JPS6151936B2 - - Google Patents

Info

Publication number
JPS6151936B2
JPS6151936B2 JP56088857A JP8885781A JPS6151936B2 JP S6151936 B2 JPS6151936 B2 JP S6151936B2 JP 56088857 A JP56088857 A JP 56088857A JP 8885781 A JP8885781 A JP 8885781A JP S6151936 B2 JPS6151936 B2 JP S6151936B2
Authority
JP
Japan
Prior art keywords
catalyst
barium
cobalt
nitrogen oxides
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56088857A
Other languages
Japanese (ja)
Other versions
JPS57204222A (en
Inventor
Kunihiko Yokota
Yoichi Umehara
Yasushi Oonishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Chemical Engineering and Construction Co Ltd
Priority to JP56088857A priority Critical patent/JPS57204222A/en
Publication of JPS57204222A publication Critical patent/JPS57204222A/en
Publication of JPS6151936B2 publication Critical patent/JPS6151936B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、窒素酸化物の接触分解法に関する。
更に詳しくは、実質的にバリウムとコバルトの複
合酸化物を活性成分とする触媒を用いて、排ガス
中に含有する窒素酸化物を窒素と酸素に接触分解
する新規な方法を提供するものである。 ボイラー,加熱炉等化石燃料を燃焼する施設か
ら発生する窒素酸化物(NOx)は硫黄酸化物
(SOx)と共に大気汚染の主因として古くから除
害対策が精力的に研究されている。商業化されて
いる排煙脱硫技術がほとんど湿式法ということも
あり、脱硝法も初期には湿式法が研究開発の主流
であつたが、排ガス中に含まれるNOxの95%以上
が反応性の低い一酸化窒素(NO)であること、
又、ほとんど全ての湿式還元法では吸収NOxの窒
素(N2)への選択率が低く、大部分がアンモニア
性化合物又はイミド系化合物として吸収液中に蓄
積するという難点を克服しえず、パイロツトテス
トの規模を超えるに至らなかつた。 これに反して乾式法ではアンモニア(NH3)を
還元剤として用いる選択的接触還元法の技術的改
良進歩が著しく、当初回避不可能と予想された
SOxによる被毒やダストによる触媒層の目詰りの
問題も、酸化チタン(TiO2)を担体とするモノリ
シス型触媒の開発等により解決され、LNGから
石炭に至る迄の燃焼排ガス処理が可能となり、技
術的には完成の域に達したという評価を受けてい
るのが現状である。 しかしながら、アンモニア接触還元法において
も、肥料原料等として貴重な資源であるアンモニ
アを消費せざるを得ないという宿命的欠点及び排
ガス中に共存するSOxとNH3の反応で生成する酸
性硫安(NH4・HSO4)に起因する装置材料の腐食
トラブル等の問題があり、更に効果的なNOx除去
法の開発が望まれている。 発明者等は、これらの観点からより経済的な脱
硝プロセスの開発を目指して排煙脱硝の究極の姿
と言われる接触分解法を検討した。一酸化窒素
(NO)と窒素(N2),酸素(O2)の間の平衡(1)は
圧倒的に生成系(右側)に寄つており、 2NON2+O2 (1) 適切な触媒さえ見出せれば理想的な排煙脱硝法が
確立しうることは早くから指摘されており、これ
迄に数多くの研究者が取り組んできた。
Bachman等による白金、ロジウム〔J.Phys.
Chem.33,447(1929)〕,Fraser等による
Al2O3,CaO,Cr2O3,Ga2O3,ZrO2,Fe2O3
TiO2〔J.Phys.Chem.62,215頁(1958年)〕上で
の分解機構の検討やSakaidaによる白金,NiO/
アルミナ担体〔A.I.che J.(4)658
(1961)〕,Sourirajan等によるCuO,NiO/シリ
カ担体を始めとする貴金属,卑金属及びこれらの
酸化物を用いた数多くの研究が報告されている。
排ガス処理を対象としたものとしては、市販触媒
を徹底的にテストしたIllinois Institute of
Technology′s Research Instituteの研究が有名
である〔Air Pollution Foundation Report No.
20,22(1957)〕。 最近では貴金属,遷移金属,これらの酸化物及
び混合酸化物を無担体及びアルミナ,シリカ,チ
タニアに担持したものを触媒として系統的な検討
が実施されている〔公害12(4)37(1977),13(1)22
(1978)〕。 こうした幾多の研究にも拘らず依然として工業
的意味で注目に値する触媒は見出されておらず、
もはや有望な触媒を発見する可能性はほとんどな
いと迄極言されている。 発明者等は、近年、特異な酸化特性を有する触
媒として脚光を浴びているペロブスカイト型結晶
構造を有する化合物に着目し、NOx接触分解反応
への適用を試みたところ、バリウム,コバルト系
複合酸化物が高活性を示すことを認め、鋭意検討
の結果、この系ではペロブスカイト型結晶構造以
外の複合酸化物でも活性が発現するという予想外
の事実を見出し、ついに本発明に到達した。 本発明は、窒素酸化物を含有する排ガスを実質
的にバリウムとコバルトから成る複合酸化物を活
性物質とする触媒と600℃以上1000℃以下の温度
域で接触させることにより外部から酸化剤,還元
剤を添加することなく該ガス中に含有する窒素酸
化物を窒素と酸素に分解することを特徴とする窒
素酸化物の接触分解法である。 本発明の基本となる触媒は、活性成分が実質的
にバリウムとコバルトの二成分を含む複合酸化物
であることを必須要件とするが、バリウムに対す
るコバルトの原子比が0.1以下又は10.0以上では
活性が低く、触媒としての機能を果し得ない。組
成比の更に好ましい範囲は8.0≧Ba/Co(原子
比)≧0.2である。 バリウム,コバルトの出発原料は、触媒焼成時
又は反応操作時に上記複合酸化物を形成しうる組
合せであれば特に制限はなく、酸化物,水酸化
物,塩化物,炭酸塩,硝酸塩,硫酸塩,酢酸塩等
が通常用いられる。 後述の実施例で示すように、これら出発原料の
違いは触媒の分解活性に顕著な差を与えない。 触媒調合法も水溶性塩類の水溶液からの共沈
法,混練法等通常触媒調製に用いられる手法は全
て適用可能である。 焼成温度に関しては、本発明に用いる触媒の活
性が600℃以上でないと顕著にならないため、600
℃以下の焼成条件は無意味である。一方、1500℃
以上にすると、触媒のシンタリングに伴なう表面
積低下が著しく、触媒活性が低下するので好まし
くない。好ましい焼成温度範囲は600℃以上1400
℃以下である。 酸化コバルト,酸化バリウム二成分系の高温相
平衡はNegus等によつて詳細に報告されている
〔NBS.Special Publication 364233(1972)〕。本
発明の触媒調製条件;0.1≦Ba/Co(原子比)≦
10.0,焼成温度600℃以上1400℃以下では、安定
相としてBa2CoO4,Ba3Co2O7,BacoO3-x及びこ
れらの固溶体が条件によつて生成するものと推定
される。一方、触媒活性の上では、これら生成安
定相に起因する明確な差異は認められない。従つ
て、バリウム,コバルト系の複合酸化物はどの結
晶形態でも窒素酸化物分解の活性成分として有効
であると判断できる。又、この系の触媒は、特開
昭55―149634号におけるストロンチウムと鉄の複
合酸化物とは異なり、高濃度NOによる予備活性
化は必要としない。 分解反応温度は、低くすぎると活性が低く、高
すぎると既述平衡(1)によるNOの平衡分圧が無視
できなくなり、高分解率が達成できなくなるので
600℃以上1000℃以下が望ましい。 以下に実施例を示し、本発明の方法の効果を明
らかにする。 実施例 1 焼成後の組成がBa/Co(原子比)=1.0となる
ように各種バリウム,コバルト化合物をボールミ
ルで2時間混合粉砕後110℃で5時間乾燥、1000
℃で5時間焼成して得た触媒を用いた実験結果を
表―1に示す。反応実験は、内径10mmφ,長さ1
mのシリカ製反応管に、各10mlの触媒を充てん
し、管状電気炉による外熱加熱で所定温度に昇温
後、NO5%を含むヘリウムバランスのガスを5
/Hで流し、(SV;500hr-1)活性比較を行なつ
た。 生成ガスはガスクロマトグラフで分析した。
The present invention relates to a method for catalytic decomposition of nitrogen oxides.
More specifically, the present invention provides a novel method for catalytically decomposing nitrogen oxides contained in exhaust gas into nitrogen and oxygen using a catalyst containing a composite oxide of barium and cobalt as an active component. BACKGROUND OF THE INVENTION Nitrogen oxides (NO x ), which are emitted from facilities that burn fossil fuels such as boilers and heating furnaces, are a major cause of air pollution, along with sulfur oxides (SO x ), and measures to eliminate them have been actively researched for a long time. Most of the commercialized flue gas desulfurization technologies are wet methods, and in the early days of denitrification methods, wet methods were the mainstream in research and development, but more than 95% of the NO x contained in flue gas is reactive. low nitric oxide (NO),
In addition, almost all wet reduction methods cannot overcome the drawback that the selectivity of absorbed NO x to nitrogen (N 2 ) is low, and most of the absorbed NO x accumulates in the absorption liquid as ammonia compounds or imide compounds. The scale of the pilot test was not exceeded. On the other hand, in the dry process, there has been significant technological improvement in selective catalytic reduction using ammonia (NH 3 ) as a reducing agent, and it was initially predicted that it would be unavoidable.
The problems of poisoning by SO x and clogging of the catalyst layer by dust have been solved through the development of monolithic catalysts using titanium oxide (TiO 2 ) as a carrier, making it possible to treat combustion exhaust gases ranging from LNG to coal. Currently, it has been evaluated as having reached the stage of technological perfection. However, even in the ammonia catalytic reduction method, ammonia, which is a valuable resource as a fertilizer raw material, has to be consumed, which is a fateful drawback, and acidic ammonium sulfate (NH There are problems such as corrosion of equipment materials caused by 4・HSO 4 ), and the development of a more effective NO x removal method is desired. From these viewpoints, the inventors investigated the catalytic cracking method, which is said to be the ultimate form of flue gas denitrification, with the aim of developing a more economical denitrification process. The equilibrium between nitric oxide (NO), nitrogen (N 2 ), and oxygen (O 2 ) (1) is overwhelmingly biased toward the production system (on the right), and 2NON 2 + O 2 (1) even with a suitable catalyst. It was pointed out early on that if this could be found, an ideal flue gas denitrification method could be established, and many researchers have worked on this to date.
Platinum and rhodium by Bachman et al. [J.Phys.
Chem. 33 , 447 (1929)], Fraser et al.
Al 2 O 3 , CaO, Cr 2 O 3 , Ga 2 O 3 , ZrO 2 , Fe 2 O 3 ,
Examination of the decomposition mechanism on TiO 2 [J.Phys.Chem. 62 , p. 215 (1958)] and Sakaida's study of platinum, NiO/
Alumina carrier [AIche J. 7 (4) 658
(1961)] and Sourirajan et al. have reported numerous studies using noble metals, base metals, and their oxides, including CuO and NiO/silica supports.
For exhaust gas treatment, the Illinois Institute of
The research conducted by Technology's Research Institute is famous [Air Pollution Foundation Report No.
20, 22 (1957)]. Recently, systematic studies have been carried out using noble metals, transition metals, their oxides, and mixed oxides as catalysts, either unsupported or supported on alumina, silica, or titania [Pollution 12 (4) 37 (1977)] , 13 (1)22
(1978)]. Despite these numerous studies, no catalyst worthy of industrial attention has yet been discovered.
It is now said that there is almost no possibility of discovering a promising catalyst. The inventors focused on compounds with a perovskite-type crystal structure, which have recently attracted attention as catalysts with unique oxidation properties, and tried to apply them to NO x catalytic cracking reactions. As a result of intensive studies, we discovered the unexpected fact that this system exhibits activity in complex oxides other than those with a perovskite crystal structure, and finally arrived at the present invention. The present invention enables exhaust gas containing nitrogen oxides to be brought into contact with a catalyst whose active substance is a composite oxide consisting essentially of barium and cobalt at a temperature range of 600°C to 1000°C, thereby removing an oxidizing agent from the outside. This is a catalytic decomposition method for nitrogen oxides, which is characterized in that nitrogen oxides contained in the gas are decomposed into nitrogen and oxygen without adding any agent. The catalyst that is the basis of the present invention has an essential requirement that the active component be a composite oxide containing substantially two components of barium and cobalt, but if the atomic ratio of cobalt to barium is less than 0.1 or more than 10.0, is low and cannot function as a catalyst. A more preferable range of the composition ratio is 8.0≧Ba/Co (atomic ratio)≧0.2. The starting materials for barium and cobalt are not particularly limited as long as they can form the above composite oxide during catalyst calcination or reaction operation, including oxides, hydroxides, chlorides, carbonates, nitrates, sulfates, Acetate and the like are commonly used. As shown in the examples below, these differences in starting materials do not make a significant difference in the cracking activity of the catalyst. As for the catalyst preparation method, all the methods normally used for catalyst preparation, such as the coprecipitation method from an aqueous solution of water-soluble salts and the kneading method, are applicable. Regarding the calcination temperature, the activity of the catalyst used in the present invention does not become noticeable unless the temperature is 600°C or higher.
Firing conditions below ℃ are meaningless. On the other hand, 1500℃
If it is more than that, the surface area of the catalyst decreases significantly due to sintering, and the catalytic activity decreases, which is not preferable. The preferred firing temperature range is 600℃ or above 1400℃
below ℃. The high-temperature phase equilibrium of the cobalt oxide and barium oxide binary system has been reported in detail by Negus et al. [NBS.Special Publication 364 233 (1972)]. Catalyst preparation conditions of the present invention: 0.1≦Ba/Co (atomic ratio)≦
10.0. At a firing temperature of 600°C or higher and 1400°C or lower, stable phases of Ba 2 CoO 4 , Ba 3 Co 2 O 7 , BacoO 3-x and solid solutions thereof are estimated to be formed depending on the conditions. On the other hand, in terms of catalytic activity, no clear difference due to these stable phases is observed. Therefore, it can be concluded that the barium-cobalt-based composite oxide is effective as an active ingredient for decomposing nitrogen oxides in any crystal form. Further, unlike the composite oxide of strontium and iron disclosed in JP-A-55-149634, this type of catalyst does not require preactivation with high concentration NO. If the decomposition reaction temperature is too low, the activity will be low, and if it is too high, the equilibrium partial pressure of NO due to equilibrium (1) mentioned above cannot be ignored, making it impossible to achieve a high decomposition rate.
Preferably above 600℃ and below 1000℃. Examples are shown below to clarify the effects of the method of the present invention. Example 1 Various barium and cobalt compounds were mixed and ground in a ball mill for 2 hours so that the composition after firing was Ba/Co (atomic ratio) = 1.0, and then dried at 110°C for 5 hours.
Table 1 shows the experimental results using the catalyst obtained by calcination at ℃ for 5 hours. For reaction experiments, the inner diameter was 10 mmφ and the length was 1.
Each 10 ml of catalyst was filled into 5 m silica reaction tubes, heated to a specified temperature by external heating in a tubular electric furnace, and then heated with 5 ml of helium-balanced gas containing 5% NO.
/H (SV; 500 hr -1 ) and activity comparison was performed. The produced gas was analyzed using a gas chromatograph.

【表】 実施例 2 出発物質としてBa(OH)2,CoOを選択し、両
者の比を変えた以外は実施例1と同様の方法で活
性比較を行なつた。結果を表―2に示す。
[Table] Example 2 The activity was compared in the same manner as in Example 1 except that Ba(OH) 2 and CoO were selected as starting materials and the ratio of the two was changed. The results are shown in Table-2.

【表】 実施例 3 Ba(OH)2,CoOをBa/Co(原子比)=1.0の比
で混合し、焼成温度を変えた以外は実施例1と同
様の方法で活性を比較した。結果を表―3に示
す。
[Table] Example 3 Ba(OH) 2 and CoO were mixed at a ratio of Ba/Co (atomic ratio) = 1.0, and the activities were compared in the same manner as in Example 1, except that the firing temperature was changed. The results are shown in Table-3.

【表】【table】

Claims (1)

【特許請求の範囲】 1 窒素酸化物を含有する排ガスを実質的にバリ
ウムとコバルトから成る複合酸化物を活性物質と
する触媒と600℃以上1000℃以下の温度域で接触
させることにより外部から酸化剤,還元剤を添加
することなく該ガス中に含有する窒素酸化物を窒
素と酸素に分解することを特徴とする窒素酸化物
の接触分解法。 2 触媒成分中のコバルトに対するバリウムの原
子比が0.1以上10.0以下の範囲である特許請求の
範囲第1項記載の方法。 3 触媒が600℃以上1400℃以下の温度で焼成さ
れたものである特許請求の範囲第1項または第2
項記載の方法。
[Claims] 1 External oxidation by bringing exhaust gas containing nitrogen oxides into contact with a catalyst whose active substance is a composite oxide consisting essentially of barium and cobalt at a temperature range of 600°C to 1000°C. A method for catalytic decomposition of nitrogen oxides, characterized in that nitrogen oxides contained in the gas are decomposed into nitrogen and oxygen without adding a reducing agent or a reducing agent. 2. The method according to claim 1, wherein the atomic ratio of barium to cobalt in the catalyst component is in the range of 0.1 or more and 10.0 or less. 3 Claims 1 or 2 in which the catalyst is fired at a temperature of 600°C or higher and 1400°C or lower
The method described in section.
JP56088857A 1981-06-11 1981-06-11 Catalytic decomposition of nitrogen oxide Granted JPS57204222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56088857A JPS57204222A (en) 1981-06-11 1981-06-11 Catalytic decomposition of nitrogen oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56088857A JPS57204222A (en) 1981-06-11 1981-06-11 Catalytic decomposition of nitrogen oxide

Publications (2)

Publication Number Publication Date
JPS57204222A JPS57204222A (en) 1982-12-14
JPS6151936B2 true JPS6151936B2 (en) 1986-11-11

Family

ID=13954649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56088857A Granted JPS57204222A (en) 1981-06-11 1981-06-11 Catalytic decomposition of nitrogen oxide

Country Status (1)

Country Link
JP (1) JPS57204222A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62171750A (en) * 1986-01-27 1987-07-28 Mitsubishi Heavy Ind Ltd Catalyst for simultaneously treating nitrogen oxide and carbon monoxide

Also Published As

Publication number Publication date
JPS57204222A (en) 1982-12-14

Similar Documents

Publication Publication Date Title
EP0947234B1 (en) A single-stage and dry catalytic process for the simultaneous removal of sulfur dioxide and nitrogen oxides from gas streams
KR950007578B1 (en) Carrier for gas-treating catalyst, method for production thereof, and gas-treating catalyst incorporation said canier therein
AU2008286480B2 (en) Catalyst, production method therefor and use thereof for decomposing N2O
US7438878B2 (en) Selective catalytic reduction of N2O
KR101898878B1 (en) METHOD FOR REMOVING N2O AND NOx FROM THE NITRIC ACID PRODUCTION PROCESS, AND AN INSTALLATION SUITABLE FOR SAME
RU2258030C2 (en) N2o decomposition catalyst, use and a method for preparation thereof
US4131643A (en) Catalyst for converting nitrogen oxides and method for converting nitrogen oxides in exhaust gases by using said catalyst
JPS61283348A (en) Oxidizing catalyst
JPH0638915B2 (en) New catalysts for selective reduction of nitrogen oxides
US4350670A (en) Process for treating flue gas
EP0317293B1 (en) A process for removing nitrogen oxides and a catalyst used for the process
JP3352494B2 (en) Nitrogen oxide decomposition catalyst and denitration method using the same
CN109603808B (en) Preparation method and application of zirconium pillared montmorillonite-loaded Ce-Nb composite catalyst
JP4204692B2 (en) Nitrogen oxide removal catalyst, method for producing the same, and method for removing nitrogen oxides using the catalyst
US3931393A (en) Catalytic process for removing sulfur dioxide from gas streams
JPS6151936B2 (en)
CN111266104B (en) Composite manganese oxide and preparation method and application thereof
JPS6151937B2 (en)
CHEN et al. Removal of NOx using novel Fe-Mn mixed-oxide catalysts at low temperature
JPS63147546A (en) Method for removing nitrogen oxide in exhaust gas
KR100295370B1 (en) Method for producing a vanadium pentoxide-based catalyst for removing nitrogen oxides using titanium dioxide for pigment as a carrier of catalyst
JPS5823136B2 (en) How to remove nitrogen oxides from exhaust gas
RU2004320C1 (en) Method for gas purification catalytic agent preparing
JPH05272719A (en) Catalyst combustion method of methane
KR100332224B1 (en) Oxidation Catalyst for Emission Control of Dioxin in Flue Gas, method of preparing and using the same