JPS6151936B2 - - Google Patents
Info
- Publication number
- JPS6151936B2 JPS6151936B2 JP56088857A JP8885781A JPS6151936B2 JP S6151936 B2 JPS6151936 B2 JP S6151936B2 JP 56088857 A JP56088857 A JP 56088857A JP 8885781 A JP8885781 A JP 8885781A JP S6151936 B2 JPS6151936 B2 JP S6151936B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- barium
- cobalt
- nitrogen oxides
- nitrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims description 56
- 239000003054 catalyst Substances 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 18
- 239000007789 gas Substances 0.000 claims description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 8
- 229910052788 barium Inorganic materials 0.000 claims description 8
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims description 8
- 229910017052 cobalt Inorganic materials 0.000 claims description 7
- 239000010941 cobalt Substances 0.000 claims description 7
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 7
- 239000002131 composite material Substances 0.000 claims description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 238000003421 catalytic decomposition reaction Methods 0.000 claims description 3
- 239000003638 chemical reducing agent Substances 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 239000013543 active substance Substances 0.000 claims description 2
- 230000003647 oxidation Effects 0.000 claims description 2
- 238000007254 oxidation reaction Methods 0.000 claims description 2
- 230000000694 effects Effects 0.000 description 8
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical class N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 238000010304 firing Methods 0.000 description 5
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000003546 flue gas Substances 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 238000001354 calcination Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- 238000003915 air pollution Methods 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 2
- 238000004523 catalytic cracking Methods 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 238000010531 catalytic reduction reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- DROIAQNRBCUCDS-UHFFFAOYSA-N barium cobalt Chemical compound [Co][Ba] DROIAQNRBCUCDS-UHFFFAOYSA-N 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 150000001869 cobalt compounds Chemical class 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- -1 imide compounds Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 1
- 229910052815 sulfur oxide Inorganic materials 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Description
本発明は、窒素酸化物の接触分解法に関する。
更に詳しくは、実質的にバリウムとコバルトの複
合酸化物を活性成分とする触媒を用いて、排ガス
中に含有する窒素酸化物を窒素と酸素に接触分解
する新規な方法を提供するものである。
ボイラー,加熱炉等化石燃料を燃焼する施設か
ら発生する窒素酸化物(NOx)は硫黄酸化物
(SOx)と共に大気汚染の主因として古くから除
害対策が精力的に研究されている。商業化されて
いる排煙脱硫技術がほとんど湿式法ということも
あり、脱硝法も初期には湿式法が研究開発の主流
であつたが、排ガス中に含まれるNOxの95%以上
が反応性の低い一酸化窒素(NO)であること、
又、ほとんど全ての湿式還元法では吸収NOxの窒
素(N2)への選択率が低く、大部分がアンモニア
性化合物又はイミド系化合物として吸収液中に蓄
積するという難点を克服しえず、パイロツトテス
トの規模を超えるに至らなかつた。
これに反して乾式法ではアンモニア(NH3)を
還元剤として用いる選択的接触還元法の技術的改
良進歩が著しく、当初回避不可能と予想された
SOxによる被毒やダストによる触媒層の目詰りの
問題も、酸化チタン(TiO2)を担体とするモノリ
シス型触媒の開発等により解決され、LNGから
石炭に至る迄の燃焼排ガス処理が可能となり、技
術的には完成の域に達したという評価を受けてい
るのが現状である。
しかしながら、アンモニア接触還元法において
も、肥料原料等として貴重な資源であるアンモニ
アを消費せざるを得ないという宿命的欠点及び排
ガス中に共存するSOxとNH3の反応で生成する酸
性硫安(NH4・HSO4)に起因する装置材料の腐食
トラブル等の問題があり、更に効果的なNOx除去
法の開発が望まれている。
発明者等は、これらの観点からより経済的な脱
硝プロセスの開発を目指して排煙脱硝の究極の姿
と言われる接触分解法を検討した。一酸化窒素
(NO)と窒素(N2),酸素(O2)の間の平衡(1)は
圧倒的に生成系(右側)に寄つており、
2NON2+O2 (1)
適切な触媒さえ見出せれば理想的な排煙脱硝法が
確立しうることは早くから指摘されており、これ
迄に数多くの研究者が取り組んできた。
Bachman等による白金、ロジウム〔J.Phys.
Chem.33,447(1929)〕,Fraser等による
Al2O3,CaO,Cr2O3,Ga2O3,ZrO2,Fe2O3,
TiO2〔J.Phys.Chem.62,215頁(1958年)〕上で
の分解機構の検討やSakaidaによる白金,NiO/
アルミナ担体〔A.I.che J.7(4)658
(1961)〕,Sourirajan等によるCuO,NiO/シリ
カ担体を始めとする貴金属,卑金属及びこれらの
酸化物を用いた数多くの研究が報告されている。
排ガス処理を対象としたものとしては、市販触媒
を徹底的にテストしたIllinois Institute of
Technology′s Research Instituteの研究が有名
である〔Air Pollution Foundation Report No.
20,22(1957)〕。
最近では貴金属,遷移金属,これらの酸化物及
び混合酸化物を無担体及びアルミナ,シリカ,チ
タニアに担持したものを触媒として系統的な検討
が実施されている〔公害12(4)37(1977),13(1)22
(1978)〕。
こうした幾多の研究にも拘らず依然として工業
的意味で注目に値する触媒は見出されておらず、
もはや有望な触媒を発見する可能性はほとんどな
いと迄極言されている。
発明者等は、近年、特異な酸化特性を有する触
媒として脚光を浴びているペロブスカイト型結晶
構造を有する化合物に着目し、NOx接触分解反応
への適用を試みたところ、バリウム,コバルト系
複合酸化物が高活性を示すことを認め、鋭意検討
の結果、この系ではペロブスカイト型結晶構造以
外の複合酸化物でも活性が発現するという予想外
の事実を見出し、ついに本発明に到達した。
本発明は、窒素酸化物を含有する排ガスを実質
的にバリウムとコバルトから成る複合酸化物を活
性物質とする触媒と600℃以上1000℃以下の温度
域で接触させることにより外部から酸化剤,還元
剤を添加することなく該ガス中に含有する窒素酸
化物を窒素と酸素に分解することを特徴とする窒
素酸化物の接触分解法である。
本発明の基本となる触媒は、活性成分が実質的
にバリウムとコバルトの二成分を含む複合酸化物
であることを必須要件とするが、バリウムに対す
るコバルトの原子比が0.1以下又は10.0以上では
活性が低く、触媒としての機能を果し得ない。組
成比の更に好ましい範囲は8.0≧Ba/Co(原子
比)≧0.2である。
バリウム,コバルトの出発原料は、触媒焼成時
又は反応操作時に上記複合酸化物を形成しうる組
合せであれば特に制限はなく、酸化物,水酸化
物,塩化物,炭酸塩,硝酸塩,硫酸塩,酢酸塩等
が通常用いられる。
後述の実施例で示すように、これら出発原料の
違いは触媒の分解活性に顕著な差を与えない。
触媒調合法も水溶性塩類の水溶液からの共沈
法,混練法等通常触媒調製に用いられる手法は全
て適用可能である。
焼成温度に関しては、本発明に用いる触媒の活
性が600℃以上でないと顕著にならないため、600
℃以下の焼成条件は無意味である。一方、1500℃
以上にすると、触媒のシンタリングに伴なう表面
積低下が著しく、触媒活性が低下するので好まし
くない。好ましい焼成温度範囲は600℃以上1400
℃以下である。
酸化コバルト,酸化バリウム二成分系の高温相
平衡はNegus等によつて詳細に報告されている
〔NBS.Special Publication 364233(1972)〕。本
発明の触媒調製条件;0.1≦Ba/Co(原子比)≦
10.0,焼成温度600℃以上1400℃以下では、安定
相としてBa2CoO4,Ba3Co2O7,BacoO3-x及びこ
れらの固溶体が条件によつて生成するものと推定
される。一方、触媒活性の上では、これら生成安
定相に起因する明確な差異は認められない。従つ
て、バリウム,コバルト系の複合酸化物はどの結
晶形態でも窒素酸化物分解の活性成分として有効
であると判断できる。又、この系の触媒は、特開
昭55―149634号におけるストロンチウムと鉄の複
合酸化物とは異なり、高濃度NOによる予備活性
化は必要としない。
分解反応温度は、低くすぎると活性が低く、高
すぎると既述平衡(1)によるNOの平衡分圧が無視
できなくなり、高分解率が達成できなくなるので
600℃以上1000℃以下が望ましい。
以下に実施例を示し、本発明の方法の効果を明
らかにする。
実施例 1
焼成後の組成がBa/Co(原子比)=1.0となる
ように各種バリウム,コバルト化合物をボールミ
ルで2時間混合粉砕後110℃で5時間乾燥、1000
℃で5時間焼成して得た触媒を用いた実験結果を
表―1に示す。反応実験は、内径10mmφ,長さ1
mのシリカ製反応管に、各10mlの触媒を充てん
し、管状電気炉による外熱加熱で所定温度に昇温
後、NO5%を含むヘリウムバランスのガスを5
/Hで流し、(SV;500hr-1)活性比較を行なつ
た。
生成ガスはガスクロマトグラフで分析した。
The present invention relates to a method for catalytic decomposition of nitrogen oxides.
More specifically, the present invention provides a novel method for catalytically decomposing nitrogen oxides contained in exhaust gas into nitrogen and oxygen using a catalyst containing a composite oxide of barium and cobalt as an active component. BACKGROUND OF THE INVENTION Nitrogen oxides (NO x ), which are emitted from facilities that burn fossil fuels such as boilers and heating furnaces, are a major cause of air pollution, along with sulfur oxides (SO x ), and measures to eliminate them have been actively researched for a long time. Most of the commercialized flue gas desulfurization technologies are wet methods, and in the early days of denitrification methods, wet methods were the mainstream in research and development, but more than 95% of the NO x contained in flue gas is reactive. low nitric oxide (NO),
In addition, almost all wet reduction methods cannot overcome the drawback that the selectivity of absorbed NO x to nitrogen (N 2 ) is low, and most of the absorbed NO x accumulates in the absorption liquid as ammonia compounds or imide compounds. The scale of the pilot test was not exceeded. On the other hand, in the dry process, there has been significant technological improvement in selective catalytic reduction using ammonia (NH 3 ) as a reducing agent, and it was initially predicted that it would be unavoidable.
The problems of poisoning by SO x and clogging of the catalyst layer by dust have been solved through the development of monolithic catalysts using titanium oxide (TiO 2 ) as a carrier, making it possible to treat combustion exhaust gases ranging from LNG to coal. Currently, it has been evaluated as having reached the stage of technological perfection. However, even in the ammonia catalytic reduction method, ammonia, which is a valuable resource as a fertilizer raw material, has to be consumed, which is a fateful drawback, and acidic ammonium sulfate (NH There are problems such as corrosion of equipment materials caused by 4・HSO 4 ), and the development of a more effective NO x removal method is desired. From these viewpoints, the inventors investigated the catalytic cracking method, which is said to be the ultimate form of flue gas denitrification, with the aim of developing a more economical denitrification process. The equilibrium between nitric oxide (NO), nitrogen (N 2 ), and oxygen (O 2 ) (1) is overwhelmingly biased toward the production system (on the right), and 2NON 2 + O 2 (1) even with a suitable catalyst. It was pointed out early on that if this could be found, an ideal flue gas denitrification method could be established, and many researchers have worked on this to date.
Platinum and rhodium by Bachman et al. [J.Phys.
Chem. 33 , 447 (1929)], Fraser et al.
Al 2 O 3 , CaO, Cr 2 O 3 , Ga 2 O 3 , ZrO 2 , Fe 2 O 3 ,
Examination of the decomposition mechanism on TiO 2 [J.Phys.Chem. 62 , p. 215 (1958)] and Sakaida's study of platinum, NiO/
Alumina carrier [AIche J. 7 (4) 658
(1961)] and Sourirajan et al. have reported numerous studies using noble metals, base metals, and their oxides, including CuO and NiO/silica supports.
For exhaust gas treatment, the Illinois Institute of
The research conducted by Technology's Research Institute is famous [Air Pollution Foundation Report No.
20, 22 (1957)]. Recently, systematic studies have been carried out using noble metals, transition metals, their oxides, and mixed oxides as catalysts, either unsupported or supported on alumina, silica, or titania [Pollution 12 (4) 37 (1977)] , 13 (1)22
(1978)]. Despite these numerous studies, no catalyst worthy of industrial attention has yet been discovered.
It is now said that there is almost no possibility of discovering a promising catalyst. The inventors focused on compounds with a perovskite-type crystal structure, which have recently attracted attention as catalysts with unique oxidation properties, and tried to apply them to NO x catalytic cracking reactions. As a result of intensive studies, we discovered the unexpected fact that this system exhibits activity in complex oxides other than those with a perovskite crystal structure, and finally arrived at the present invention. The present invention enables exhaust gas containing nitrogen oxides to be brought into contact with a catalyst whose active substance is a composite oxide consisting essentially of barium and cobalt at a temperature range of 600°C to 1000°C, thereby removing an oxidizing agent from the outside. This is a catalytic decomposition method for nitrogen oxides, which is characterized in that nitrogen oxides contained in the gas are decomposed into nitrogen and oxygen without adding any agent. The catalyst that is the basis of the present invention has an essential requirement that the active component be a composite oxide containing substantially two components of barium and cobalt, but if the atomic ratio of cobalt to barium is less than 0.1 or more than 10.0, is low and cannot function as a catalyst. A more preferable range of the composition ratio is 8.0≧Ba/Co (atomic ratio)≧0.2. The starting materials for barium and cobalt are not particularly limited as long as they can form the above composite oxide during catalyst calcination or reaction operation, including oxides, hydroxides, chlorides, carbonates, nitrates, sulfates, Acetate and the like are commonly used. As shown in the examples below, these differences in starting materials do not make a significant difference in the cracking activity of the catalyst. As for the catalyst preparation method, all the methods normally used for catalyst preparation, such as the coprecipitation method from an aqueous solution of water-soluble salts and the kneading method, are applicable. Regarding the calcination temperature, the activity of the catalyst used in the present invention does not become noticeable unless the temperature is 600°C or higher.
Firing conditions below ℃ are meaningless. On the other hand, 1500℃
If it is more than that, the surface area of the catalyst decreases significantly due to sintering, and the catalytic activity decreases, which is not preferable. The preferred firing temperature range is 600℃ or above 1400℃
below ℃. The high-temperature phase equilibrium of the cobalt oxide and barium oxide binary system has been reported in detail by Negus et al. [NBS.Special Publication 364 233 (1972)]. Catalyst preparation conditions of the present invention: 0.1≦Ba/Co (atomic ratio)≦
10.0. At a firing temperature of 600°C or higher and 1400°C or lower, stable phases of Ba 2 CoO 4 , Ba 3 Co 2 O 7 , BacoO 3-x and solid solutions thereof are estimated to be formed depending on the conditions. On the other hand, in terms of catalytic activity, no clear difference due to these stable phases is observed. Therefore, it can be concluded that the barium-cobalt-based composite oxide is effective as an active ingredient for decomposing nitrogen oxides in any crystal form. Further, unlike the composite oxide of strontium and iron disclosed in JP-A-55-149634, this type of catalyst does not require preactivation with high concentration NO. If the decomposition reaction temperature is too low, the activity will be low, and if it is too high, the equilibrium partial pressure of NO due to equilibrium (1) mentioned above cannot be ignored, making it impossible to achieve a high decomposition rate.
Preferably above 600℃ and below 1000℃. Examples are shown below to clarify the effects of the method of the present invention. Example 1 Various barium and cobalt compounds were mixed and ground in a ball mill for 2 hours so that the composition after firing was Ba/Co (atomic ratio) = 1.0, and then dried at 110°C for 5 hours.
Table 1 shows the experimental results using the catalyst obtained by calcination at ℃ for 5 hours. For reaction experiments, the inner diameter was 10 mmφ and the length was 1.
Each 10 ml of catalyst was filled into 5 m silica reaction tubes, heated to a specified temperature by external heating in a tubular electric furnace, and then heated with 5 ml of helium-balanced gas containing 5% NO.
/H (SV; 500 hr -1 ) and activity comparison was performed. The produced gas was analyzed using a gas chromatograph.
【表】
実施例 2
出発物質としてBa(OH)2,CoOを選択し、両
者の比を変えた以外は実施例1と同様の方法で活
性比較を行なつた。結果を表―2に示す。[Table] Example 2 The activity was compared in the same manner as in Example 1 except that Ba(OH) 2 and CoO were selected as starting materials and the ratio of the two was changed. The results are shown in Table-2.
【表】
実施例 3
Ba(OH)2,CoOをBa/Co(原子比)=1.0の比
で混合し、焼成温度を変えた以外は実施例1と同
様の方法で活性を比較した。結果を表―3に示
す。[Table] Example 3 Ba(OH) 2 and CoO were mixed at a ratio of Ba/Co (atomic ratio) = 1.0, and the activities were compared in the same manner as in Example 1, except that the firing temperature was changed. The results are shown in Table-3.
Claims (1)
ウムとコバルトから成る複合酸化物を活性物質と
する触媒と600℃以上1000℃以下の温度域で接触
させることにより外部から酸化剤,還元剤を添加
することなく該ガス中に含有する窒素酸化物を窒
素と酸素に分解することを特徴とする窒素酸化物
の接触分解法。 2 触媒成分中のコバルトに対するバリウムの原
子比が0.1以上10.0以下の範囲である特許請求の
範囲第1項記載の方法。 3 触媒が600℃以上1400℃以下の温度で焼成さ
れたものである特許請求の範囲第1項または第2
項記載の方法。[Claims] 1 External oxidation by bringing exhaust gas containing nitrogen oxides into contact with a catalyst whose active substance is a composite oxide consisting essentially of barium and cobalt at a temperature range of 600°C to 1000°C. A method for catalytic decomposition of nitrogen oxides, characterized in that nitrogen oxides contained in the gas are decomposed into nitrogen and oxygen without adding a reducing agent or a reducing agent. 2. The method according to claim 1, wherein the atomic ratio of barium to cobalt in the catalyst component is in the range of 0.1 or more and 10.0 or less. 3 Claims 1 or 2 in which the catalyst is fired at a temperature of 600°C or higher and 1400°C or lower
The method described in section.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56088857A JPS57204222A (en) | 1981-06-11 | 1981-06-11 | Catalytic decomposition of nitrogen oxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56088857A JPS57204222A (en) | 1981-06-11 | 1981-06-11 | Catalytic decomposition of nitrogen oxide |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57204222A JPS57204222A (en) | 1982-12-14 |
JPS6151936B2 true JPS6151936B2 (en) | 1986-11-11 |
Family
ID=13954649
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56088857A Granted JPS57204222A (en) | 1981-06-11 | 1981-06-11 | Catalytic decomposition of nitrogen oxide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57204222A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62171750A (en) * | 1986-01-27 | 1987-07-28 | Mitsubishi Heavy Ind Ltd | Catalyst for simultaneously treating nitrogen oxide and carbon monoxide |
-
1981
- 1981-06-11 JP JP56088857A patent/JPS57204222A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS57204222A (en) | 1982-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0947234B1 (en) | A single-stage and dry catalytic process for the simultaneous removal of sulfur dioxide and nitrogen oxides from gas streams | |
KR950007578B1 (en) | Carrier for gas-treating catalyst, method for production thereof, and gas-treating catalyst incorporation said canier therein | |
AU2008286480B2 (en) | Catalyst, production method therefor and use thereof for decomposing N2O | |
US7438878B2 (en) | Selective catalytic reduction of N2O | |
KR101898878B1 (en) | METHOD FOR REMOVING N2O AND NOx FROM THE NITRIC ACID PRODUCTION PROCESS, AND AN INSTALLATION SUITABLE FOR SAME | |
RU2258030C2 (en) | N2o decomposition catalyst, use and a method for preparation thereof | |
US4131643A (en) | Catalyst for converting nitrogen oxides and method for converting nitrogen oxides in exhaust gases by using said catalyst | |
JPS61283348A (en) | Oxidizing catalyst | |
JPH0638915B2 (en) | New catalysts for selective reduction of nitrogen oxides | |
US4350670A (en) | Process for treating flue gas | |
EP0317293B1 (en) | A process for removing nitrogen oxides and a catalyst used for the process | |
JP3352494B2 (en) | Nitrogen oxide decomposition catalyst and denitration method using the same | |
CN109603808B (en) | Preparation method and application of zirconium pillared montmorillonite-loaded Ce-Nb composite catalyst | |
JP4204692B2 (en) | Nitrogen oxide removal catalyst, method for producing the same, and method for removing nitrogen oxides using the catalyst | |
US3931393A (en) | Catalytic process for removing sulfur dioxide from gas streams | |
JPS6151936B2 (en) | ||
CN111266104B (en) | Composite manganese oxide and preparation method and application thereof | |
JPS6151937B2 (en) | ||
CHEN et al. | Removal of NOx using novel Fe-Mn mixed-oxide catalysts at low temperature | |
JPS63147546A (en) | Method for removing nitrogen oxide in exhaust gas | |
KR100295370B1 (en) | Method for producing a vanadium pentoxide-based catalyst for removing nitrogen oxides using titanium dioxide for pigment as a carrier of catalyst | |
JPS5823136B2 (en) | How to remove nitrogen oxides from exhaust gas | |
RU2004320C1 (en) | Method for gas purification catalytic agent preparing | |
JPH05272719A (en) | Catalyst combustion method of methane | |
KR100332224B1 (en) | Oxidation Catalyst for Emission Control of Dioxin in Flue Gas, method of preparing and using the same |