JPS5879932A - Purification of butadiene or isoprene - Google Patents

Purification of butadiene or isoprene

Info

Publication number
JPS5879932A
JPS5879932A JP56177149A JP17714981A JPS5879932A JP S5879932 A JPS5879932 A JP S5879932A JP 56177149 A JP56177149 A JP 56177149A JP 17714981 A JP17714981 A JP 17714981A JP S5879932 A JPS5879932 A JP S5879932A
Authority
JP
Japan
Prior art keywords
column
solvent
extractive distillation
butadiene
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56177149A
Other languages
Japanese (ja)
Other versions
JPS6217976B2 (en
Inventor
Kenji Onizuka
鬼塚 憲治
Masao Yoshioka
吉岡 征夫
Masatoshi Arakawa
荒川 昌敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Nippon Synthetic Chemical Industry Co Ltd
Original Assignee
Nippon Synthetic Chemical Industry Co Ltd
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Synthetic Chemical Industry Co Ltd, Japan Synthetic Rubber Co Ltd filed Critical Nippon Synthetic Chemical Industry Co Ltd
Priority to JP56177149A priority Critical patent/JPS5879932A/en
Priority to NL8203913A priority patent/NL8203913A/en
Priority to FR8216978A priority patent/FR2516074B1/en
Priority to BR8206005A priority patent/BR8206005A/en
Priority to MX194789A priority patent/MX160704A/en
Publication of JPS5879932A publication Critical patent/JPS5879932A/en
Publication of JPS6217976B2 publication Critical patent/JPS6217976B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/04Purification; Separation; Use of additives by distillation
    • C07C7/05Purification; Separation; Use of additives by distillation with the aid of auxiliary compounds
    • C07C7/08Purification; Separation; Use of additives by distillation with the aid of auxiliary compounds by extractive distillation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:In recovering the titled high-purity substance from a mixture of 4-5C hydrocarbons by two-step extractive distillation, to use quantity of heat effectively, by feeding a side flow taken out from a solvent stripper to a heat recovery process, returning it to a plate near to the plate from which the side flow is taken out. CONSTITUTION:A raw material hydrocarbon is fed from the pipe 1 to the first extractive distillation column EI, a selective solvent is fed from the pipe 3 to it to carry out extractive distillation, and a flow comprising diolefins, acetylenes, and the solvent is fed from the bottom of the column to the first solvent stripper column SI. The solvent is circulated from the bottom of the clumn to the first extractive distillation column EI, and a flow of hydrocarbon is sent from the top of the column to the second extractive distillation column EII. The desired substance is obtained from the pipe 10, a flow comprising the acetylenes and the solvent is sent from the bottom of the column to the second solvent stripper column SII, and the acetylenes are discharged from the pipe 13. A side flow is taken out from the pipe 14, subjected to heat exchange with a substance to be heated by the heat exchanger 15, and condensed and returned again to the stripper column SII.

Description

【発明の詳細な説明】 と略称する)または2−メチル−1,ろーブタジエン(
以下イソプレンと略称する)の精製方法に関し、さらに
詳1−7〈は極性溶媒による抽出蒸留精製工程において
溶剤放散塔から選択的にブタジェンまたはイソプレンと
同一炭素数からなるアセチレン類および/1だはアレン
類を排出する除熱エネルギーを回収して、効率よくブタ
ジエン1だはイソプレンを精製する方法に関する。
[Detailed description of the invention] or 2-methyl-1,robutadiene (abbreviated as
Regarding the purification method of isoprene (hereinafter abbreviated as isoprene), details 1-7 refer to the method for selectively purifying acetylenes having the same carbon number as butadiene or isoprene and /1 or allene from a solvent stripping column in the extractive distillation purification process using a polar solvent. The present invention relates to a method for efficiently refining butadiene 1 or isoprene by recovering the heat removal energy from discharging such substances.

従来ナフサの熱分+11j〆あるいけ脱水素等により得
られだC4tだはC5炭化水素混合物からブタジェンま
たはイソプレンを分周11回収する方法として抽出蒸留
法かチロられでいる。特に近年アセチレン類の除去を廠
L <要求t〜1−いる浴d女重合に適した純度のブタ
ジェン−1kIX1イソゾ1/ンを効率よく分離回収す
る方法と17てt]12饅゛抽出蒸留法が公知の技術と
して広く知られている3、ブタジェンまたdイソプレン
を営む(144たは05の炭化水素混合!I夕1を適当
な選択j<V浴剤のイ)とで蒸留すると、溶剤に比較的
俗解しK (い・夫゛ラフイン類およびオレフィン類か
第1抽III蒸1イア塔の塔Jn流として排出され、溶
剤に」:り沼川’1しやすいブタジェン捷だはイノプレ
ン、アセチレン類およびアレン類からなる炭化水素混合
′1夕1は選択ゝP1:浴剤と共に第1抽出蒸留塔の塔
j氏流とE〜で取出される。青たこの工4呈において原
ネ1として05′WI分が使われる場合にはアセチレン
類、アレy 類LJ 外(/(シクロ−Sノタジゴン、
ヒーぐリレン等のジオレフィン類ふ・よひジメナルスル
フイト9等の硫黄化合物(J−!、1.−Fブセ十1/
ン鶏、アレン類ぞの他を捷とめてアセアレン類等と略称
する)も塔底流として取出される。
Conventionally, C4t was obtained by dehydrogenation of naphtha by heating, etc., but extractive distillation or chilling is used as a method for recovering butadiene or isoprene from a C5 hydrocarbon mixture. Particularly in recent years, the removal of acetylenes has been developed. 3.Butadiene or isoprene is widely known as a known technology (hydrocarbon mixture of 144 or 05!). A relatively common understanding is that ``roughfins and olefins are discharged as a stream from the first extraction III steaming column and turned into solvents'': Butadiene, inoprene, and acetylene, which are easy to extract, are The hydrocarbon mixture '121 consisting of and allenes is taken out in the column J stream and E~ of the first extractive distillation column together with the selected P1 bath agent. 'When the WI component is used, acetylenes, arrays LJ outside (/(cyclo-S notadigon,
Diolefins such as heglylene, sulfur compounds such as dimenal sulfite 9 (J-!, 1.-Fbuse 11/
Allenes, allenes, etc. are separated and abbreviated as aarenes, etc.) are also taken out as a bottom stream.

2段抽出魚留法け2種知のタイプ+/(す別される。1
つ一1段目と2段目の抽出A箱玉程か独立1〜、各々の
抽出蒸留工程は独立の、浴剤放散塔を有[、でおり、第
1抽出蒸留招の塔j氏がt、け第1溶剤放散塔へ供給さ
れ、炭化水素混合物lと抽出溶剤とVC分、l1i1t
され、塔頂より得られるl入化水素混合徹Jを第2仙出
蒸留下程に供給する方法である。こ(1)例f Hyd
rocarbon Processing Voコ。4
5//15.−1 I P 151〜154にジメチノ
トフォルムアミドを選択性浴剤として用いるプロセスが
+ノ(l小σれている。
2-stage extraction Uodome method 2 kinds of knowledge type +/(Separated. 1
The 1st and 2nd stage extraction boxes are independent 1~, and each extractive distillation process has an independent bath agent diffusion tower.The first extractive distillation tower is t, is supplied to the first solvent stripping tower, and the hydrocarbon mixture l, extraction solvent and VC part, l1i1t
This is a method in which the 1-meritized hydrogen mixture obtained from the top of the column is fed to the lower stage of the second distillation distillation. (1) Example f Hyd
rocarbon Processing Voco. 4
5//15. -1 The process using dimethinotoformamide as a selective bath agent is slightly different from I P 151 to 154.

もう1つけ1股(Aと2段目の抽出蒸留塔か共通の浴剤
放散塔で軸合されY−いるもQ)で、第1抽出蒸留塔の
塔r=流は第1浴削放敗塔を経ないでiM阪第2抽出蒸
留塔に供給される方法で′ある。
With one additional branch (A and the second extractive distillation column or the common bath agent stripping column are aligned in Y-Irumo Q), the column r = flow of the first extractive distillation column is the first bath stripping column. This is a method in which the water is supplied to the iM Han No. 2 extractive distillation column without passing through the defeat column.

この例としてけHyarOCar’1)OII Pro
coinri、n)r Vo」、47扁11P135〜
168にN−メチルピロリドン゛ンを選゛1.  抗性
溶剤と[7たでロセスが開示されヤいる。。
For example, HyarOCar'1) OII Pro
coinri, n)r Vo”, 47-bi 11P135~
Select N-methylpyrrolidone for 168.1. Anti-solvent and [7] processes are disclosed. .

° 、   一般的に°をオ第2抽出蒸留工楯1に丸・
いイア[〈、アレン類等かブタンモノ捷たはイソゾ1/
ン」ニリ浴剤、に親41」性が大きい1q:貿を利Jl
l L ’−c、/?、散重f子等の月虫媒の活在を著
しく11[を害するブー1ノチI/)d」4等を実・d
的に冨まない、純度の1す6いブタジェン捷たに゛イソ
プレンを第2抽出蒸留塔の柘旧流として侍、一方アセチ
レンウコ1へは佃ノJ流として排出されている。第2抽
出蒸留塔の塔of流としで取出されたブタジェン4たは
イソプレンit 1’;l i〒1の不純物1を除去す
るため最終の分別蒸留]−1°l″に1共給され、1%
前口崖−のフ゛タジエンーまた0二1−イソプレンが製
造される。
°, generally ° is circled on the second extractive distillation shield 1.
[〈, allenes, etc., butane monomer or isozo 1/
N'nili bath salts, 41's 1q: Trade advantage Jl
l L'-c, /? , the activity of moon insect pollinators such as staghorn fecunds, etc. is significantly increased.
Butadiene and isoprene with a purity of 1.6, which is not saturated in water, is discharged to the second extractive distillation column as the old stream, while it is discharged to the acetylene column 1 as the Tsukudano J stream. The butadiene 4 or isoprene it 1' taken off as the column of stream of the second extractive distillation column is co-fed with 1 to the final fractional distillation]-1 °l'' to remove the impurity 1 of l i〒1; 1%
Frontal phytadiene and also 021-isoprene are produced.

捷だ第2抽出蒸留工程でアセチレン、」′1等を除く方
法として、Ind、 Kn)<、 C,11em、 V
o−,1,62jL)4 P43〜〜48にN−メチル
ピロリドンを透析1′llI:#削として用いた2段抽
出蒸留プロセスか開示されている。この方法によれば浴
剤放散塔の中段よりア−5= セチレン類等を含む溶剤が側方蒸気流として取出されて
溶剤分離塔へ供給され、浴剤が水に溶解す2性)lを利
用1.て溶剤分離塔の砥頂句近で水を蚕給し工水抗によ
り溶剤を+pJ IIX l−でいる。
As a method for removing acetylene, ``'1, etc. in the second extractive distillation step, Ind, Kn)<, C, 11em, V
A two-stage extractive distillation process using N-methylpyrrolidone as a dialysis 1'llI:# cut is disclosed in P43-48. According to this method, a solvent containing a-5=cetylenes, etc. is taken out from the middle stage of the bath agent stripping tower as a side vapor stream and is supplied to the solvent separation tower, and the two properties of the bath agent dissolving in water are removed. Use 1. Water is fed near the top of the solvent separation column, and the solvent is removed by +pJ IIX l- through a water shaft.

水に溶解した溶剤は溶剤分列ト塔の塔底流と[〜で抜出
されて俗剤放VliMbへ戻され、一方アセナレン諭等
を含む)炭化水素混合物は溶剤分離塔の塔瑣流として排
出される。
The solvent dissolved in water is withdrawn as the bottom stream of the solvent separation column and returned to the solvent extraction VliMb, while the hydrocarbon mixture containing acenalene etc. is discharged as the bottom stream of the solvent separation column. be done.

丑だ特公昭47−2702号公報にけストリッピング塔
本弁明では第2抽出蒸留工程に該当する)塔内で浴剤を
分離し抽出蒸留すべき混合物のアセチレン類等濃ノ莢よ
り向いアセチレン曲等濃度を有する狽1j流をス) 1
1ツビンク塔から排出することによりアセアレン類等を
除去し7、ストリッピング塔の塔j[Aよりブタジェン
またはイノプレンを回収する方法が614載されている
。この例ではアセアレン類等を含む1則流は捷す「凝肘
6藩」を経て冷却さ7]だ後、分離塔へ、あるいはラフ
ィネートと一緒にされて1同転円板塔型の洗滌塔へ導入
され、そこで分離塔あるいは洸蘇塔 6− に水を供給し水洗により溶剤を回+1.V Lでいる。
Ushida Special Publication No. Sho 47-2702 Stripping Tower (In this explanation, it corresponds to the second extractive distillation step) The bath agent is separated in the column and the acetylenes etc. of the mixture to be extracted and distilled are removed from the concentrated pods. 1j flow with equal concentration) 1
614 describes a method of removing aacerenes and the like by discharging the product from a Zving column, and then recovering butadiene or inoprene from a stripping column. In this example, a single stream containing acerenes, etc. is cooled through a ``Kojiji 6-han'' (7), and then sent to a separation tower or combined with raffinate to a single-rotating disk tower-type washing tower. There, water is supplied to a separation column or a resuscitation column 6-, and the solvent is removed by washing with water. I'm VL.

さらに%開昭54−138508号公?1遥によると、
アセチレン類等を溶剤放散塔から除去する方法が記載さ
八でいる。この方法てQす# All放t1ダ塔でアセ
チレン類等を含む炭化水素と俗間とを分離117、浴剤
を回j(又するために非常に1−1−い+’?’L 7
6r 、lt 140〜1300を必要とすることが示
されている。
Furthermore, %Kai No. 54-138508? According to Haruka,
A method for removing acetylenes and the like from a solvent stripping tower is described in Section 8. In this method, hydrocarbons containing acetylenes, etc. are separated from ordinary substances in a tower (117), and the bath agent is circulated (also, in order to
6r, lt 140-1300.

本発明者らに以J=述へた従来技術を:[不)1−キー
のイi効利用の立場から検削しn、i )Ij1’l咀
、(lKび)ことが明らかになった。
The inventors examined the prior art described above from the standpoint of effective use of the 1-key, and it became clear that Ta.

即ち、原オ」C4捷たはC5留分中UC菖斗、l’1.
−(−くる−ノタジ丁ンーまたdイソプレンと同−炭素
スジからなるア1〈チレンガ1等の′1Arr+−は通
′帛7タジJ「−ンまたけイソプレンに比L〜かなり低
いので該アセチレン類等の分離のだめの溶剤放散塔へ供
給される流れの大部分が溶剤である。このような特殊呼
を考慮(7て溶剤放散塔における該アセチレン類等と浴
剤の分離について詳細に解析l−た結果、この塔の分離
に必要存速流用を仲1〜でいるのは原料供給段より下の
回収部であり、原料供給段より上の濃縮部では、はるか
に少々い還流量でも該アセチレン類等と溶剤の分離がi
EJ能であるという驚くべき事実を見い出した。すなわ
ち従来技術では溶剤放散塔の濃縮部で分離に必要とする
還IN、量よりはるかに多くの還流がかけられていたこ
とになり、その還流を生せしめる為に大量の熱量が塔頂
に設けられた凝縮器から系外に莱てられたり寸たは外部
から塔頂に供給される水により治突1でない杉に変・質
させられたりして何ら鳴動に利用されていなかったこと
になる。
That is, UC iris in the C4 or C5 fraction, l'1.
-(-kuru-notaji-cho-n-Also, d isoprene and the same--consisting of carbon streaks. The majority of the flow supplied to the solvent stripping tower, which separates the acetylenes, etc., is solvent.Considering these special requirements (7), we will conduct a detailed analysis of the separation of the acetylenes, etc. and bath agents in the solvent stripping tower. - As a result, it was found that the recovery section below the raw material supply stage is responsible for the flow rate required for separation in this column, and the concentration section above the raw material supply stage can meet the required flow rate even with a much lower reflux flow rate. Separation of acetylenes, etc. and solvents is possible
I discovered the surprising fact that EJ is Noh. In other words, in the conventional technology, much more reflux was applied in the concentration section of the solvent stripping column than the amount of reflux required for separation, and a large amount of heat was provided at the top of the column to generate the reflux. This means that the water was drained out of the system from the condenser, or the water supplied from the outside to the top of the tower changed the quality of the cedar, which is not Jigatsu 1, and was not used for any kind of ringing. .

そこで本発明者らは、該塔の詳刹1な)眸析の結果見い
出した事実をプロセスの合理化に生かす方途を神々検討
しまた結果、溶剤放散塔のノ原料供給段の近傍段より、
側方蒸気流を抜き出して熱回収工程へ回して該側方蒸気
流を凝縮せL〜めた後該溶剤放故塔の側方蒸気流を抜き
出[7た近隋段へ戻すことにより、第1抽出蒸留工程或
いは第2抽出蒸留工程で目的とするR分の分離にはとん
と影響を与えないでプロセスの省エイ・ルキー化が1ト
1れることを見い出し本発明に到達することが出来た。
Therefore, the present inventors have carefully considered ways to utilize the facts found as a result of detailed analysis of the tower to rationalize the process, and as a result, from the stage near the raw material supply stage of the solvent stripping tower,
After the side vapor stream is withdrawn and sent to a heat recovery step to condense the side vapor stream, the side vapor stream of the solvent release column is withdrawn and returned to the near-sui stage. The present invention has been achieved by discovering that the process can be made easier and more efficient without affecting the separation of the target R component in the first extractive distillation step or the second extractive distillation step. Ta.

すなわち、本発明は、選択性溶剤の存イ「下における2
段抽出蒸留法によりC4tたt5土C5の炭化水素混合
物7))ら尚純度のブタジェンまたはイソゾl/ンを回
1■する際に、抽出蒸Wf塔から取出された塔底成牛に
少量含捷れるゾタンエン丑たはイソプレンと同−炭素数
からなるフ′セチレン類等を溶剤放散塔から分スILす
る十イ゛11におい−C1該放散塔の原料供給段の近傍
段より蒸気相として抜き出したアセチレン類寺を言むJ
寒沢I11゛溶剤より成る1則方流を熱回収工4呈V(
供給した後浩剤放散塔の前h1の側方流の抜き出し段の
近fカ段に戻すことを特徴とする04捷たは(シ5炭化
水系混合物から効率良く、フタジエンまたはイソプレン
を分離#製する方法を提供するものである。
That is, the present invention is directed to the presence of a selective solvent.
When high-purity butadiene or isosol is extracted once from a hydrocarbon mixture of C4t and C5 by the stage extractive distillation method, a small amount of it is contained in the bottom of the column taken out from the extractive distillation Wf column. Fusetylenes having the same number of carbon atoms as the broken zotanene or isoprene are separated from the solvent stripping tower and extracted as a vapor phase from a stage near the raw material supply stage of the stripping tower. Acetylene Rui Temple J
Kanzawa I11゛A heat recovery process of a single rectangular flow consisting of a solvent
After supplying the bulking agent, it is returned to stage F near the extraction stage of the side stream in H1 before the blowing agent stripping tower. This provides a method to do so.

本発明により溶剤放散塔より抜き出す側方蒸気流の量は
該塔の濃縮部で必要とする分を除いた分である。1側方
蒸気流を抜き出す段は、原料供給段の近1労段であれは
さしつかえないか好ましくは原料供給段から抜き出され
イ)。一方熱回 9− 収した後の凝縮液の戻る段は蒸気流の抜き出し段の近傍
段であればさ[7つかえないが、側方蒸気流の抜き出し
段と同一段であることが好捷しい。
The amount of side vapor stream withdrawn from the solvent stripping column according to the present invention is exclusive of that required by the concentration section of the column. The stage for withdrawing one side steam flow may be the one closest to the raw material supply stage, or preferably it is withdrawn from the raw material supply stage. On the other hand, the return stage for the condensate after heat recovery can be provided as long as it is a stage near the steam flow withdrawal stage [7, but it is preferable that it is the same stage as the side steam flow withdrawal stage. .

本発明において、使用出来る選択性溶剤としては、アセ
にトリル N−メチルピロリジン、ジメチルアセトアミドフルフラ
ール、アセトン等の極性物質またはこれらに水を0〜2
0重量%加えた水性混合物等である。
In the present invention, selective solvents that can be used include polar substances such as acetolyl N-methylpyrrolidine, dimethylacetamidofurfural, and acetone, or 0 to 2% of water added to them.
Such as an aqueous mixture containing 0% by weight.

熱同暇工程先と17ではm剤放散塔から」収出される側
方流の温7&より1氏く、かつ温黒゛差で5℃以上取れ
る個所であればどこでも良く具体的な例をあげると ■ 第1抽出蒸留塔の塔底部育たばその近傍段でのりボ
イラー丑たはザイドリホイラー(第4図参照) ■ 第1抽出蒸留工程から供給されるブタレニン捷たは
イソプレンに富む炭化水素類の第2抽出蒸留工程への原
料供給段重たはその近傍段でのサイドリホイラー(第5
図参照)1 0− ■ 原料であるC4 i k il: Csの炭化水素
混合物の原料予熱器 ■ 抽出蒸留工程以前の前処理工(′11での予熱器ま
たはりボイラー ■ 第2抽出蒸留塔の塔頂流とし7て留出する粗ブタジ
ェンまたは徂イソプレン中の不純物を除去する積装工程
の予熱器捷たはりボイラー■ 低圧水蒸気発生器の予熱
器 ■ 選択性溶剤の積装工程での予熱器寸だし」、リボイ
ラー 等があげられる。
A specific example is given of any place where the temperature of the side stream collected from the m-agent diffusion tower is 1°C higher than the temperature of the side stream collected from the m-agent diffusion tower and where the difference in temperature and temperature can be 5°C or more. ■ Glue boiler or Zydriwheeler (see Figure 4) at a stage near the bottom of the first extractive distillation column ■ Hydrocarbons rich in butarenin or isoprene supplied from the first extractive distillation step A side rewheeler (fifth
(See figure) 1 0- ■ Raw material preheater for the hydrocarbon mixture of C4 i kil: Cs that is the raw material ■ Pretreatment process before the extractive distillation process (preheater or boiler in '11) ■ The second extractive distillation column A preheater for the loading process to remove impurities from the crude butadiene or isoprene distilled out as the overhead stream7. Examples include "sun-dashi" and reboilers.

この中で望ましくは熱交換器等の漏洩トラブルによる汚
染を最小限にできかつ側力にの熱エネルギーに対し相対
的に熱保不111がIMI <、745回115!を行
う場合運転縁作土影響が少ない0と(りが特に好捷しい
Among these, it is desirable to be able to minimize contamination due to leakage troubles in heat exchangers, etc., and to have a relative heat retention ratio of 111 to the thermal energy of the side force IMI <, 745 times 115! When carrying out the operation, 0 and (ri) are particularly preferable as they have little effect on the soil during operation.

以下図面により本究明を詳浦1に説明する。図は簡明を
記するため、説明に喝−に必要のない71センプ、熱交
便器、′g器等は大部分省略し、主要部分のみ示しであ
る。
This research will be explained below with reference to the drawings. For the sake of brevity, the figure omits most of the 71-sump, heat exchanger toilet, girder, etc. that are not necessary for the explanation, and only the main parts are shown.

原料の種類によっては以下に示した工程の前後に前処理
工程および/または後処理工程が設けられる場合がある
か、これらは本発明の趣旨とは雲間1系であるので省略
[7である。また図において第1、第2相1出蒸留塔お
よび第1、第2溶剤放赦塔の区分けが必すしも明確で々
ぐなる場合かあるので、図の中に次の記号でボした。
Depending on the type of raw material, a pre-treatment step and/or a post-treatment step may be provided before or after the steps shown below, but these are omitted because they are not the gist of the present invention [7]. In addition, in the diagram, the division between the first and second phase single-output distillation columns and the first and second solvent pardoning columns is not necessarily clear and may be difficult to distinguish, so the following symbols are used in the diagram.

記号    工 程 El    第1抽出蒸vi塔 EII     第2 Sl    第1溶剤放散塔 S11    第2 S    溶犀]放散塔(El、 EII共用)第1図
は第1抽出蒸留工程と第2抽出蒸留工程がそれぞれ独立
に溶剤放散塔を廟1−7でいる例である。原料炭化水素
は導管1により第1抽出蒸留塔(El)2へ供給され導
管6を経て供給される選択性溶剤の存在下で抽出蒸留さ
れ塔頂からは主としてパラフィン類およびオレフィン類
炭化水索から構成される留分が4肯4全経て排出され、
塔底からは主にジオレフィン類およびアセチレン類等か
ら構成される炭化水素と溶剤から成る流れが導管5を経
て次の第1溶剤放散塔(Sl)6へ送られる。第1溶剤
放散塔の塔底からは実質的に炭化水素を含まぬ溶剤が得
られ、この流れは4菅6を経て第1抽出蒸留塔に循環さ
れる。
Symbol Process El 1st extractive distillation column EII 2nd Sl 1st solvent stripping column S11 2nd S Smelt] stripping column (shared with El and EII) Figure 1 shows the first extractive distillation process and the second extractive distillation process. This is an example in which solvent stripping towers are installed independently in columns 1-7. Feedstock hydrocarbons are fed through conduit 1 to a first extractive distillation column (El) 2, where they are extracted and distilled in the presence of a selective solvent fed through conduit 6, and from the top of the column are mainly paraffins and olefins hydrocarbons. The constituent fractions are discharged after 4 cycles,
From the bottom of the column, a stream consisting of hydrocarbons and solvents mainly composed of diolefins and acetylenes is sent via conduit 5 to the next first solvent stripping column (Sl) 6. A substantially hydrocarbon-free solvent is obtained from the bottom of the first solvent stripping column, and this stream is recycled via four pipes 6 to the first extractive distillation column.

一方第1溶剤放散塔塔頂からはン刺しフイン類およびア
セチレン類等から構成される炭化水素の流れ(少量の溶
剤を含んでいても良い)が得られる。
On the other hand, from the top of the first solvent stripping column, a stream of hydrocarbons (which may contain a small amount of solvent) consisting of fins, acetylenes, etc. is obtained.

この流れは導管7を経て第2抽出蒸留塔(lull)8
に供給され、導管9を経て供給される選択性溶剤等が実
質的に除かれたジオレフィン月“1が嗜看10を経て得
られ、一方塔底からは主にアセチレン類等と溶剤から成
る流れが導管11を経て抽出され、この流れは次の第2
溶剤放散塔(8+1)12へ送られる。導管10を経て
得られるジオレフィン類1は必要に応し図示1−ていな
い最終精製上4:l、iに送られて高純度のブタジェン
盪たはインゾレンに梢装さ13− れる。第2溶剤放fl’1.塔の塔頂からは導管15を
経てアセチレン類等が排出され、一方塔底よりは、実d
的に炭化水素を含捷ない溶剤の流れが得られ、これは導
管9を経て第2抽出蒸留塔8に循環される。本発明によ
り第2溶剤放散塔12の原料供給段から導管14を経て
抜き出された側方流は熱交便器15で被加熱物体に熱を
与えて凝縮し液流となって導管16により該放散塔の原
料供給段に戻される。溶剤にアセトニトリル系を用いた
場合、塔12は通常10〜30段の段数をMしており、
塔頂の還流比は通常10〜20で十分である。
This stream passes through conduit 7 to a second extractive distillation column (lull) 8.
The diolefin "1" from which selective solvents, etc., which are supplied through conduit 9 and is substantially removed, is obtained through treatment 10, while from the bottom of the column, it is obtained mainly consisting of acetylenes, etc. and solvent. Flow is extracted via conduit 11 and this flow is then
It is sent to the solvent stripping tower (8+1) 12. The diolefins 1 obtained via the conduit 10 are optionally sent to a final purification step 4 (not shown), where they are loaded with high purity butadiene or inzolene (13). Second solvent release fl'1. Acetylenes, etc. are discharged from the top of the column via conduit 15, while from the bottom of the column, d
An essentially hydrocarbon-free solvent stream is obtained, which is recycled via line 9 to the second extractive distillation column 8. According to the present invention, the side stream extracted from the raw material supply stage of the second solvent stripping tower 12 via the conduit 14 gives heat to the object to be heated in the heat exchanger 15, condenses, and becomes a liquid stream, which is passed through the conduit 16. It is returned to the raw material supply stage of the stripping tower. When acetonitrile is used as the solvent, the column 12 usually has M plates of 10 to 30.
A reflux ratio at the top of the column of 10 to 20 is usually sufficient.

第2図は第1抽出蒸留塔と第1抽出蒸v塔が溶剤放散塔
を共用しているプロセスの一例ヲ示したものである。本
プロセスは、第1図における第1溶剤放散塔が省略され
、第1抽出蒸留塔(El)22の塔底液が直接第2抽出
蒸留塔(Ell)26へ供給されており、共通の浴剤放
散塔(S)30の塔底から導管32を経て得られた実質
的に炭化水素を@まな一溶刑の流れは2分割されて一部
14− は導管23を経て第1抽出蒸留塔22へ、残りは導管2
7を経て第2抽出蒸留塔26へ循環されている。溶剤放
散塔ろ0の原t1供給段より側方蒸気流を抜き出し熱回
収上程へ回した移液流を戻す方法は第1図と同様である
FIG. 2 shows an example of a process in which the first extractive distillation column and the first extractive distillation column share a solvent stripping column. In this process, the first solvent stripping column in FIG. 1 is omitted, the bottom liquid of the first extractive distillation column (El) 22 is directly supplied to the second extractive distillation column (Ell) 26, and a common bath is used. The substantially hydrocarbon stream obtained from the bottom of the agent stripping column (S) 30 via conduit 32 is divided into two parts, and a portion 14- is sent via conduit 23 to the first extractive distillation column. 22, the rest is conduit 2
7 to the second extractive distillation column 26. The method of extracting the side vapor stream from the raw t1 feed stage of the solvent stripping tower filter 0 and returning the transferred liquid stream that has been sent to the heat recovery stage is the same as that shown in FIG.

第ろ図は第1抽出蒸留塔と第2抽出蒸留塔が溶剤放散塔
全共用した別の例をボしたものである。図において原料
炭化水素d、導管41により第1塔(El)(第1抽出
蒸留塔)42に供給される。2s管43を経て供給され
る選択性浴剤のイγ在下で抽出蒸留され塔n′iからi
f主と(〜てパラフィン類およびオレフィン類炭化水素
から構成される留分が4管44を経て排出され、塔j仄
からは導管45を経て、主にジオレフィン類およびアセ
チレン類等から構成される炭化水素と浴剤から成る流れ
が得られ、この流れ&j第5塔(Iiil/gu・S)
 (機能的には第1図における第1、第2抽出蒸留塔の
回収部の一部と溶剤放散塔の同117部より構成されて
いる)46の塔j丁1部に供給される。
The figure shows another example in which the first extractive distillation column and the second extractive distillation column share the entire solvent stripping column. In the figure, feedstock hydrocarbon d is supplied to a first column (El) (first extractive distillation column) 42 through a conduit 41. The extractive distillation is carried out in the presence of a selective bath agent I, which is supplied via the 2s pipe 43, from columns n'i to i.
A fraction mainly consisting of paraffins and olefin hydrocarbons is discharged from the column 44 through a pipe 44, and a fraction mainly consisting of diolefins and acetylenes is discharged from the column 4 through a conduit 45. A stream consisting of hydrocarbons and bath agents is obtained, and this stream is
It is supplied to 1 part of 46 columns (functionally consisting of parts of the recovery sections of the first and second extractive distillation columns and 117 parts of the solvent stripping column in FIG. 1).

塔底部、残りは導管49を経て第2塔(Ell)(第2
抽出蒸留塔)51へ供給される。一方第2塔の運転に必
要な選択性溶剤は導管52により該塔の上部に供給され
その結果実質的に7タジエンまたはイソプレンと同一炭
素数からなるアセチレン類等を含捷ないレオレフイン類
が4頂より導管56を経て得られ、寸た塔底からはアセ
チレン類等に比較的富んだ炭化水素と浴剤から構成され
る流れが導管54を経て得られ、この流れ(は導管45
の流れと合流[7た薮、導管50を経て第6塔の6泊部
VC供給される。
The bottom part of the column and the rest are connected to the second column (Ell) (second column) via conduit 49.
(extractive distillation column) 51. On the other hand, the selective solvent necessary for the operation of the second column is supplied to the upper part of the column through a conduit 52, and as a result, rholefins containing no acetylenes having the same number of carbon atoms as 7-tadiene or isoprene are produced with 4-terminals. A flow consisting of hydrocarbons relatively rich in acetylenes etc. and bath agents is obtained from the bottom of the column via conduit 56, and this stream (is obtained through conduit 45).
The 6th column VC is supplied to the 6th column via conduit 50.

第64の塔底からは実質的に炭化水素類を含ま々い溶剤
が導管55を経て得られ、この流れは2分されて一部は
導管43を経て第1塔42へ、残りは導管52を経て塔
51へ循環される。
From the bottom of the 64th column, a substantially hydrocarbon-containing solvent is obtained via line 55, this stream being split in two, a portion via line 43 to the first column 42 and the remainder via line 52. It is circulated to the tower 51 through the.

第6塔の中段(この段は溶剤放散塔の原料供給段に々る
。)からはアセチレン類等に富んだ小量の炭化水素と大
量の溶剤から構成される剛力蒸気流が導管56を経て抜
き出され一部は第4塔(S)(溶剤放散塔の濃縮部で構
成されている)61の運転に心安々蒸気量を確保するた
め直接導管57を経て第4塔61の塔底部に供給され、
残りは4菅58を経て熱回収をI:jかるための熱交換
器59で被加熱流体に熱をiJ、えて凝A11S l〜
液流となって導管60を経て第4柘61の塔底部に供給
される。
From the middle stage of the sixth column (this stage corresponds to the raw material supply stage of the solvent stripping tower), a rigid vapor flow consisting of a small amount of hydrocarbons rich in acetylenes and a large amount of solvent is passed through conduit 56. A part of the extracted part is directly sent to the bottom of the fourth column 61 via a conduit 57 in order to ensure a safe amount of steam for operation of the fourth column (S) 61 (consisting of the concentration section of the solvent stripping column). supplied,
The rest passes through four tubes 58, and a heat exchanger 59 for recovering heat IJ transfers heat to the fluid to be heated, and then condenses A11Sl~
A liquid stream is supplied to the bottom of the fourth column 61 via a conduit 60.

第4塔の塔頂よりは導管62を経てアセチレン@等に富
んだ炭化水素が糸外に初出され、一方塔底よりは導管5
6中の蒸気流中よりイ)炭化水素塵度の減じられた溶剤
の流りが脣看ろ6を経て得られ、この流れは第3塔の導
管5乙の抜き出される段と同一段に戻される。
From the top of the fourth column, hydrocarbons rich in acetylene, etc. are first discharged to the outside through conduit 62, while from the bottom of the column, through conduit 5
From the vapor stream in 6) a) a stream of solvent with reduced hydrocarbon dust is obtained via 6, which stream is in the same stage as the stage from which conduit 5 of the third column is withdrawn. be returned.

第3図において、第3塔46の回11M部(S)と第4
塔61とが一体となって機能的に一つの溶剤放散塔にな
っている。
In FIG. 3, the 11M part (S) of the third column 46 and the fourth
Together with the tower 61, they function as one solvent stripping tower.

第1図〜第6図において炭化水素の流れは4f   1
. 21. 41   ノ@  料導管 4,24.4
4  ノ々ラフイン1f1、オレフィンノコ1−1 ツ
ー 導管 10.28.53  ジオレフィン類導管 13
.31.62  アセチレン類等が対応している。
In Figures 1 to 6, the flow of hydrocarbons is 4f 1
.. 21. 41 ノ@ Fee Conduit 4,24.4
4 Nono Rough Inn 1f1, Olefin Noko 1-1 Two Conduit 10.28.53 Diolefin Conduit 13
.. 31.62 Acetylenes, etc. correspond.

本発明の効果は、溶剤放散塔から抜き出される側方蒸気
流の熱回収工程を設けることにより、熱量の有効利用か
d、かられ溶剤放散塔の塔用都から糸外に果てられる熱
量を最小1沢におさえ全プロセスとしての省エネルギー
化ができることである。
The effect of the present invention is that by providing a heat recovery process for the side vapor stream extracted from the solvent stripping tower, the amount of heat can be effectively utilized, and the amount of heat that is exhausted from the column of the solvent stripping tower can be reduced. It is possible to save energy in the entire process by keeping it to a minimum of one stream.

次に実施例によりさらに詳細に本発明を説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例 1 第31叉rtc記載1−たと同1〜A留装置を使用して
、アセl−ニドIJルー水の混合溶剤(重量比で92:
8)を用いてC4留分よりフタンエンを分離精製した。
Example 1 A mixed solvent of acel-nide IJ-water (weight ratio: 92:
8) was used to separate and purify phthanene from the C4 fraction.

原料C4留分は蒸気流として導管41(第3図のもの、
以下同様)を経て塔42に供給された。
The raw C4 fraction is passed through conduit 41 (the one in Figure 3,
(The same applies hereinafter) and was supplied to the column 42.

451、46および61の運転条件は以下の通りであっ
た。
The operating conditions for 451, 46 and 61 were as follows.

18− 塔46の1から16(砂目より冑′f−!56によりア
セチレン類およ0・アレ7カ゛1を谷む混合溶剤の測方
蒸気流を取り出し塔61で炭化水氷混合1勿と浴沖1全
分離するのに必要とさノシる還かLに見合う熱量に相当
する1則方蒸気流を除き、残りの側方蒸気流を熱交換器
59に通1〜、ここで塔42の塔底から取り出されたジ
オレフィンIiC畠ハ・液状の混合溶剤流と熱交換させ
、熱面11M 1−/こ後散状で塔61の塔底へ供給し
た。442.51および62には塔頂凝縮器が、また塔
42および46の塔底にはりボイラーが設けである。
18- Column 46 1 to 16 (from the sand grain) 56 takes out the measured vapor flow of the mixed solvent that passes through the acetylenes and 0. The remaining side vapor stream is passed through the heat exchanger 59, where the column is Diolefin IiC was taken out from the bottom of column 42 and was exchanged with the liquid mixed solvent stream, and then fed to the bottom of column 61 in the form of a hot surface. The columns 42 and 46 are equipped with an overhead condenser and a beam boiler at the bottom of the columns 42 and 46, respectively.

主な導管の中の流量は次の通りであった。The flow rates in the main conduits were:

(単q Kシm) 塔61の浴用付近はアセチレン類か濃縮されるので自己
分解による爆発の危険性k +rjl避するため上述の
ように他の塔より低(1,5lVy/cm2−Gで操作
した。図には示していないが史に安全性を高めるために
塔42の塔頂副生品であるラフィネートで希釈された。
(Single q K sim) Since acetylenes are concentrated in the bath area of column 61, in order to avoid the risk of explosion due to self-decomposition k Although not shown in the figure, it was diluted with raffinate, an overhead byproduct of column 42, to improve safety.

エネルギーの有効利用の面で従来技術による方法(第6
図の熱回収器59かない場合)と本発明方法とを塔61
の塔]r、Iの凝縮21すて冷却水等によシ消失される
エネルギーを比1置すると次の通りであった。
Methods based on conventional technology (No. 6) in terms of effective energy use
When the heat recovery device 59 in the figure is not present) and the method of the present invention are applied to the column 61.
The ratio of the energy dissipated by condensation 21 of R and I to cooling water, etc. was as follows.

11− 従来の技術(熱回収工程を通さない場合)QC= 2.
555 X 10 ’ K、cal/H本発明方法 QC= 1,000X1f]  3  Kcaコ、/1
]このことから本発明方法によれば従来技σfirより
も実に約61%節約されることが判りその効果が著しい
ことが明らかとなった。
11- Conventional technology (without heat recovery process) QC=2.
555 x 10' K, cal/H Invention method QC = 1,000
] From this, it was found that the method of the present invention can actually save about 61% compared to the conventional technique σfir, and it is clear that the effect is remarkable.

実施例 2 第6図の流れに沿ってアセ) 二l−1)ルーアリルア
ルコール−水の混合溶剤(重量比で75:15+10)
を用いてC5i分よりイノプレンを分離精製する場合に
ついて示した。
Example 2 Follow the flow shown in Figure 6) 2l-1) Ru Allyl alcohol-water mixed solvent (weight ratio 75:15+10)
The case where inoprene is separated and purified from the C5i fraction using the method is shown.

図には示していないがナフ廿分解により得られた原料C
5留分は、あらかじめ加熱処理して大部分の7クロはン
タジエンを三量化した後、予備濃縮塔で1質分を分離し
2、ある程度イノプレンを濃縮した形で120段のトレ
イを有する塔42の下から54段目に導肯41を経て蒸
気流として供給された。。
Although not shown in the figure, raw material C obtained by naph cracking
The 5th fraction is heat-treated in advance to trimerize most of the 7 chlorine and ntadiene, and then 1 substance is separated in a pre-concentration column. It was supplied as a steam stream to the 54th stage from the bottom via the conduit 41. .

塔42,51.46および61の運転条件は以下22− の通りであった。The operating conditions of columns 42, 51, 46 and 61 are as follows 22- It was as follows.

塔46の下から200段目り1.!+骨56によりアセ
チレン類等を含む混合M刑の側方蒸気流を取り出し、塔
61で必要とする還θILに見合った熱量に相当する側
方蒸気流を除き、残りの側方蒸気流を熱交換器59に通
し、ここで塔42の下から3段目から取り出された面状
の混合溶剤流と熱交換させ、熱回収した佐・、面状で塔
61の塔底へ供イ6した。
200th step from the bottom of tower 46 1. ! The side vapor stream of mixed M containing acetylenes, etc. is taken out by the + bone 56, the side vapor stream corresponding to the amount of heat commensurate with the reduction θIL required in the column 61 is removed, and the remaining side vapor stream is heated. It passed through an exchanger 59, where it exchanged heat with the planar mixed solvent stream taken out from the third stage from the bottom of the column 42, recovered the heat, and delivered it to the bottom of the column 61 in the planar form. .

塔42.51および62には塔jf4を緩訂白腑か、捷
た塔42および46の塔底にリホイラーが設はエネルギ
ーの有効利用の立場から従来の先行技術による方法と本
発明方法とを塔61の塔1nの凝縮器で冷却水等により
消失されるエネルギーを比較すると次の通りであった。
In towers 42, 51 and 62, a rewheeler was installed at the bottom of towers 42 and 46, which were replaced by a slow-reduction of tower JF4.From the viewpoint of effective energy utilization, the method according to the prior art and the method of the present invention were combined. A comparison of the energy dissipated by cooling water and the like in the condensers of tower 61 and tower 1n was as follows.

従来の技術(熱回収工程を通さない1易合)Qc =2
22.000 (Tcal、/II)本発明方法 Qc二 61.000 (Tea’j/’TI)このこ
とから本発明方法によれは従来技術よりも実に76%節
約されることがfll Cその効果が著しいことが明ら
かとなった。
Conventional technology (1 case without heat recovery process) Qc = 2
22.000 (Tcal, /II) The method of the present invention Qc2 61.000 (Tea'j/'TI) From this, it can be seen that the method of the present invention saves 76% compared to the conventional technology. It became clear that this was significant.

25−25-

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の一実施態様のフローシートであり
、第2図、第6図、第4図および第5図は別の実施態様
のフロー/−1・である。 1、21.41・・原料導管 4、.24.44・・ノ々ラフイン知、オレフィン類の
導管10.28.53・・ジオレフイス頻導管13.3
1.62・・・アセチレン順環導管2、22.42(g
l)・・・第1抽出蒸留塔8、26.51 (Eu)・
・・第2抽出蒸留塔6(81)・・第1溶剤放散塔、a
 (El)・・・第2溶剤放散塔30、61(S)・・
・溶剤放赦塔 15、34.59・・・熱交jカ器 3、5.7.9.11.14,16.26.25.27
.29.32゜33、35.43.45.47.48.
49.50.52.54.55゜56、57.5B、、
60.63・・・導管4υオKff’lr−(y  朱
 庫(26− 第4図 第5図
FIG. 1 is a flow sheet of one embodiment of the method of the present invention, and FIGS. 2, 6, 4, and 5 are flows of another embodiment. 1, 21.41... Raw material conduit 4, . 24.44...Nonorafuinji, olefin conduit 10.28.53...Georefuis frequent conduit 13.3
1.62...Acetylene forward ring conduit 2, 22.42 (g
l)...First extractive distillation column 8, 26.51 (Eu).
...Second extractive distillation column 6 (81)...First solvent stripping column, a
(El)...Second solvent stripping tower 30, 61(S)...
・Solvent release tower 15, 34.59...Heat exchanger 3, 5.7.9.11.14, 16.26.25.27
.. 29.32°33, 35.43.45.47.48.
49.50.52.54.55゜56, 57.5B,,
60.63... Conduit 4υo Kff'lr-(y Zhu warehouse (26- Fig. 4 Fig. 5

Claims (3)

【特許請求の範囲】[Claims] (1)  選択性溶剤の存在下における2段抽出蒸留法
により04寸だ1lSiC5の炭化水素混合物から扁純
度の1,6−ブタジェン育たば2−メチル−1,3−ブ
タジェンを回1[7する際に、抽出蒸留塔から取出され
た塔底液中に少量含撞れる1、6−ブタジェン捷だは2
−メチル−1,3−ブタジェンと同一炭素数からなるア
セチレン類および/捷だはアレ7類炭化水素を溶剤放散
塔から分1ii1ffする工程において、該溶剤放散塔
の原料供給段の近傍段より蒸気相として抜き出した該ア
セチレン類および/またはアレン類を言む選択性溶剤よ
りなる側方流を熱回収工程に供給した後、該溶剤放散塔
の前記側方流の抜き出し段の近傍段に戻すことを特徴と
するCa またid’c5炭化水素混合%+から効率よ
く1.3−ブタジェンまたは2−メチル−1,3−ブタ
ジェンを分離精製する方法
(1) 2-Methyl-1,3-butadiene was grown from a hydrocarbon mixture of 0.4 liters of SiC to 2-methyl-1,3-butadiene of pure purity by a two-stage extractive distillation process in the presence of a selective solvent. At this time, a small amount of 1,6-butadiene or 2 is contained in the bottom liquid taken out from the extractive distillation column.
- In the process of separating acetylenes and/or 7-group hydrocarbons having the same carbon number as methyl-1,3-butadiene from a solvent stripping tower, steam is supplied from a stage near the raw material supply stage of the solvent stripping tower. supplying the side stream consisting of the selective solvent referring to acetylenes and/or arenes extracted as a phase to a heat recovery step and then returning it to a stage adjacent to the withdrawal stage of the side stream of the solvent stripping column; A method for efficiently separating and purifying 1,3-butadiene or 2-methyl-1,3-butadiene from Ca and id'c5 hydrocarbon mixture %+ characterized by
(2)熱回収工程が第1抽出蒸留塔の塔底部まだはその
近傍段でのりボイラーまたけサイドリボイラーである特
許請求の範囲第(1)項記載の方法
(2) The method according to claim (1), wherein the heat recovery step is a side reboiler spanning a glue boiler at the bottom of the first extractive distillation column or at a stage near the bottom of the first extractive distillation column.
(3)熱回収工程が第1抽出蒸留塔から供給される1、
6−ブタジェンまたは2−メチル−1,6−ブタジェン
に富む炭化水素類の第2抽出蒸留塔への供!@段またけ
その近傍段でのサイドリボイラーである特許請求の範囲
第(1)項記載の方法
(3) 1, where the heat recovery step is supplied from the first extractive distillation column;
Submission of hydrocarbons rich in 6-butadiene or 2-methyl-1,6-butadiene to the second extractive distillation column! @The method according to claim (1), which is a side reboiler in stages across stages and stages in the vicinity thereof.
JP56177149A 1981-11-06 1981-11-06 Purification of butadiene or isoprene Granted JPS5879932A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP56177149A JPS5879932A (en) 1981-11-06 1981-11-06 Purification of butadiene or isoprene
NL8203913A NL8203913A (en) 1981-11-06 1982-10-08 PROCESS FOR THE PURIFICATION OF BUTADIENE OR ISOPRENE.
FR8216978A FR2516074B1 (en) 1981-11-06 1982-10-11 BUTADIENE OR ISOPRENE PURIFICATION PROCESS
BR8206005A BR8206005A (en) 1981-11-06 1982-10-14 PROCESS FOR HIGH PURITY 1,3-BUTADIEN OR 2-METHYL-1,3-BUTADIEN RECOVERY
MX194789A MX160704A (en) 1981-11-06 1982-10-15 METHOD FOR PURIFYING BUTADIENE OR ISOPRENE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56177149A JPS5879932A (en) 1981-11-06 1981-11-06 Purification of butadiene or isoprene

Publications (2)

Publication Number Publication Date
JPS5879932A true JPS5879932A (en) 1983-05-13
JPS6217976B2 JPS6217976B2 (en) 1987-04-21

Family

ID=16026043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56177149A Granted JPS5879932A (en) 1981-11-06 1981-11-06 Purification of butadiene or isoprene

Country Status (5)

Country Link
JP (1) JPS5879932A (en)
BR (1) BR8206005A (en)
FR (1) FR2516074B1 (en)
MX (1) MX160704A (en)
NL (1) NL8203913A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013510078A (en) * 2009-11-03 2013-03-21 ビーエーエスエフ ソシエタス・ヨーロピア Method for fractionating C4 fraction by extractive distillation using selective solvent
JPWO2018143041A1 (en) * 2017-02-01 2019-11-14 日本ゼオン株式会社 Method and apparatus for separating and collecting isoprene
JPWO2018143042A1 (en) * 2017-02-01 2019-11-14 日本ゼオン株式会社 Method and apparatus for separating and recovering 1,3-butadiene

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9650316B2 (en) * 2012-03-29 2017-05-16 Tpc Group Llc Low emissions oxidative dehydrogenation process for producing butadiene

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE787944A (en) * 1971-08-26 1973-02-26 Shell Int Research ISOPRENE RECOVERY PROCESS
US4038156A (en) * 1976-09-21 1977-07-26 Shell Oil Company Butadiene recovery process
CA1104517A (en) * 1977-08-02 1981-07-07 Polysar Limited Energy conservation in a butadiene process
US4134795A (en) * 1978-04-05 1979-01-16 The Goodyear Tire & Rubber Company Acetylenes removal from diolefin streams by extractive distillation
JPS56128724A (en) * 1980-03-15 1981-10-08 Japan Synthetic Rubber Co Ltd Purification of butadiene or isoprene
JPS5754129A (en) * 1980-09-18 1982-03-31 Japan Synthetic Rubber Co Ltd Purification of butadiene or isoprene

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013510078A (en) * 2009-11-03 2013-03-21 ビーエーエスエフ ソシエタス・ヨーロピア Method for fractionating C4 fraction by extractive distillation using selective solvent
JPWO2018143041A1 (en) * 2017-02-01 2019-11-14 日本ゼオン株式会社 Method and apparatus for separating and collecting isoprene
JPWO2018143042A1 (en) * 2017-02-01 2019-11-14 日本ゼオン株式会社 Method and apparatus for separating and recovering 1,3-butadiene

Also Published As

Publication number Publication date
MX160704A (en) 1990-04-19
FR2516074A1 (en) 1983-05-13
NL8203913A (en) 1983-06-01
BR8206005A (en) 1983-09-13
JPS6217976B2 (en) 1987-04-21
FR2516074B1 (en) 1986-05-09

Similar Documents

Publication Publication Date Title
AU2005210003B2 (en) Method for obtaining raw-1,3-butadiene
JP2673788B2 (en) Method for recovering benzene from mixed hydrocarbons
US6514387B1 (en) Rectifying column for extractive distillation of close-boiling or azeotropic boiling mixtures
EP0004658B1 (en) Acetylenes removal from diolefin streams by extractive distillation
US6337429B1 (en) Method for separating a C4-hydrocarbon mixture
CN111954654B (en) Method for separating aromatic hydrocarbon by extractive distillation
CN102190555B (en) Method for recovering styrene
US3591490A (en) Process of separating pure aromatic hydrocarbons from hydrocarbon mixtures
RU2310640C2 (en) Method of recovering crude 1,3-butadiene from c4-fraction
US4175034A (en) Closed-loop vacuum fractionation process
RU2315028C2 (en) Method of separating crude c4-fraction
JPS6143331B2 (en)
US3707575A (en) Process for separating c5 hydrocarbons by solvent extraction and extractive distillation
EP0036735B1 (en) Process for producing 1,3-butadiene or 2-methyl-1,3-butadiene of high purity
JP2006502123A (en) Post-treatment method of crude 1,3-butadiene
JPS5879932A (en) Purification of butadiene or isoprene
US4306945A (en) Extracting aromatic hydrocarbons from mixtures containing same
US4299667A (en) Process for recovering pure benzene
US2461346A (en) Separation of hydrocarbons
JP2020506184A (en) Method for obtaining pure 1,3-butadiene
JPS6152126B2 (en)
JP7076465B2 (en) Simplified method for isolating pure 1,3-butadiene
JPH04267903A (en) Method for after-treatment of product at tower bottom in extractive distillation process
JPS63101338A (en) Purification of hydrocarbon
NO141048B (en) PROCEDURE FOR SEPARATING PURE AROMATIC COMPOUNDS FROM HYDROCARBON MIXTURES CONTAINING AT LEAST 80% OF AROMATICES BY EXTRACTIVE DISTILLATION AND RECTIFICATION