剤供給口21bに抽出溶剤として循環される。溶剤回収塔23の加熱は再沸器(リボイラー)R23によって行われる(例えば、非特許文献1・2参照)。   The components of the bottoms discharged from the bottom of the solvent recovery tower 23 are mostly extraction solvents. The bottoms reach the stock solution supply position of the extraction tower 21 via the solvent return pipe 28, and are heat-exchanged with the stock solution (azeotropic ethanol) F in the heat exchanger H21 arranged at the position, and then the extraction tower. 21 is circulated as an extraction solvent to the solvent supply port 21b located on the upper part of the second packed bed 212. The solvent recovery tower 23 is heated by a reboiler R23 (for example, see Non-Patent Documents 1 and 2).

なお、抽出溶剤としてはエチレングリコール(以下「EG」と略す。)、ジエチレングリコール(以下「DEG」と略す。)のような親水性がきわめて大きくエチルアルコールとの沸点差の大きいグリコール類しか効果はなく、さらに、塩化カルシウムや酢酸カリウムなどのいわゆる脱水作用を奏する塩類と接触させてさらに脱水を完全とすることが好ましいことが公知である。   As extraction solvents, only glycols having extremely high hydrophilicity and a large boiling point difference from ethyl alcohol such as ethylene glycol (hereinafter abbreviated as “EG”) and diethylene glycol (hereinafter abbreviated as “DEG”) are effective. Furthermore, it is known that it is preferable to complete the dehydration by contacting with a salt having a so-called dehydrating action such as calcium chloride or potassium acetate.

ちなみに、各化合物の沸点は、エタノール:約78℃、EG:約198℃、DEG:約245℃である。   Incidentally, the boiling point of each compound is ethanol: about 78 ° C., EG: about 198 ° C., DEG: about 245 ° C.

塩類を用いる場合は、蒸留塔内で結晶が析出して詰まらせないために、EGやDEGに溶かして用いる。その場合、それらの上記の如く沸点は約200℃若しくはそれを超えることになり(塩類を溶解させるとさらに沸点が上昇する。)、抽出塔21の塔底を加熱する再沸器R21は、少なく共200℃をはるかに越える高温高圧スチームあるいは熱媒(通常250〜300℃)を用いなければならない。高温になればなる程は熱損が増大するばかりでなく、EGやDEG等の抽出溶剤の劣化を促進させる。   When salts are used, they are dissolved in EG or DEG so that crystals are not deposited and clogged in the distillation column. In that case, the boiling point thereof is about 200 ° C. or higher as described above (the boiling point further increases when salts are dissolved), and there are few reboilers R21 for heating the bottom of the extraction column 21. Both high-temperature and high-pressure steam or heat medium (usually 250 to 300 ° C.) far exceeding 200 ° C. must be used. The higher the temperature, not only the heat loss increases, but also promotes the deterioration of extraction solvents such as EG and DEG.

実際には、抽出塔21の原液供給位置直下における第4充填層214の下部より抽出溶剤含有液を抜くと、該温度が130〜150℃であるため、ここに再沸器R21Aを付ければ、塔底を加熱する再沸器R21の加熱量を幾分低減させることができる。しかし、根本的な解決にはならない。   Actually, when the extraction solvent-containing liquid is extracted from the lower part of the fourth packed bed 214 immediately below the stock solution supply position of the extraction tower 21, the temperature is 130 to 150 ° C. Therefore, if the reboiler R21A is attached here, The heating amount of the reboiler R21 for heating the column bottom can be somewhat reduced. However, it is not a fundamental solution.

上記問題点を解決するために、抽出塔の底部を高温にせずに済む蒸留装置として、図3に示すような構成の先行例がある。   In order to solve the above problems, there is a prior example of a configuration as shown in FIG. 3 as a distillation apparatus that does not require the bottom of the extraction column to be heated to a high temperature.

本蒸留装置は、主抽出塔(第1蒸留塔)31と抽出補助塔(第2蒸留塔)32と溶剤回収塔(第3蒸留塔)33とを備えている。   The present distillation apparatus includes a main extraction column (first distillation column) 31, an auxiliary extraction column (second distillation column) 32, and a solvent recovery column (third distillation column) 33.

抽出塔31の内部は、それぞれ充填物が充填された4層(4段)の第1・第2・第3・第4充填層311、312、313、314で形成されている。また、抽出補助塔32の内部は、それぞれ充填物が充填された3層(3段)の第1・2・第3充填層321、322、323で形成されている。溶剤回収塔(第3蒸留塔)33の内部は、それぞれ充填物が充填された3層(3段)の第1・2・第3充填層331、332、333で形成されている。   The inside of the extraction tower 31 is formed of four layers (four stages) of first, second, third, and fourth packed layers 311, 312, 313, and 314 each filled with a packing. Further, the inside of the extraction auxiliary tower 32 is formed of three (three stages) first, second, and third packed layers 321, 322, and 323 each filled with a packing. The inside of the solvent recovery column (third distillation column) 33 is formed of three layers (three stages) of first, second, and third packed layers 331, 332, and 333 each filled with a packing material.

共沸エタノール類(原液)Fは、循環される抽出溶剤と熱交換器H31で熱交換後、主抽出塔31の充填層314の上部に位置する一次原液供給口31aに供給される。また、抽出溶剤Sは主抽出塔31の充填層312の上部に位置する溶剤供給口31bに供給される。   The azeotropic ethanol (stock solution) F is supplied to the primary stock solution supply port 31a located above the packed bed 314 of the main extraction tower 31 after exchanging heat with the circulating extraction solvent in the heat exchanger H31. Further, the extraction solvent S is supplied to a solvent supply port 31 b located above the packed bed 312 of the main extraction tower 31.

主抽出塔31の塔頂から排出された蒸気は、凝縮器C31によって凝縮させられて無水エタノールとして留出液となり、該留出液は、主抽出塔31の塔頂に部分還流されながら、残りは無水エタノールとして排出(回収)される。主抽出塔31は通常、常圧で操作される。   The vapor discharged from the top of the main extraction column 31 is condensed by the condenser C31 to become a distillate as absolute ethanol, and the distillate is left as a partial reflux at the top of the main extraction column 31. Is discharged (collected) as absolute ethanol. The main extraction tower 31 is normally operated at normal pressure.

主抽出塔31の塔底から排出された缶出液の成分は、エタノールを0.3%程度、水を10〜15%含む抽出溶剤である。該缶出液は二次原液供給配管36を介して抽出補助塔32の第3充填層323の上部に位置する二次原液供給口32aに供給される。主抽出塔31の塔底温度は150〜160℃で、加熱は再沸器R31によって行われる。   The components of the bottoms discharged from the bottom of the main extraction tower 31 are extraction solvents containing about 0.3% ethanol and 10-15% water. The bottoms are supplied to a secondary stock solution supply port 32 a located above the third packed bed 323 of the auxiliary extraction tower 32 through a secondary stock solution supply pipe 36. The bottom temperature of the main extraction column 31 is 150 to 160 ° C., and the heating is performed by the reboiler R31.

抽出補助塔32の塔頂から排出された蒸気の成分は、エタノールを2%程度含む水である。該蒸気は凝縮器C32によって凝縮されて留出液となり、該留出液は、抽出補助塔32の塔頂に部分還流されながら、エタノールを含むためエタノール含有液戻し配管37を介して主抽出塔31の原液供給口31aに戻される。抽出補助塔32は、通常10〜20kPaの減圧に、凝縮器C32の接続された真空配管Vにより制御される。 The component of the steam discharged from the top of the extraction auxiliary tower 32 is water containing about 2% ethanol. The steam is condensed by a condenser C32 to form a distillate, and the distillate is partially refluxed at the top of the extraction auxiliary column 32 and contains ethanol, so that it contains ethanol, so that the main extraction column passes through an ethanol-containing liquid return pipe 37. 31 is returned to the stock solution supply port 31a. The auxiliary extraction tower 32 is controlled by a vacuum pipe V to which a condenser C32 is connected, usually at a reduced pressure of 10 to 20 kPa .

補助抽出器32の塔底から排出された缶出液は、水を3〜5%含む抽出溶剤であり、3次原液供給配管38を介して溶剤回収塔33の原液供給位置である第2充填層332の上部に位置する3次原液供給口33aに供給される。抽出補助塔32の塔底温度は140〜150℃で、加熱は再沸器R32によって行われる。   The bottoms discharged from the tower bottom of the auxiliary extractor 32 is an extraction solvent containing 3 to 5% of water, and is the second filling that is the stock solution supply position of the solvent recovery tower 33 via the tertiary stock solution supply pipe 38. It is supplied to the tertiary stock solution supply port 33 a located above the layer 332. The bottom temperature of the auxiliary extraction column 32 is 140 to 150 ° C., and the heating is performed by the reboiler R32.

溶剤回収塔33の塔頂から排出された蒸気の成分は殆どが水である。凝縮器C33によって凝縮されて留出液(水)となり、該留出液の一部は溶剤回収塔33の塔頂に還流され、残りは水として排出される。溶剤回収塔33は、通常10〜20kPaの減圧に、凝縮器C33に接続された真空配管Vにより制御される。 Most of the components of the vapor discharged from the top of the solvent recovery tower 33 is water. It is condensed by the condenser C33 to become a distillate (water), a part of the distillate is refluxed to the top of the solvent recovery tower 33, and the rest is discharged as water. The solvent recovery tower 33 is controlled by a vacuum pipe V connected to a condenser C33 at a reduced pressure of usually 10 to 20 kPa .

また、溶剤回収塔33の塔底から排出された缶出液の成分はほとんどが抽出溶剤Sであり、溶剤戻し配管38を介して、抽出塔31の溶剤供給口31bに、原液Fと熱交換器H31により熱交換された後、抽出溶剤Sとして戻される。溶剤回収塔33の塔底温度は150〜160℃で、加熱は再沸器R33によって行われる。   Further, most of the components of the bottoms discharged from the bottom of the solvent recovery tower 33 is the extraction solvent S, and heat exchange with the stock solution F is performed via the solvent return pipe 38 to the solvent supply port 31b of the extraction tower 31. After the heat exchange by the vessel H31, it is returned as the extraction solvent S. The bottom temperature of the solvent recovery tower 33 is 150 to 160 ° C., and the heating is performed by the reboiler R33.

しかし、この抽出塔の底部を高温とせずに無水エタノールを得る蒸留装置・方法においては、抽出塔21の塔底における200℃を越える高温を避けるために、前記主抽出塔31、抽出補助塔32、溶剤回収塔33の3基の蒸留塔を必要とされ、各蒸留塔において加熱及び冷却をそれぞれ繰り返す必要がある。このため、凝縮器C31、C32、C33、再沸器R31、R32、R33、ポンプ等の付帯機器及び計装品を3系列分配設する必要がある。   However, in the distillation apparatus and method for obtaining absolute ethanol without increasing the temperature of the bottom of the extraction tower, the main extraction tower 31 and the auxiliary extraction tower 32 are used in order to avoid a high temperature exceeding 200 ° C. at the bottom of the extraction tower 21. The three distillation columns of the solvent recovery column 33 are required, and it is necessary to repeat heating and cooling in each distillation column. For this reason, it is necessary to arrange three series of auxiliary equipment such as condensers C31, C32, C33, reboilers R31, R32, R33, and pumps, and instrumentation.

したがって、消費されるエネルギーが多くなるだけでなく、蒸留装置のコスト、及びエタノールを蒸留するためのコストが高くなってしまう。   Therefore, not only the consumed energy increases, but also the cost of the distillation apparatus and the cost for distilling ethanol increase.

なお、本発明の特許性に影響を与えるものではないが、特許文献1には、エタノールを飲料用等に適用可能なようにメタノール、フーゼル油等の不純成分を除去するエタノールの蒸留方法及び蒸留装置に係る技術が記載されている。
特開2006−36659号公報 Jiquan Fu著「Simulation of Salt-Containing Extractive Distillation for the System of Ethanol/Water/Ethanediol/KAc.2.Simulation of Salt-Containing Extractive Distillation」 Ind.Eng.Chem.Res.」2004,43,1279-1283、American Chemical Society Jiquan Fu著「Simulation of Salt-Containing Extractive Distillation for the System of Ethanol/Water/Ethanediol/KAc.1. Calculation of the Vapor-Liquid Equilibrium for the Salt-Containing System」Ind.Eng.Chem.Res.2004,43,1274-1278
Although not affecting the patentability of the present invention, Patent Document 1 discloses an ethanol distillation method and distillation for removing impure components such as methanol and fusel oil so that ethanol can be applied to beverages and the like. Techniques related to the apparatus are described.
JP 2006-36659 A Jiquan Fu, “Simulation of Salt-Containing Extractive Distillation for the System of Ethanol / Water / Ethanediol / KAc.2.Simulation of Salt-Containing Extractive Distillation” Ind. Eng. Chem. Res. 2004, 43, 1279-1283, American Chemical Society Jiquan Fu, “Simulation of Salt-Containing Extractive Distillation for the System of Ethanol / Water / Ethanediol / KAc.1. Calculation of the Vapor-Liquid Equilibrium for the Salt-Containing System” Ind. Eng. Chem. Res. 2004, 43, 1274-1278

本発明は、上記にかんがみて、従来の無水エタノールを得る蒸留方法の問題点を解決して、消費されるエネルギーを少なくするとともに、蒸留装置を小型化することができ、蒸留装置のコストとともに無水エタノールの製造コストも低減することができるエタノールの蒸留方法及びそれに適した抽出蒸留装置を提供することを目的とする。   In view of the above, the present invention solves the problems of the conventional distillation method for obtaining absolute ethanol, reduces the energy consumed, and can reduce the size of the distillation apparatus. An object of the present invention is to provide a method for distilling ethanol and an extractive distillation apparatus suitable for it, which can reduce the production cost of ethanol.

本発明者らは、上記課題を解決するために鋭意努力をした結果、下記構成のエタノールの蒸留方法及び抽出蒸留装置に至った。   As a result of diligent efforts to solve the above problems, the present inventors have reached an ethanol distillation method and an extractive distillation apparatus having the following constitution.

常圧における共沸組成のあるいはそれに近い組成の水を含むエタノール(以下、単に「共沸エタノール」という。)に親水性溶剤を添加して抽出蒸留を行って無水エタノールを得るとともに、該抽出蒸留の缶出液を減圧下で溶剤回収蒸留を行って前記親水性溶剤を回収するとともに、該親水性溶剤を循環使用するエタノールの蒸留方法において、
それぞれ多段充填蒸留塔である抽出塔と溶剤回収塔とを組み合わせ、さらに、該溶剤回収塔に一段充填蒸留塔である水分離塔を付設した抽出蒸留装置を用い、
前記溶剤回収蒸留による留出液を、前記抽出蒸留の前記共沸エタノールの供給位置(原液供給口)に戻すとともに、前記溶剤回収蒸留における親水性溶剤と水との分離を、前記溶剤回収塔の回収部から水分離蒸留を介する部分還流により行う、ことを特徴とする。
Ethanol containing water having a composition close to that or the azeotropic composition at normal pressure (hereinafter, simply referred to as. "Azeotropic ethanol") a hydrophilic solvent with obtaining absolute ethanol I row extractive distillation is added to, the extraction In the method for distilling ethanol using a solvent recovery distillation under reduced pressure to recover the hydrophilic solvent, and circulating the hydrophilic solvent,
Combined with an extraction tower and a solvent recovery tower, each of which is a multistage packed distillation tower, and further using an extractive distillation apparatus provided with a water separation tower as a single stage packed distillation tower in the solvent recovery tower,
The distillate obtained by the solvent recovery distillation is returned to the supply position (stock solution supply port) of the azeotropic ethanol in the extractive distillation, and the separation of the hydrophilic solvent and water in the solvent recovery distillation is performed by the solvent recovery tower . from the recovery unit, earthenware pots row by partial reflux through a water separator distillation, it is characterized.

前記親水性溶剤としては、170〜250℃(さらには沸点190〜210℃のグリコール類)の沸点を有するものを使用することが望ましい。沸点が低すぎると親水性溶剤の水との分離が困難となり、沸点が高過ぎると、抽出蒸留の際の塔底加熱温度を高温にする必要があり、熱損失や溶剤の劣化が促進されやすい。   As the hydrophilic solvent, it is desirable to use a solvent having a boiling point of 170 to 250 ° C. (further, glycols having a boiling point of 190 to 210 ° C.). If the boiling point is too low, it becomes difficult to separate the hydrophilic solvent from water. If the boiling point is too high, it is necessary to increase the heating temperature at the bottom of the extractive distillation, which tends to promote heat loss and solvent degradation. .

前記抽出蒸留を常圧下又は40kPa以上の減圧下で行い、前記溶剤回収蒸留を1〜50kPaで前記抽出蒸留より低い減圧下で、さらには、抽出蒸留を40〜100kPaの減圧下で行い、前記分離蒸留を10〜20kPaの減圧下で行うことが望ましい。   The extractive distillation is performed under normal pressure or a reduced pressure of 40 kPa or more, the solvent recovery distillation is performed at a pressure lower than the extractive distillation at 1 to 50 kPa, and further, the extractive distillation is performed under a reduced pressure of 40 to 100 kPa, and the separation is performed. It is desirable to carry out the distillation under a reduced pressure of 10-20 kPa.

抽出蒸留及び溶剤回収蒸留を減圧下で行うことにより、抽出蒸留及び/又は溶剤回収蒸留の際の加熱温度を相対的に低くすることができる。   By performing the extractive distillation and solvent recovery distillation under reduced pressure, the heating temperature during the extractive distillation and / or solvent recovery distillation can be relatively lowered.

前記親水性溶剤として、前記グリコール類に溶解可能な固体乾燥剤(脱水剤)(例えば、酢酸アルカリ塩)を添加したものを使用することが望ましい。共沸組成エタノールの無水化をより確実に行うことができる。   It is desirable to use a hydrophilic solvent to which a solid desiccant (dehydrating agent) that can be dissolved in the glycols (for example, an alkali salt of acetate) is added. Azeotropic composition ethanol can be dehydrated more reliably.

上記各構成のエタノールの蒸留方法に使用する抽出蒸留装置は、下記構成のものが好適に使用できる。なお、当該抽出蒸留装置は、共沸エタノールの抽出蒸留ばかりでなく、他の共沸組成液体にも適用できる。   As the extractive distillation apparatus used in the ethanol distillation methods having the above-described configurations, those having the following configurations can be preferably used. The extractive distillation apparatus can be applied not only to extractive distillation of azeotropic ethanol but also to other azeotropic composition liquids.

共沸組成液体を抽出蒸留するために使用する抽出蒸留装置であって、
再沸器及び凝縮器を備えた一次多段蒸留塔(抽出塔)と、二次多段蒸留塔(溶剤回収塔)と、凝縮器を備えた共沸成分分離塔とを備え、
前記一次多段蒸留塔は、抽出溶剤供給口と一次原液投入口を備え、また、前記二次多段蒸留塔は、二次原液投入口を備え、
前記一次多段蒸留塔の塔底(缶底)と前記二次多段蒸留塔の二次原液供給口が二次原液供給配管で接続され、
前記二次多段蒸留塔の塔底(缶底)と前記一次多段蒸留塔の溶剤供給口とが溶剤戻し配管で接続されるとともに、塔頂と前記一次多段蒸留塔の一次原液供給口とが一次原液含有液戻し配管で接続され、
前記溶剤戻し配管と前記一次原液含有液戻し配管との交差部に該両配管流通液体の熱交換を行う熱交換器が配され、さらに、
前記溶剤回収塔の回収部と共沸成分分離塔との間を還流配管で接続されていることを特徴とする抽出蒸留装置。
An extractive distillation apparatus used for extractive distillation of an azeotropic composition liquid,
A primary multistage distillation column (extraction column) equipped with a reboiler and a condenser, a secondary multistage distillation column (solvent recovery column), and an azeotropic component separation column equipped with a condenser,
The primary multistage distillation column is provided with an extraction solvent supply port and a primary stock solution inlet, and the secondary multistage distillation column is provided with a secondary stock solution inlet,
The bottom of the primary multistage distillation column (can bottom) and the secondary stock solution supply port of the secondary multistage distillation column are connected by a secondary stock solution supply pipe,
The column bottom (can bottom) of the secondary multistage distillation column and the solvent supply port of the primary multistage distillation column are connected by a solvent return pipe, and the column top and the primary stock solution supply port of the primary multistage distillation column are primary. It is connected with the stock solution-containing liquid return pipe,
A heat exchanger that performs heat exchange of the fluid flowing through both pipes is disposed at an intersection between the solvent return pipe and the primary stock solution-containing liquid return pipe, and
An extractive distillation apparatus characterized in that a recovery pipe of the solvent recovery tower and an azeotropic component separation tower are connected by a reflux pipe.

上記構成において、前記二次多段蒸留塔及び前記共沸成分分離塔の各凝縮器は真空配管と接続されていることが望ましい。前述の減圧蒸留をすることができるためである。   In the above configuration, each condenser of the secondary multistage distillation column and the azeotropic component separation column is preferably connected to a vacuum pipe. This is because the aforementioned vacuum distillation can be performed.

前記一次多段蒸留塔及び前記二次多段蒸留塔の各内部が、それぞれ複数段の充填層で形成されて、さらには、前記共沸成分分離塔の内部が一段の充填層で形成されていることが望ましい。圧力損失を小さくでき、塔底の温度上昇を相対的に抑制できる。   Each interior of the primary multistage distillation column and the secondary multistage distillation column is formed of a plurality of packed beds, and further, the interior of the azeotropic component separation column is formed of a single packed bed. Is desirable. Pressure loss can be reduced and the temperature rise at the bottom of the tower can be relatively suppressed.

本発明によれば、無水エタノールを得る蒸留方法においては、含水エタノールから無水エタノールを得るために、抽出塔(常圧蒸留塔)と溶剤回収塔(減圧蒸留塔)とを組合わせ、さらに、該溶剤回収塔に一段充填蒸留塔である水分離塔を付設した抽出蒸留装置を使用する。 According to the present invention, in the distillation method for obtaining anhydrous ethanol, in order to obtain anhydrous ethanol from hydrous ethanol, an extraction tower (atmospheric distillation tower) and a solvent recovery tower (vacuum distillation tower) are combined, An extractive distillation apparatus is used in which a water separation tower which is a one-stage packed distillation tower is attached to the solvent recovery tower .

この場合、従来の3基の蒸留塔に対して、2基の蒸留塔を配設するだけでよく、しかも付帯機器及び計装品を2系列分配設するだけでよい。したがって、消費されるエネルギーを少なくすることができるだけでなく、蒸留装置を小型化することができ、蒸留装置のコスト、及びエタノールを蒸留するためのコストを低くすることができる。   In this case, it is only necessary to provide two distillation columns with respect to the conventional three distillation columns, and it is only necessary to provide two lines of incidental equipment and instrumentation. Therefore, not only can the consumed energy be reduced, but the distillation apparatus can be reduced in size, and the cost of the distillation apparatus and the cost for distilling ethanol can be reduced.

また、所定沸点の親水性溶剤(特に、グリコール類)を抽出溶剤として用いて共沸エタノールの抽出蒸留を行った場合、従来のペンタンあるいはシクロヘキサンなどの共沸溶剤を用いて共沸蒸留を行う方法と比較して、消費エネルギーを30%程度少なくすることが可能となる。   In addition, when an azeotropic ethanol extractive distillation is performed using a hydrophilic solvent (particularly glycols) having a predetermined boiling point as an extraction solvent, a conventional azeotropic distillation using an azeotropic solvent such as pentane or cyclohexane Compared to the above, energy consumption can be reduced by about 30%.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

図1に本発明の一実施形態における蒸留装置を示す。ここでは、各多段蒸留塔(精留塔)及び水分離塔いずれも充填塔としたが、包鐘塔や多孔板塔(目皿板塔)等の棚段塔であってもよい。なお、各充填塔に使用する充填剤は、規則充填物、不規則充填物を問わず、ラシヒリング、ペルサドル、マクマホン、キャノン、ステッドマン等の慣用のものを使用できる。   FIG. 1 shows a distillation apparatus in one embodiment of the present invention. Here, each of the multistage distillation tower (rectification tower) and the water separation tower is a packed tower, but it may be a plate tower such as a bell tower or a perforated plate tower (eye plate tower). In addition, as for the packing material used for each packed tower, regardless of regular packing or irregular packing, conventional materials such as Raschig ring, Persaddle, McMahon, Canon, Stedman and the like can be used.

抽出塔(多段常圧蒸留塔)11、溶剤回収塔(多段減圧蒸留塔)13及び水分離塔(共沸成分分離塔)15を備えている。なお、抽出塔11も減圧蒸留可能に凝縮器C11に真空配管を接続させてもよい。   An extraction tower (multistage atmospheric distillation tower) 11, a solvent recovery tower (multistage vacuum distillation tower) 13, and a water separation tower (azeotropic component separation tower) 15 are provided. In addition, you may connect a vacuum piping to the condenser C11 so that the extraction tower 11 can also be distilled under reduced pressure.

抽出塔11の内部は、充填物がそれぞれ充填された4層(4段)の充填層111〜114で形成されている。この抽出塔11においては、第2充填層112の上部に抽出溶剤供給口11bが、第4充填層114の上部に一次原液供給口11aがそれぞれ位置している。こうして、第1充填層111によって濃縮部が、第2・3充填層112、113によって溶剤抽出部が、第4充填層114によって回収部が形成されている。   The inside of the extraction tower 11 is formed of four layers (four stages) of packed beds 111 to 114 each filled with a packing. In the extraction tower 11, the extraction solvent supply port 11 b is positioned above the second packed bed 112, and the primary stock solution supply port 11 a is positioned above the fourth packed bed 114. Thus, the first packed bed 111 forms a concentrating part, the second and third packed beds 112 and 113 form a solvent extraction part, and the fourth packed bed 114 forms a recovery part.

溶剤回収塔13の内部は、充填物がそれぞれ充填された4層(4段)の充填層131〜134で形成されている。この溶剤回収塔13においては、第3充填層133の上部に二次原液供給口13aが位置している。こうして、第1・2充填層131、132によって濃縮部が、第3・4充填層133〜134によって回収部が形成されている。   The inside of the solvent recovery tower 13 is formed of four layers (four stages) of packed layers 131 to 134 each filled with a packing. In the solvent recovery tower 13, the secondary stock solution supply port 13 a is located above the third packed bed 133. Thus, the first and second packed beds 131 and 132 form a concentrating portion, and the third and fourth packed beds 133 to 134 form a collecting portion.

水分離塔15の内部は、充填物が充填された単層の充填層151で形成されている。この水分離塔15においては、充填層151の下部に三次原液供給口15が位置している。   The interior of the water separation tower 15 is formed of a single packed bed 151 filled with a packing. In the water separation tower 15, the tertiary stock solution supply port 15 is located below the packed bed 151.

そして、抽出塔11の底部と溶剤回収塔13の二次原液供給口13aとは二次原液供給配管17で接続されて、溶剤回収塔13に抽出塔11からの一次缶出液を供給可能となっている。   And the bottom part of the extraction tower 11 and the secondary stock solution supply port 13a of the solvent recovery tower 13 are connected by a secondary stock solution supply pipe 17, so that the primary bottom liquid from the extraction tower 11 can be supplied to the solvent recovery tower 13. It has become.

溶剤回収塔13の底部と抽出塔11との溶剤供給口は溶剤戻し配管18で接続され、抽出塔11に溶剤回収塔13からの缶出液を戻し可能となっている。   A solvent supply port between the bottom of the solvent recovery tower 13 and the extraction tower 11 is connected by a solvent return pipe 18 so that the bottoms from the solvent recovery tower 13 can be returned to the extraction tower 11.

また、溶剤回収塔13の塔頂と抽出塔11の一次原料供給口11aは、エタノール含有液戻し配管19で接続されて、溶剤回収塔13の留出液を抽出塔11に戻し可能とされている。   The top of the solvent recovery tower 13 and the primary raw material supply port 11a of the extraction tower 11 are connected by an ethanol-containing liquid return pipe 19 so that the distillate from the solvent recovery tower 13 can be returned to the extraction tower 11. Yes.

さらに、溶剤回収塔13の第3充填層133の下部と水分離塔15の底部(充填層151の下部)とは還流配管20A、20Bで接続され、溶剤回収塔13の回収部を流下する水含有溶剤から水成分を減圧分離可能とされている。   Furthermore, the lower part of the third packed bed 133 of the solvent recovery tower 13 and the bottom of the water separation tower 15 (lower part of the packed bed 151) are connected by reflux pipes 20A and 20B, and the water flowing down the recovery part of the solvent recovery tower 13 The water component can be separated from the contained solvent under reduced pressure.

共沸点エタノールFは、循環される抽出溶剤Sと熱交換器H11で熱交換後、抽出塔111における最下段の第4充填層114の上部に供給される。また、抽出溶剤Sは抽出塔11の第2充填層112の上部に供給される。   The azeotropic ethanol F is supplied to the upper part of the lowermost fourth packed bed 114 in the extraction tower 111 after exchanging heat between the circulating extraction solvent S and the heat exchanger H11. The extraction solvent S is supplied to the upper part of the second packed bed 112 of the extraction tower 11.

ここで、抽出溶剤としては、親水性が高くかつエタノールとの沸点差が大きいグリコール類(沸点170〜250℃)を好適に使用でき、さらには、エチレングリコール(EG)やジエチレングリコールが好適に使用できる。これらのグリコール類には、脱水作用を有しエタノールと反応しない固体乾燥剤、たとえば、塩化カルシウム、無水酢酸アルカリ塩(ナトリウム塩、カリウム塩)などを添加溶解させてもよい。特に、固体乾燥剤の添加量は、たとえば、EGと無水酢酸アルカリ塩との組み合わせの場合、5〜50%とする。    Here, as the extraction solvent, glycols having a high hydrophilicity and a large difference in boiling point with ethanol (boiling point: 170 to 250 ° C.) can be preferably used, and ethylene glycol (EG) and diethylene glycol can be preferably used. . These glycols may be dissolved by adding a solid desiccant that has a dehydrating action and does not react with ethanol, such as calcium chloride, anhydrous acetic acid alkali salt (sodium salt, potassium salt) and the like. In particular, the amount of the solid desiccant added is, for example, 5 to 50% in the case of a combination of EG and acetic anhydride alkali salt.

抽出塔11の塔頂から排出された蒸気は、凝縮器C11によって凝縮させられて無水エタノールとして留出液となり、該留出液の一部は抽出塔11の塔頂に還流され、残りは排出される。抽出塔11は本実施形態では、常圧で操作するが、減圧下(例えば、40〜100kPa)で操作することが、再沸器による加熱温度を相対的に低くでき、本発明の効果が増大してさらに望ましい。   The vapor discharged from the top of the extraction tower 11 is condensed by the condenser C11 to become a distillate as absolute ethanol, a part of the distillate is refluxed to the top of the extraction tower 11, and the rest is discharged. Is done. In the present embodiment, the extraction column 11 is operated at normal pressure, but operating under reduced pressure (for example, 40 to 100 kPa) can relatively reduce the heating temperature by the reboiler, thereby increasing the effect of the present invention. More desirable.

抽出塔11の塔底から排出された缶出液は、エタノールを0.3%程度、水を10〜15%含む抽出溶剤であり、排出されて溶剤回収塔13の第3充填層133の上部に位置する二次原液供給口13aに供給される。抽出塔11の塔底温度は150〜160℃で、加熱は再沸器(リボイラー)R11によって行われる。   The bottoms discharged from the bottom of the extraction tower 11 is an extraction solvent containing about 0.3% ethanol and 10 to 15% water, and is discharged to the upper part of the third packed bed 133 of the solvent recovery tower 13. To the secondary stock solution supply port 13a. The bottom temperature of the extraction tower 11 is 150 to 160 ° C., and the heating is performed by a reboiler (reboiler) R11.

溶剤回収塔13の塔頂から排出された蒸気は、凝縮器C13によって凝縮されて、エタノールを2%程度含む水として留出液となり、該留出液の一部は溶剤回収塔13の塔頂に還流され、残りはエタノール含有水として抽出塔11の一次原液供給口11aに戻される。   The vapor discharged from the top of the solvent recovery tower 13 is condensed by the condenser C13 and becomes a distillate as water containing about 2% of ethanol, and a part of the distillate is at the top of the solvent recovery tower 13. The remainder is returned to the primary stock solution supply port 11a of the extraction tower 11 as ethanol-containing water.

溶剤回収塔13の第3充填層133と第4充填層134の間より成分が水と少量の抽出溶剤からなる蒸気を、水分離塔15の塔底に導き、水分離塔15の水含有率を低下させた抽出溶剤である塔底液は溶剤回収塔13の第3充填層133と第4充填層134との間に戻す。   Steam between the third packed bed 133 and the fourth packed bed 134 of the solvent recovery tower 13 is composed of water and a small amount of extraction solvent, and is led to the bottom of the water separation tower 15. The column bottom liquid, which is the extraction solvent with reduced slag, is returned between the third packed bed 133 and the fourth packed bed 134 of the solvent recovery tower 13.

水分離塔15の塔頂から排出される蒸気は成分のほとんどが水であり、凝縮器C15によって凝縮されて水となり、該留出液の一部は水分離塔15の塔頂に還流され、残りは水として排出される。溶剤回収塔13および水分離塔15は、通常10〜20kPaの減圧に、凝縮器C13及びC15に接続された真空配管V、Vを介して操作される。 Most of the components of the steam discharged from the top of the water separation tower 15 are water and are condensed by the condenser C15 to become water, and a part of the distillate is refluxed to the top of the water separation tower 15; The rest is discharged as water. The solvent recovery tower 13 and the water separation tower 15 are usually operated at a reduced pressure of 10 to 20 kPa through vacuum pipes V and V connected to the condensers C13 and C15.

溶剤回収塔13の塔底から排出された缶出液はほとんどが抽出溶剤Sであり、排出されて共沸エタノールおよびエタノール含有水からなる一次原液Fと熱交換器H11で熱交換された後、抽出塔11の充填層112の上部に抽出溶剤Sとして循環される。溶剤回収塔13の塔底温度は150〜160℃で、加熱は再沸器R13によって行われる。   Most of the bottoms discharged from the bottom of the solvent recovery tower 13 is the extraction solvent S. After being discharged and subjected to heat exchange with the primary stock solution F consisting of azeotropic ethanol and ethanol-containing water and the heat exchanger H11, The extraction solvent S is circulated in the upper part of the packed bed 112 of the extraction tower 11. The bottom temperature of the solvent recovery tower 13 is 150 to 160 ° C., and the heating is performed by the reboiler R13.

このように、多段蒸留塔は、抽出塔11と溶剤回収塔13との2塔だけですみ、凝縮器はC11、C13、C15の3系列を必要とするが、再沸器およびその付属機器ははR11、R13の2系列分配設するだけでよいので、消費されるエネルギーを少なくすることができ、かつ、蒸留装置を全体として小型化することができる。したがって、蒸留装置の占有面積を小さくすることができる。また、蒸留装置のコスト、及び無水エタノールを得るためのコストを低くすることができる。   Thus, the multistage distillation column requires only two columns, ie, the extraction column 11 and the solvent recovery column 13, and the condenser requires three series of C11, C13, and C15. Since it is only necessary to arrange two series of R11 and R13, energy consumed can be reduced, and the distillation apparatus can be downsized as a whole. Therefore, the occupation area of the distillation apparatus can be reduced. Moreover, the cost of a distillation apparatus and the cost for obtaining absolute ethanol can be lowered.

また、溶剤回収塔13に回収部と水分離塔15とを循環(還流)配管20A、20Bで接続して、水含有蒸気から水を分離して溶剤液として戻すことにより、消費されるエネルギーを減らす効果があるとともに、装置全体の理論段数も減らす効果がある。   Further, the recovery unit and the water separation tower 15 are connected to the solvent recovery tower 13 by circulation (reflux) pipes 20A and 20B, and water is separated from the water-containing steam and returned as a solvent liquid, thereby reducing the consumed energy. This has the effect of reducing the number of theoretical plates of the entire apparatus.

なお、本発明は前記実施の形態に限定されるものではなく、本発明の趣旨に基づいて種々変形させることが可能であり、それらを本発明の範囲から排除するものではない。   In addition, this invention is not limited to the said embodiment, It can change variously based on the meaning of this invention, and does not exclude them from the scope of the present invention.

上記において、再沸器R11、R13としては、特に限定されないが、垂直サーモフォンリボイラーや流下膜式リボイラーが望ましい。また、凝縮器C11、C13、C15としては、特に限定されないが、多管式コンデンサーやスパイラル型コンデンサーが望ましい。   In the above, the reboilers R11 and R13 are not particularly limited, but a vertical thermophone reboiler or a falling film reboiler is desirable. The condensers C11, C13, and C15 are not particularly limited, but a multi-tube condenser or a spiral condenser is preferable.

なお、本発明の蒸留方法を別の表現で行うと、下記の如くになる。   In addition, when the distillation method of the present invention is performed in another expression, it is as follows.

第1蒸留塔(抽出塔)11と第2蒸留塔(溶剤回収塔)13と、該溶剤回収塔13と還流配管(蒸気配管)20A、20Bで接続された水分離塔15とを組み合わせた抽出蒸留装置を使用する。 Extraction combining the first distillation column (extraction column) 11 and the second distillation column ( solvent recovery column ) 13, and the water separation column 15 connected to the solvent recovery column 13 and the reflux pipes (steam pipes) 20A and 20B. Use distillation equipment.

そして、第1蒸留塔(抽出塔)11においては共沸エタノールを供給し、また共沸エタノール供給位置より上部に抽出溶剤を供給して抽出蒸留を行い、塔頂より無水エタノールを留出させ、塔底より水及び少量のエタノールを含む抽出溶剤を抜き出し、塔底液(缶出液)を第2蒸留塔(溶剤回収主塔)13に供給して、溶剤回収主塔13においては塔頂より少量のエタノールを含む水を留出させ、溶剤回収側塔15の塔頂よりエタノールを含まない水を留出させる。そして溶剤回収主塔13の塔底からの缶出液は、第1蒸留塔11の抽出溶剤供給位置に、同じく塔頂からの少量のエタノールを含む水の留出液は、第1蒸留塔11のエタノール供給位置にそれぞれ循環させる。   And in the 1st distillation column (extraction column) 11, azeotropic ethanol is supplied, extraction solvent is supplied to the upper part from an azeotropic ethanol supply position, extractive distillation is carried out, and absolute ethanol is distilled from the tower top, The extraction solvent containing water and a small amount of ethanol is extracted from the bottom of the tower, and the bottom liquid (bottom liquid) is supplied to the second distillation tower (solvent recovery main tower) 13. Water containing a small amount of ethanol is distilled, and water not containing ethanol is distilled from the top of the solvent recovery side column 15. The bottoms from the bottom of the solvent recovery main tower 13 are sent to the extraction solvent supply position of the first distillation column 11, and the distillate of water containing a small amount of ethanol from the top is the first distillation column 11. Each is circulated to the ethanol supply position.

本発明の実施の一形態における蒸留装置を示す概略流れ図である。It is a schematic flowchart which shows the distillation apparatus in one Embodiment of this invention. 先行例の蒸留装置の一例を示す概略流れ図である。It is a schematic flowchart which shows an example of the distillation apparatus of a prior example. 先行例の蒸留装置を他の例を示す概略流れ図である。It is a schematic flowchart which shows the other example of the distillation apparatus of a prior example.

符号の説明Explanation of symbols

11 抽出塔
13 溶剤回収塔
15 水分離塔
C11,C13,C15 凝縮器(コンデンサー)
R11、R13 再沸器(リボイラー)
F 原液
S 抽出溶剤
V 真空配管
11 Extraction tower 13 Solvent recovery tower 15 Water separation tower C11, C13, C15 Condenser (condenser)
R11, R13 Reboiler (Reboiler)
F Stock solution S Extraction solvent V Vacuum piping

Claims (4)

常圧における共沸組成のあるいはそれに近い組成の水を含むエタノール(以下、単に「共沸エタノール」という。)に親水性溶剤を添加して抽出蒸留を行って無水エタノールを得るとともに、該抽出蒸留の缶出液を減圧下で溶剤回収蒸留を行って前記親水性溶剤を回収するとともに、該親水性溶剤を循環使用するエタノールの蒸留方法において、
それぞれ多段充填蒸留塔である抽出塔と溶剤回収塔とを組み合わせ、さらに、該溶剤回収塔に一段充填蒸留塔である水分離塔を付設した抽出蒸留装置を用い、
前記溶剤回収蒸留による留出液を、前記抽出蒸留の前記共沸エタノールの供給位置(原液供給口)に戻すとともに、前記溶剤回収蒸留における親水性溶剤と水との分離を、前記溶剤回収塔の回収部から水分離蒸留を介する部分還流により行うに際して、
前記親水性溶剤が170〜250℃の沸点を有するものとするとともに、前記抽出蒸留を常圧下又は40kPa以上の減圧下で行い、前記溶剤回収蒸留を1〜50kPaで前記抽出蒸留より低い減圧下で、前記水分離蒸留を10〜20kPaの減圧下で行うことを特徴とするエタノールの蒸留方法。
Ethanol containing water having a composition close to that or the azeotropic composition at normal pressure (hereinafter, simply referred to as. "Azeotropic ethanol") to extractive distillation by adding a hydrophilic solvent with obtaining anhydrous ethanol I line in, the In the distillation method of ethanol using the extractive distillation bottoms to recover the hydrophilic solvent by performing solvent recovery distillation under reduced pressure, and circulating the hydrophilic solvent,
Combined with an extraction tower and a solvent recovery tower, each of which is a multistage packed distillation tower, and further using an extractive distillation apparatus provided with a water separation tower as a single stage packed distillation tower in the solvent recovery tower,
The distillate obtained by the solvent recovery distillation is returned to the supply position (stock solution supply port) of the azeotropic ethanol in the extractive distillation, and the separation of the hydrophilic solvent and water in the solvent recovery distillation is performed by the solvent recovery tower . from the recovery unit, the line Unisaishite by partial reflux through a water separator distillation,
The hydrophilic solvent has a boiling point of 170 to 250 ° C., the extractive distillation is performed under normal pressure or a reduced pressure of 40 kPa or more, and the solvent recovery distillation is performed at 1 to 50 kPa under a reduced pressure lower than the extractive distillation. The method for distilling ethanol , wherein the water separation distillation is performed under a reduced pressure of 10 to 20 kPa .
前記親水性溶剤が沸点190〜210℃のグリコール類であることを特徴とする請求項1記載のエタノールの蒸留方法。 The method for distilling ethanol according to claim 1, wherein the hydrophilic solvent is a glycol having a boiling point of 190 to 210 ° C. 前記親水性溶剤がさらに前記グリコール類に溶解可能な固体乾燥剤(脱水剤)を含むことを特徴とする請求項2記載のエタノールの蒸留方法。 The ethanol distillation method according to claim 2, wherein the hydrophilic solvent further contains a solid desiccant (dehydrating agent) that can be dissolved in the glycols. 前記固体乾燥剤が酢酸アルカリ塩であることを特徴とする請求項3記載のエタノールの蒸留方法。 4. The ethanol distillation method according to claim 3, wherein the solid desiccant is an alkali acetate salt.
JP2006166336A 2006-06-15 2006-06-15 Ethanol distillation method Expired - Fee Related JP5010187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006166336A JP5010187B2 (en) 2006-06-15 2006-06-15 Ethanol distillation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006166336A JP5010187B2 (en) 2006-06-15 2006-06-15 Ethanol distillation method

Publications (2)

Publication Number Publication Date
JP2007332077A JP2007332077A (en) 2007-12-27
JP5010187B2 true JP5010187B2 (en) 2012-08-29

Family

ID=38931882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006166336A Expired - Fee Related JP5010187B2 (en) 2006-06-15 2006-06-15 Ethanol distillation method

Country Status (1)

Country Link
JP (1) JP5010187B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114380662A (en) * 2020-10-21 2022-04-22 华东理工大学 Method for preparing absolute ethanol from ethanol-water azeotrope by adopting dissolved salt extraction rectification mode
CN115463452B (en) * 2022-08-19 2023-10-20 江西心连心化学工业有限公司 Separation system capable of improving efficiency and reducing loss

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3399120A (en) * 1965-12-09 1968-08-27 Monsanto Co Purification of olefinically unsaturated nitriles by water extractive distillation
JPS5754129A (en) * 1980-09-18 1982-03-31 Japan Synthetic Rubber Co Ltd Purification of butadiene or isoprene
US4400241A (en) * 1981-07-20 1983-08-23 Improtec Extractive distillation process for the production of fuel grade alcohols

Also Published As

Publication number Publication date
JP2007332077A (en) 2007-12-27

Similar Documents

Publication Publication Date Title
US8425733B2 (en) Method for dewatering a mixture of mostly ethanol and water
JP2009263355A (en) Method for purification-treating fermentation alcohol
WO2011027787A1 (en) Method for dewatering water-containing organic substance
CN107709279A (en) The manufacture method of acetic acid
CN100512930C (en) Process for the dehydration of gases
JP2011056484A (en) Equipment for distilling nmp
EP1986762B1 (en) Method for reducing water in a reactor outlet gas in the oxidation process of aromatic compound
JP5010187B2 (en) Ethanol distillation method
CN109908616A (en) The energy-saving distillation system and its distillating method of carbon monoxide ethyl alcohol
CN108059587A (en) Eight tower differential pressure alcohol distillation production systems and method
JP2003093827A (en) Azeotropic mixture separation method, azotropic mixture separator and distillation column
CN205730432U (en) A kind of mechanical steam recompression Distallation systm
CN108635895B (en) Rectifying tower, rectifying system and rectifying method
JP5604677B2 (en) Separation apparatus for azeotropic mixture and method for separating azeotropic mixture
US4484983A (en) Distillation and vapor treatment process
JP2009275019A (en) Method for refining water-alcohol composition
JP2005350388A (en) Method for producing aniline
JP2014528938A (en) Apparatus and method for recovering carboxylic acid by separating water from reactor effluent during aromatic compound oxidation reaction using energy-donating coupled distillation
CN105737457A (en) Solvent recovery technology
Chien et al. A new metric for the evaluation and selection of energy-intensified extractive distillation sequences
JP6312614B2 (en) Hydrous ethanol distillation apparatus and method for producing absolute ethanol
US4484984A (en) Distillation with condensation process
JP4759938B2 (en) Method for producing aniline
JP4437930B2 (en) Acrylic acid distillation purification method
JP2005000860A (en) Distillation plant and distillation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120601

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees