JPS6151665B2 - - Google Patents

Info

Publication number
JPS6151665B2
JPS6151665B2 JP57099544A JP9954482A JPS6151665B2 JP S6151665 B2 JPS6151665 B2 JP S6151665B2 JP 57099544 A JP57099544 A JP 57099544A JP 9954482 A JP9954482 A JP 9954482A JP S6151665 B2 JPS6151665 B2 JP S6151665B2
Authority
JP
Japan
Prior art keywords
pressure
fuel
valve
oil
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57099544A
Other languages
Japanese (ja)
Other versions
JPS58217761A (en
Inventor
Hiroaki Ikunobu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Shoten Co Ltd
Original Assignee
Fuji Shoten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Shoten Co Ltd filed Critical Fuji Shoten Co Ltd
Priority to JP9954482A priority Critical patent/JPS58217761A/en
Publication of JPS58217761A publication Critical patent/JPS58217761A/en
Publication of JPS6151665B2 publication Critical patent/JPS6151665B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M65/00Testing fuel-injection apparatus, e.g. testing injection timing ; Cleaning of fuel-injection apparatus

Description

【発明の詳細な説明】 この発明は船舶等のデイーゼル機関に用いられ
る燃料噴射弁について弁作動の良否判定や調整用
データの取得を目的として、リーク状態、通気機
能、開弁圧、噴霧状態等を試験する装置に関する
ものである。
[Detailed Description of the Invention] This invention aims to determine the quality of valve operation and obtain adjustment data for fuel injection valves used in diesel engines such as ships, such as leak status, ventilation function, valve opening pressure, spray status, etc. This relates to a device for testing.

この種燃料噴射弁としてはB&W―GF型、ズ
ルザー型等の種々のものがあるが、その基本構造
は筒状本体内に設けたオイルチヤンバに連通する
細噴口を、弁加圧スプリングの弾発力で加圧され
た弁体にて閉止しておき、チヤンバ内に送り込ん
だ燃料油圧によつて押上げて開弁させ、燃料油を
細噴口から外部へミストとして噴射させるように
なされている。しかして、このような燃料噴射弁
としては、細噴口から噴射される燃料油が安定し
たミストの状態で噴出すること、開弁および閉弁
に際して油の切れがよく前垂れや後垂れのないこ
と、ミストの方向が定められた形にむらなく広が
ること等が必要であり、これらは弁加圧スプリン
グの内部応力の均等性、寸法精度、弁体等の可動
部のねじれの有無、摩擦抵抗、シート面の形状等
にて微妙に影響される。従つて燃料噴射弁はその
使用前に弁作動の良否判定や調整用データの取得
のためにリーク状態、通気機能、開弁圧、噴霧状
態等を試験する必要があり、この試験はできるだ
け実際のデイーゼル機関の運転状態に近い条件下
で行なうことが望ましい。
There are various types of fuel injection valves of this kind, such as the B&W-GF type and the Sulzer type, but their basic structure is that a narrow nozzle that communicates with an oil chamber provided in a cylindrical body is connected to a narrow nozzle that is connected to the elastic force of a valve pressurizing spring. The chamber is closed by a pressurized valve body, and is pushed up by the fuel oil pressure sent into the chamber to open the valve, and the fuel oil is injected as a mist to the outside from a narrow nozzle. Therefore, such a fuel injection valve must be able to eject fuel oil from a narrow nozzle in a stable mist state, and to drain the oil well when opening and closing the valve without dripping at the front or after. It is necessary for the mist to spread evenly in a predetermined shape. It is slightly affected by the shape of the surface, etc. Therefore, before using a fuel injection valve, it is necessary to test the leakage condition, ventilation function, valve opening pressure, spray condition, etc. in order to determine the quality of valve operation and obtain data for adjustment. It is desirable to carry out the test under conditions close to the operating conditions of a diesel engine.

ところが、従来の燃料噴射弁試験装置としては
燃料噴射弁内に燃料油を高圧状態で供給するのに
ポンプ直動方式、エアーブースタ方式、油圧ブー
スタ方式等の種々の方式を採るものが知られる
が、実際のデイーゼル機関の運転状態に近い高圧
と加圧速度を達成するには加圧部を大型化すると
共に加圧駆動力を非常に大きくする必要があつ
た。また特にエアーブースタ方式においては燃料
油の噴射速度の安定化と任意調整、ならびに任意
の加圧下でのブースタの静止が困難であつた。
However, conventional fuel injection valve testing devices are known to employ various methods such as a pump direct drive method, an air booster method, and a hydraulic booster method to supply fuel oil at high pressure into the fuel injection valve. In order to achieve high pressure and pressurization speed close to the operating conditions of an actual diesel engine, it was necessary to increase the size of the pressurizing section and to significantly increase the pressurizing driving force. Furthermore, especially in the air booster system, it is difficult to stabilize and arbitrarily adjust the injection speed of fuel oil, and to keep the booster stationary under arbitrary pressurization.

この発明は上記従来の欠点を解消するためにな
されたもので、エアー圧を駆動源として燃料油を
高圧状態に加圧して燃料噴射弁に圧送するように
したエアーブースター方式の燃料噴射弁試験装置
において、燃料噴射弁に燃料油の圧送を可能とし
逆流を阻止する逆止弁を介して連通され、かつ、
燃料油タンクから燃料油の吸入を可能とし、逆流
を阻止する逆止弁を介して連通する燃料加圧室
と、上記燃料加圧室に隣接して作動油が充満した
油圧シリンダー室と、上記油圧シリンダー室内及
びエアーシリンダー室内に夫々位置するピストン
に同軸状に固定されて上記燃料加圧室内で往復動
し、その復動時燃料油タンクから燃料加圧室内へ
燃料油を吸入し、その往動時、燃料加圧室内の燃
料油を燃料噴射弁に圧送するプランジヤーと、上
記油圧シリンダー室内のピストン行程の前後間を
該油圧シリンダー室外で連絡する作動油流路と、
上記作動油流路を開閉すると共に流量調整を行な
う制御バルブと、エアー源に並列接続された高圧
用圧力調整弁と低圧用圧力調整弁とに三方コツク
を介して切替接続されるエアー圧を上記エアーシ
リンダー室の両端部の給排気口へ交互に送気する
切換バルブと、上記燃料加圧室から燃料噴射弁へ
の燃料油の圧送路の途中に接続される高圧用油圧
ゲージと、上記燃料加圧室から燃料噴射弁への燃
料油の圧送路の途中に圧力伝達経路を介して接続
され、該圧力伝達経路の途中に上記三方コツクの
高圧用圧力調整弁への切替接続により閉じ、低圧
用圧力調整弁への切替接続により開となるように
連動する二方コツクを介して接続された低圧用油
圧ゲージとからなり、上記油圧シリンダー室内の
ピストン前後室を連絡する作動油流路に設けた制
御バルブによつて、上記エアシリンダー室に供給
されるエアー圧を駆動源とするプランジヤーの動
作速度を制御させた燃料噴射弁試験装置である。
This invention was made to solve the above-mentioned conventional drawbacks, and is an air booster type fuel injection valve testing device that uses air pressure as a driving source to pressurize fuel oil to a high pressure state and forcefully feed it to the fuel injection valve. , communicated with the fuel injection valve via a check valve that enables pressure feeding of fuel oil and prevents backflow, and
a fuel pressurizing chamber that allows fuel oil to be sucked from the fuel oil tank and communicates through a check valve that prevents backflow; a hydraulic cylinder chamber that is adjacent to the fuel pressurizing chamber and is filled with hydraulic oil; It is fixed coaxially to pistons located in the hydraulic cylinder chamber and the air cylinder chamber, respectively, and reciprocates within the fuel pressurizing chamber.During the return movement, fuel oil is sucked from the fuel oil tank into the fuel pressurizing chamber, and the a plunger that forces fuel oil in the fuel pressurizing chamber to the fuel injection valve during operation, and a hydraulic oil flow path that communicates the front and back of the piston stroke in the hydraulic cylinder chamber outside the hydraulic cylinder chamber;
The air pressure is switched and connected to the control valve that opens and closes the hydraulic oil flow path and adjusts the flow rate, and the high pressure pressure regulation valve and low pressure pressure regulation valve that are connected in parallel to the air source through a three-way connection. A switching valve that alternately supplies air to the air supply and exhaust ports at both ends of the air cylinder chamber, a high-pressure oil pressure gauge connected to the middle of the fuel oil pressure feeding path from the fuel pressurizing chamber to the fuel injection valve, and the fuel oil pressure gauge. It is connected via a pressure transmission path in the middle of the fuel oil pressure feeding path from the pressurizing chamber to the fuel injection valve, and is closed by switching connection to the three-way pressure regulating valve for high pressure in the middle of the pressure transmission path, and the low pressure It consists of a low-pressure oil pressure gauge connected via a two-way cock that is opened by switching the connection to the hydraulic pressure regulating valve. This is a fuel injection valve testing device in which the operating speed of a plunger whose driving source is the air pressure supplied to the air cylinder chamber is controlled by a control valve.

第1図の燃料噴射弁は、無冷却形のB&W−
GF形テイーゼル機関に使用される燃料噴射弁で
あつて、図面において1は弁体ケースであつて、
基板2に固設され、かつ、ノズル体3を突出させ
た状態で装着するための開口を先端に有してい
る。4は筒状の弁本体、6は筒状の高圧バルブ
体、7は筒状の低圧バルブ体、8は中間部材、9
はスリーブ、10は棒状部材であつて、弁体ケー
ス1内に軸方向に組込まれている。高圧バルブ体
6は先端に弁本体4の孔4′と係合する弁部分6
1と、上記弁部分61の近傍周面に開口する複数
の小孔62を有しており、かつ、スリーブ9並び
にスプリング受11を介して高圧スプリング12
によつて常時弁本体4内で先端方向に弾圧されて
いる。低圧バルブ体7は上記高圧バルブ体6内に
嵌挿されており、先端に高圧バルブ体6の弁座6
3に当接される先端部分71と、この先端部分7
1の近傍周面に開口する複数個の小孔72を有し
ており、中間部材8との間に配した低圧スプリン
グ13によつて常時高圧バルブ体6内で、先端方
向に弾圧されている。中間部材8の先端小径部分
81は低圧バルブ体7の上端に嵌合してあり、小
径部分81に穿設されたオリフイス82は通常低
圧スプリング室83に開口している。そして上記
高圧バルブ体6、低圧バルブ体7、中間部材8、
棒状部材10には燃料通路6a,7a,8a,1
0aが穿設されており、通路7a,8a,10a
は常時連通している。14はオリフイス状の空気
抜き孔である。
The fuel injection valve shown in Figure 1 is a non-cooled type B&W-
This is a fuel injection valve used in a GF type tasel engine, and in the drawing, 1 is a valve body case,
It is fixed to the substrate 2 and has an opening at the tip for mounting the nozzle body 3 in a protruding state. 4 is a cylindrical valve body, 6 is a cylindrical high-pressure valve body, 7 is a cylindrical low-pressure valve body, 8 is an intermediate member, 9
1 is a sleeve, and 10 is a rod-shaped member, which is incorporated into the valve body case 1 in the axial direction. The high pressure valve body 6 has a valve portion 6 at its tip that engages with the hole 4' of the valve body 4.
1 and a plurality of small holes 62 that open on the peripheral surface near the valve portion 61, and a high pressure spring 12 through the sleeve 9 and spring receiver 11.
is constantly pressed in the distal direction within the valve body 4. The low-pressure valve body 7 is fitted into the high-pressure valve body 6, and has a valve seat 6 of the high-pressure valve body 6 at its tip.
3, and this tip portion 7
It has a plurality of small holes 72 that open on the peripheral surface near the valve body 1, and is constantly pressed in the distal direction within the high-pressure valve body 6 by a low-pressure spring 13 disposed between it and the intermediate member 8. . A small diameter portion 81 at the tip of the intermediate member 8 is fitted into the upper end of the low pressure valve body 7, and an orifice 82 formed in the small diameter portion 81 normally opens into a low pressure spring chamber 83. And the high pressure valve body 6, the low pressure valve body 7, the intermediate member 8,
The rod-shaped member 10 has fuel passages 6a, 7a, 8a, 1
0a is bored, and passages 7a, 8a, 10a
is in constant communication. 14 is an orifice-shaped air vent hole.

上記構造の燃料噴射弁において、燃料通路10
aから燃料が送られ通路7a,8a,10aに燃
料が充満すると以後燃料がオリフイス82から弁
内の各部に入り、弁内各部の残留空気を空気抜き
孔14より放出し、ついには弁内の各部にも燃料
油が充満する。ところで燃料通路7aから供給さ
れる燃料はオリフイス82から流出する量よりは
るかに多量なるため、通路内の燃料圧が昇圧し、
この燃料圧は低圧バルブ体7の小孔72を通つて
第1の圧力室aに作用しており、低圧スプリング
13の弾圧力に打ち勝つにいたると低圧バルブ体
7が上昇する。低圧バルブ体7が上昇すると以
後、オリフイス82は閉塞され、空気抜き孔14
からの燃料油の流出は阻止される。同時に弁座6
3から低圧バルブ体7の先端部分71が離れ、高
圧バルブ体6内に燃料油が流れ込み、小孔62を
通して第2の圧力室b内にも燃料圧が作用する。
この状態で燃料圧が上昇して高圧スプリング12
の弾圧力に打ち勝つにいたると高圧バルブ体6が
上昇し、弁部分61での閉塞を解放し、孔4′を
通つて燃料油がノズル体3の細噴口3′より噴射
される。燃料油が外部に噴射されると、燃料圧が
低下し、高圧スプリング12の弾圧力より低圧に
なると再び高圧バルブ体6が降下して弁部分61
で孔4′を閉塞し、第2の圧力室b内の昇圧をま
つ。上記動作を繰り返えして所望の燃料噴射動作
を行う。
In the fuel injection valve having the above structure, the fuel passage 10
When the fuel is sent from a and the passages 7a, 8a, and 10a are filled with fuel, the fuel enters each part of the valve from the orifice 82, and the residual air in each part of the valve is released from the air vent hole 14, and finally, the fuel enters each part of the valve. is also filled with fuel oil. By the way, since the amount of fuel supplied from the fuel passage 7a is much larger than the amount flowing out from the orifice 82, the fuel pressure in the passage increases.
This fuel pressure acts on the first pressure chamber a through the small hole 72 of the low pressure valve body 7, and when it overcomes the elastic force of the low pressure spring 13, the low pressure valve body 7 rises. After the low pressure valve body 7 rises, the orifice 82 is closed and the air vent hole 14 is closed.
The leakage of fuel oil from is prevented. At the same time valve seat 6
The tip portion 71 of the low-pressure valve body 7 separates from the valve body 3, fuel oil flows into the high-pressure valve body 6, and fuel pressure also acts in the second pressure chamber b through the small hole 62.
In this state, the fuel pressure increases and the high pressure spring 12
When overcoming the elastic force of , the high-pressure valve body 6 rises to release the blockage in the valve portion 61, and fuel oil is injected from the narrow injection port 3' of the nozzle body 3 through the hole 4'. When the fuel oil is injected to the outside, the fuel pressure decreases, and when the pressure becomes lower than the elastic force of the high pressure spring 12, the high pressure valve body 6 descends again and the valve portion 61
The hole 4' is closed to prevent the pressure in the second pressure chamber b from increasing. The above operation is repeated to perform the desired fuel injection operation.

第2図は上記形式の燃料噴射弁に適用し得る仕
様としたこの発明に係る燃料噴射弁試験装置であ
つて、第2図において21は油圧ブースタで、燃
料油タンク22から燃料噴射弁Vへ至る送油路2
3に連通する燃料加圧室24と、該加圧室24に
隣接して内部に作動油が充満した油圧シリンダー
室25と、該シリンダー室25の加圧室24側と
は逆側に隣接したエアーシリンダー室26と、両
シリンダー室25,26のそれぞれに位置するピ
ストン27,28に同軸状に固定されて加圧室2
4内で往復動するプランジヤー29とで構成され
ている。このプランジヤー29は、エアーシリン
ダー室26内のピストン28前後のエアーの差圧
によつて駆動し、復動即ち後退に伴なつてタンク
22から逆止弁30bを介して燃料油を加圧室2
4内へ吸引し往動、即ち前進に伴なつて加圧室2
4内から噴射弁V内までの燃料油を加圧し且つ噴
射弁Vへ逆止弁30aを介して圧送する機能を果
たす。
FIG. 2 shows a fuel injection valve testing device according to the present invention with specifications applicable to the above-mentioned type of fuel injection valve. In FIG. Oil route 2
3, a hydraulic cylinder chamber 25 filled with hydraulic oil adjacent to the pressurizing chamber 24, and a hydraulic cylinder chamber 25 adjacent to the pressurizing chamber 24 on the side opposite to the pressurizing chamber 24 side of the cylinder chamber 25. The pressurizing chamber 2 is fixed coaxially to the air cylinder chamber 26 and pistons 27 and 28 located in both cylinder chambers 25 and 26, respectively.
4 and a plunger 29 that reciprocates within the plunger 4. This plunger 29 is driven by the differential pressure of the air before and after the piston 28 in the air cylinder chamber 26, and as it moves backward, that is, moves backward, the plunger 29 supplies fuel oil from the tank 22 through the check valve 30b to the pressurizing chamber 28.
4 and move forward, that is, pressurized chamber 2 as it moves forward.
It functions to pressurize the fuel oil from the inside of the fuel oil 4 to the inside of the injection valve V, and force-feed it to the injection valve V via the check valve 30a.

油圧シリンダー室25にはピストン27の行程
の前後部に油出入口31a,31bが穿設され、
両油出入口31a,31bを外部で連絡する作動
油流路32が付設されており、ピストン27の動
作と共に作動油が流路32を通してピストン27
の前後間で移動するようになされている。33は
作動油流路32に設けた制御バルブで、手動操作
レバー34によつて作動油流路32を開閉し、プ
ランジヤー29及びピストン27,28の往復動
を切換え、かつ、プランジヤー29の往動速度を
制御する。36は作動油供給タンクで、ピストン
27の行程前後の油圧シリンダー室25内に逆止
弁37a,37bを介して連結され、リーク等で
減少する作動油を補充してシリンダー室25内を
常に作動油の充満状態とする機能を持つ。
Oil inlets and outlets 31a and 31b are bored in the hydraulic cylinder chamber 25 at the front and rear of the stroke of the piston 27,
A hydraulic oil passage 32 is provided that externally communicates both the oil inlets and outlets 31a and 31b, and as the piston 27 moves, hydraulic oil passes through the passage 32 and connects the piston 27.
It is designed to move between before and after. Reference numeral 33 denotes a control valve provided in the hydraulic oil passage 32, which opens and closes the hydraulic oil passage 32 by a manual operation lever 34, switches the reciprocating movement of the plunger 29 and the pistons 27, 28, and controls the reciprocating movement of the plunger 29. Control speed. Reference numeral 36 denotes a hydraulic oil supply tank, which is connected to the hydraulic cylinder chamber 25 before and after the stroke of the piston 27 via check valves 37a and 37b, and constantly operates the cylinder chamber 25 by replenishing hydraulic oil that decreases due to leakage, etc. It has the function of filling up with oil.

エアーシリンダー室26へのエアー供給はエア
ーポンプ等のエアー源38より送気路39を通し
て行なわれる。40はフイルター、41aは例え
ば0.3〜8.5Kg/cm2の範囲で圧力調整を行なう高圧
用圧力調整弁、41bは例えば0.14〜2.8Kg/cm2
の範囲で圧力調整を行なう低圧用圧力調整弁であ
り、両圧力調整弁は並列に配設されて三方コツク
42により切換えられ、エアー源からの一次エア
ー圧を予め調整した一方の圧力調整弁により二次
エアー圧に変換するようになつている。43は逆
止弁、44aは高圧用圧力調整弁41aに対応す
る圧力ゲージ、44bは低圧用圧力調整弁41b
に対応する圧力ゲージ、45はオイラーである。
また46は送気をエアーシリンダー室26のピス
トン28の行程前後に設けた給排気口47a,4
7bに連通する送気路39a,39bの一方を通
して行なうための切換バルブで、パイロツトバル
ブ48からのエアー圧にて切換作動するようにな
つている。パイロツトバルブ48は作動桿49を
備えており、制御バルブ33の手動操作レバー3
4がC位置にあるときこれに作動桿49が押圧さ
れて図示姿勢をとり、送気路39に連絡した分岐
路50を通るエアーの圧力で切換バルブ46を図
示の状態に作動させてエアー圧をピストン28の
前室に作用させ、後室は大気に解放し、また、手
動操作レバー34がB,C位置にあるときばね5
1によつて復帰してパイロツトエアー圧を大気に
開放し、切換バルブ46をばね47に復帰させて
エアー圧をピストン28の後室に作用させ、前室
を大気に解放させる。52は噴射弁Vへ圧送され
る燃料油の油圧を表示する高圧用油圧ゲージ(例
えば1000Kg/cm2ゲージ)、53は同じく低圧用油
圧ゲージ(例えば50Kg/cm2)、54は低圧用油圧
ゲージ53の圧力伝達経路55に設置された二方
コツクである。この二方コツク54は圧力調整弁
切換用の三方コツク42に連動しており、低圧用
圧力調整弁41bを使用する場合のみに上記径路
55を開放し、それによつて高圧用圧力調整弁4
1aを使用する時の高油圧でゲージ53が破壊さ
れるのを防止する機能を果たす。作動油流路32
の開閉、プランジヤー29及びピストン27,2
8の往復動作の切換並びにプランジヤー29の往
動速度の制御は手動操作レバー34で行う。即ち
手動操作レバー34をC位置におくことによつて
パイロツトバルブ48が図示の状態に切換り、パ
イロツト圧が切換バルブ46に作用して図示の状
態に切換え、エアーシリンダー室26のピストン
28の前部室にエアー圧が作用し、ピストン28
に復動力が作用する。手動操作レバー34がC位
置以外のときは、パイロツトバルブ48はばね5
1によつて切換り、切換バルブ46がばね47に
よつて切換り、ピストン28の後部室にエアー圧
が作用し、ピストン28に往動力が作用する。ま
た、手動操作レバー34がB位置のときは、油圧
シリンダー室の前後室を連通する作動油流路32
が遮断され、ピストン28の動きは固定される。
また、B位置以外で作動油流路32は連通し、ピ
ストン28は移動可能な状態におかれる。更にA
位置とB位置で制御バルブ33の開口面積が最大
となる。従つて手動操作レバー34の移動角度で
制御バルブ33の開口面積を調整することによ
り、ピストン28、ひいてはプランジヤー29の
往動速度の制御が可能となる。
Air is supplied to the air cylinder chamber 26 from an air source 38 such as an air pump through an air supply path 39. 40 is a filter, 41a is a high-pressure pressure regulating valve that adjusts the pressure in the range of, for example, 0.3 to 8.5 Kg/cm 2 , and 41b is, for example, 0.14 to 2.8 Kg/cm 2
This is a low-pressure pressure regulating valve that adjusts the pressure within the range of It is designed to convert to secondary air pressure. 43 is a check valve, 44a is a pressure gauge corresponding to the high pressure pressure regulating valve 41a, and 44b is a low pressure pressure regulating valve 41b.
The corresponding pressure gauge, 45, is an Euler.
Further, reference numeral 46 indicates air supply/exhaust ports 47a and 4 provided before and after the stroke of the piston 28 in the air cylinder chamber 26.
This is a switching valve for passing air through one of the air supply passages 39a and 39b communicating with the pilot valve 7b, and is adapted to be switched by air pressure from a pilot valve 48. The pilot valve 48 is equipped with an actuating rod 49, which is connected to the manual operating lever 3 of the control valve 33.
4 is in the C position, the actuating rod 49 is pressed to take the position shown in the figure, and the switching valve 46 is actuated to the state shown in the figure by the pressure of the air passing through the branch passage 50 connected to the air supply passage 39, thereby increasing the air pressure. acts on the front chamber of the piston 28, and the rear chamber is released to the atmosphere, and when the manual operation lever 34 is in the B or C position, the spring 5
1 to release the pilot air pressure to the atmosphere, the switching valve 46 is returned to the spring 47, the air pressure is applied to the rear chamber of the piston 28, and the front chamber is released to the atmosphere. 52 is a high pressure oil pressure gauge (for example, 1000Kg/cm 2 gauge) that displays the oil pressure of the fuel oil to be pumped to the injection valve V, 53 is also a low pressure oil pressure gauge (for example, 50Kg/cm 2 ), and 54 is a low pressure oil pressure gauge. This is a two-way cock installed in the pressure transmission path 55 of 53. This two-way socket 54 is interlocked with the three-way socket 42 for switching the pressure regulating valve, and opens the passage 55 only when the low pressure pressure regulating valve 41b is used.
It functions to prevent the gauge 53 from being destroyed by high oil pressure when using 1a. Hydraulic oil flow path 32
opening/closing, plunger 29 and piston 27, 2
Switching of the reciprocating operation of the plunger 8 and control of the forward movement speed of the plunger 29 are performed by a manual operation lever 34. That is, by placing the manual operation lever 34 in the C position, the pilot valve 48 is switched to the state shown in the figure, and the pilot pressure acts on the switching valve 46 to switch it to the state shown in the figure. Air pressure acts on the piston 28
A restoring force acts on the When the manual operation lever 34 is in a position other than C, the pilot valve 48 is
1, the switching valve 46 is switched by the spring 47, air pressure acts on the rear chamber of the piston 28, and forward force acts on the piston 28. Further, when the manual operation lever 34 is in the B position, the hydraulic oil passage 32 that communicates the front and rear chambers of the hydraulic cylinder chamber
is blocked, and the movement of the piston 28 is fixed.
Moreover, the hydraulic oil flow path 32 is in communication at positions other than the B position, and the piston 28 is placed in a movable state. Further A
The opening area of the control valve 33 becomes maximum at the position and the B position. Therefore, by adjusting the opening area of the control valve 33 by adjusting the movement angle of the manual operation lever 34, the forward movement speed of the piston 28 and, by extension, the plunger 29 can be controlled.

上記構成の試験装置によつて燃料噴射弁Vの通
気機能と作動性を試験するには、加圧室24内に
燃料油を吸引しておき、まず三方コツク42によ
つて低圧用圧力調整弁41bを経路に接続し、操
作レバー34をA位置にして噴射弁Vの空気抜き
孔14より出る空気と、その後に滲出する燃料油
を確認することによつて通気機能を判定する。
In order to test the ventilation function and operability of the fuel injection valve V using the test device configured as described above, fuel oil is sucked into the pressurizing chamber 24, and first, the low-pressure pressure regulating valve is 41b to the path, set the operating lever 34 to position A, and check the air exiting from the air vent hole 14 of the injection valve V and the fuel oil seeping out thereafter, thereby determining the ventilation function.

次に低圧バルブ体7の開弁圧を知るには、噴射
弁V内に燃料油を充満させたのち、加圧室24内
に燃料油を吸引し、三方コツク42によつて低圧
用圧力調整弁41bを経路に接続し、操作レバー
34をA位置にしてプランジヤー29を往動さ
せ、第1の圧力室a内の圧力が増大してゲージ5
3の指示圧力が一瞬跳ね上がる点を読みとる。こ
の点が低圧バルブ体7が作動して弁座63が開い
たことを示し、上記跳ね上がりの直前の指示圧力
が低圧バルブ体7の開弁圧となる。
Next, to know the opening pressure of the low pressure valve body 7, fill the injection valve V with fuel oil, then suck the fuel oil into the pressurizing chamber 24, and adjust the pressure for low pressure with the three-way knob 42. The valve 41b is connected to the path, the operating lever 34 is set to the A position, the plunger 29 is moved forward, and the pressure in the first pressure chamber a increases and the gauge 5
Read the point where the indicated pressure in step 3 jumps momentarily. This point indicates that the low pressure valve body 7 has operated and the valve seat 63 has opened, and the command pressure immediately before the above jump becomes the opening pressure of the low pressure valve body 7.

更に、高圧バルブ体6の開弁圧を知るには、噴
射弁V内に燃料油を充満させたのち、加圧室24
内に燃料油を吸引しておき、三方コツク42の切
換えにより高圧用圧力調整弁41aを径路に接続
する。この時、同時に二方コツク54が連動して
低圧用の油圧ゲージ53の圧力伝達径路55が遮
断される。しかる後、前記と同様に操作レバー3
4をA位置にすれば、プランジヤー29の往動に
よつて高圧用の油圧ゲージ52の指示圧力が上昇
し、ある時点で指示圧力が下がる。これは高圧バ
ルブ体6が開弁したことを示す。
Furthermore, in order to know the opening pressure of the high-pressure valve body 6, after filling the injection valve V with fuel oil, the pressurizing chamber 24
Fuel oil is sucked into the tank, and the high-pressure pressure regulating valve 41a is connected to the path by switching the three-way cock 42. At this time, the two-way cock 54 is simultaneously operated to block the pressure transmission path 55 of the low pressure oil pressure gauge 53. After that, press the operating lever 3 in the same way as above.
4 to position A, the forward movement of the plunger 29 causes the indicated pressure of the high-pressure hydraulic gauge 52 to rise, and at a certain point, the indicated pressure decreases. This indicates that the high pressure valve body 6 has opened.

更に、噴射弁Vの噴霧状態を試験するには、噴
射弁V内に燃料油を充満させたのち、加圧室24
内に燃料油を吸引しておき、高圧用圧力調整弁4
1aを開としておき、手動操作レバー34をA位
置にすればプランジヤー29の往動によつて第1
図に示す第2の加圧室b内の圧力が上昇し、高圧
バルブ体6の開弁によつてノズル体3の細噴孔
3′より燃料油が噴射される。プランジヤー29
の一行程内で数回高圧バルブ体66が開弁を繰り
返えす。この開弁時、噴霧状態を観察し、また、
その他の状態を観察する。
Furthermore, in order to test the spray state of the injection valve V, after filling the injection valve V with fuel oil, the pressurizing chamber 24
Fuel oil is sucked into the high pressure pressure regulating valve 4.
If 1a is left open and the manual operation lever 34 is set to the A position, the forward movement of the plunger 29 will cause the first
The pressure in the second pressurizing chamber b shown in the figure rises, and fuel oil is injected from the narrow nozzle hole 3' of the nozzle body 3 by opening the high-pressure valve body 6. plunger 29
The high pressure valve body 66 repeats opening several times within one stroke. When the valve is opened, observe the spray condition, and
Observe other conditions.

上記の各種試験においては、噴射弁V内での昇
圧状態がゆるやかな程、各種試験が容易であり、
従つて制御バルブ33によつて作動油流路32流
量を絞り、プランジヤー29の往動速度をおそく
すればよい。
In the various tests mentioned above, the more gradual the pressure increase inside the injection valve V, the easier the various tests are.
Therefore, the flow rate of the hydraulic oil passage 32 may be throttled by the control valve 33 to slow down the forward movement speed of the plunger 29.

又、実際のデイーゼル機関の運転条件で噴射弁
Vを動作させるには操作レバー34をA位置にお
き、作動油流路32の流量を大きくしてプランジ
ヤー29の往動速度を速くすれば良い。
Further, in order to operate the injection valve V under the actual operating conditions of a diesel engine, it is sufficient to place the operating lever 34 in the A position, increase the flow rate of the hydraulic oil passage 32, and increase the forward movement speed of the plunger 29.

本発明の上記試験において、操作レバー34を
B位置におけば、如何なる状態においてもプラン
ジヤー29の動きを停止させることができる。
In the above test of the present invention, if the operating lever 34 is placed in the B position, the movement of the plunger 29 can be stopped in any state.

尚、上記実施例ではB&W―GF型デイーゼル
機関に使用する燃料噴射弁を例として、燃料噴射
用の弁機構と空気抜き後に排気孔への通路を遮断
する弁機構とを備えた燃料噴射弁に対する試験装
置および試験方法を示したが、燃料噴射用の弁機
構のみを有するもの例えばズルザー型の燃料噴射
弁についても実施例装置によりリーク状態、開弁
圧、噴霧状態等の試験を行なうことができる。こ
の場合、低圧用減圧弁41bと低圧用油圧ゲージ
53とを設けない構成としてもよい。
In the above example, a fuel injection valve used in a B&W-GF type diesel engine is used as an example, and a test was conducted on a fuel injection valve equipped with a valve mechanism for fuel injection and a valve mechanism that blocks a passage to an exhaust hole after air is removed. Although the apparatus and test method have been shown, it is also possible to test the leakage state, valve opening pressure, spray state, etc. using the apparatus of the embodiment for a fuel injection valve having only a valve mechanism for fuel injection, such as a Sulzer type fuel injection valve. In this case, a configuration may be adopted in which the low pressure reducing valve 41b and the low pressure oil pressure gauge 53 are not provided.

更に上記実施例では電気的な制御機構を用いず
に制御バルブ33を手動操作すると共に該操作で
切換バルブ46が連動するように構成し、装置全
体の簡素化と低コスト化を図つているが、制御機
構を電気的手段あるいは他の手段で自動化するよ
うに構成しても差し支えなく、また個々の操作部
分を独立に操作可能としてもよい。
Furthermore, in the above embodiment, the control valve 33 is operated manually without using an electrical control mechanism, and the switching valve 46 is operated in conjunction with the operation, thereby simplifying the entire apparatus and reducing costs. The control mechanism may be configured to be automated by electrical means or other means, and the individual operating parts may be independently operable.

以上説明したように、この発明はエアー圧を駆
動源として燃料油を高圧状態に加圧して燃料噴射
弁に圧送するようにしたエアーブースター方式の
燃料噴射弁試験装置において、燃料噴射弁に燃料
油の圧送を可能とし逆流を阻止する逆止弁を介し
て連通され、かつ、燃料油タンクから燃料油の吸
入を可能とし、逆流を阻止する逆止弁を介して連
通する燃料加圧室と、上記燃料加圧室に隣接して
作動油が充満した油圧シリンダー室と、上記油圧
シリンダー室に隣接するエアーシリンダー室と、
上記油圧シリンダー室内及びエアーシリンダー室
内に夫々位置するピストンに同軸状に固定されて
上記燃料加圧室内で往復動し、その復動時燃料油
タンクから燃料加圧室内へ燃料油を吸入し、その
往動時、燃料加圧室内の燃料油を燃料噴射弁に圧
送するプランジヤーと、上記油圧シリンダー室内
のピストン行程の前後間を該油圧シリンダー室外
で連絡する作動油流路と、上記作動油流路を開閉
すると共に流量調整を行なう制御バルブと、エア
ー源に並列接続された高圧用圧力調整弁と低圧用
圧力調整弁とに三方コツクを介して切替接続され
るエアー圧を上記エアーシリンダー室の両端部の
給排気口へ交互に送気する切換バルブと、上記燃
料加圧室から燃料噴射弁への燃料油の圧送路の途
中に接続される高圧用油圧ゲージと、上記燃料加
圧室から燃料噴射弁への燃料油の圧送路の途中に
圧力伝達経路を介して接続され、該圧力伝達経路
の途中に上記三方コツクの高圧用圧力調整弁への
切替接続により閉じ、低圧用圧力調整弁への切替
接続により開となるように連動する二方コツクを
介して接続された低圧用油圧ゲージとからなり、
上記油圧シリンダー室内のピストン前後室を連絡
する作動油流路に設けた制御バルブによつて、上
記エアシリンダー室に供給されるエアー圧を駆動
源とするプランジヤーの動作速度を制御させか
ら、従来のエアーブースター方式の欠点とされて
いた噴射速度の不安定なバラツキ、任意な速度調
整の不可及び停止応答性の悪さ等を、簡単確実に
改善することができ、しかも、駆動源となるエア
ー圧を高圧と低圧とに切替接続可能としたことに
よつて、1段作動型の燃料噴射弁と2段作動型の
燃料噴射弁のいずれの試験にも使用することがで
き、さらに、高圧噴射試験時には低圧用油圧ゲー
ジの破損を防止できる。
As explained above, the present invention uses an air booster type fuel injection valve testing device that uses air pressure as a driving source to pressurize fuel oil to a high pressure state and forcefully feed it to the fuel injection valve. a fuel pressurizing chamber that communicates via a check valve that enables pressure feeding of fuel oil and prevents backflow, and that communicates via a check valve that allows suction of fuel oil from the fuel oil tank and prevents backflow; a hydraulic cylinder chamber filled with hydraulic oil adjacent to the fuel pressurizing chamber; and an air cylinder chamber adjacent to the hydraulic cylinder chamber;
It is fixed coaxially to pistons located in the hydraulic cylinder chamber and the air cylinder chamber, respectively, and moves reciprocatingly within the fuel pressurizing chamber, and during the return movement, it sucks fuel oil from the fuel oil tank into the fuel pressurizing chamber. A plunger that forces fuel oil in the fuel pressurizing chamber to the fuel injection valve during forward movement, a hydraulic oil flow path that communicates the front and rear strokes of the piston in the hydraulic cylinder chamber outside the hydraulic cylinder chamber, and the hydraulic oil flow path A control valve that opens and closes and adjusts the flow rate, and a high-pressure pressure regulating valve and a low-pressure pressure regulating valve that are connected in parallel to the air source, are connected to the air pressure switch via a three-way connector, and the air pressure is connected to both ends of the air cylinder chamber. a switching valve that alternately supplies air to the supply and exhaust ports of the fuel injection valve; a high-pressure oil pressure gauge that is connected in the middle of the fuel oil pressure passage from the fuel pressurization chamber to the fuel injection valve; It is connected via a pressure transmission path in the middle of the fuel oil pressure feeding path to the injection valve, and is closed by switching connection to the three-way pressure regulating valve for high pressure in the middle of the pressure transmission path, and then to the pressure regulating valve for low pressure. It consists of a low-pressure oil pressure gauge connected via a two-way cock that is opened by switching the connection.
The operating speed of the plunger, which is driven by the air pressure supplied to the air cylinder chamber, is controlled by a control valve installed in the hydraulic oil flow path that communicates the front and rear piston chambers in the hydraulic cylinder chamber. The disadvantages of the air booster system, such as unstable variation in injection speed, inability to adjust the speed arbitrarily, and poor stopping response, can be easily and reliably improved, and the air pressure that serves as the driving source can be improved. By making it possible to switch between high pressure and low pressure, it can be used for testing both single-stage and two-stage fuel injection valves, and can also be used during high-pressure injection tests. Damage to the low pressure oil pressure gauge can be prevented.

以上の如くこの発明の燃料噴射弁試験装置で
は、エアー圧で駆動する加圧用プランジヤーの駆
動速度を、油圧シリンダー室の作動油の流量調整
により任意の一定値に設定したり、連続的に加速
もしくは増速できるので、試験の種類に応じた好
適な燃料油の供給速度と加圧速度を付与すること
ができる。また、上記作動油の流れを停止させる
ことにより、プランジヤーを停止した状態で駆動
圧を非常に大きく保つておいて急速に高圧で燃料
噴射させることが可能であるからデイーゼル機関
の運転条件に近い高速の噴射速度として噴射状態
を試験することが可能である。しかして試験装置
全体は既述構成により従来のものに比較して小型
且つ簡素となる。
As described above, in the fuel injection valve testing device of the present invention, the driving speed of the pressurizing plunger driven by air pressure can be set to an arbitrary constant value by adjusting the flow rate of hydraulic oil in the hydraulic cylinder chamber, or can be continuously accelerated or Since the speed can be increased, suitable fuel oil supply speed and pressurization speed can be provided depending on the type of test. In addition, by stopping the flow of the hydraulic oil, it is possible to maintain a very high driving pressure with the plunger stopped and rapidly inject fuel at high pressure, resulting in high-speed fuel injection close to the operating conditions of a diesel engine. It is possible to test the injection condition as the injection speed of . Therefore, the entire test apparatus is smaller and simpler than the conventional one due to the above-described configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例にて使用した燃料
噴射弁の断面図、第2図はこの発明の一実施例の
燃料噴射弁試験装置の配管系路図である。 V……燃料噴射弁、22……燃料油タンク(燃
料油源)、24……加圧室、25……油圧シリン
ダー室、26……エアーシリンダー室、27,2
8……ピストン、29……プランジヤー、30
a,30b……逆止弁、32……作動油流路、3
3……制御バルブ、41a,41b……圧力調整
弁、46……切換バルブ、47a,47b……給
排気口。
FIG. 1 is a sectional view of a fuel injection valve used in an embodiment of the present invention, and FIG. 2 is a piping system diagram of a fuel injection valve testing apparatus in an embodiment of the invention. V...Fuel injection valve, 22...Fuel oil tank (fuel oil source), 24...Pressure chamber, 25...Hydraulic cylinder chamber, 26...Air cylinder chamber, 27,2
8...Piston, 29...Plunger, 30
a, 30b...Check valve, 32...Hydraulic oil flow path, 3
3... Control valve, 41a, 41b... Pressure adjustment valve, 46... Switching valve, 47a, 47b... Supply/exhaust port.

Claims (1)

【特許請求の範囲】[Claims] 1 エアー圧を駆動源として燃料油を高圧状態に
加圧して燃料噴射弁に圧送するようにしたエアー
ブースター方式の燃料噴射弁試験装置において、
燃料噴射弁に燃料油の圧送を可能とし逆流を阻止
する逆止弁を介して連通され、かつ、燃料油タン
クから燃料油の吸入を可能とし、逆流を阻止する
逆止弁を介して連通する燃料加圧室と、上記燃料
加圧室に隣接して作動油が充満した油圧シリンダ
ー室と、上記油圧シリンダー室に隣接するエアー
シリンダー室と、上記油圧シリンダー室内及びエ
アーシリンダー室内に夫々位置するピストンに同
軸状に固定されて上記燃料加圧室内で往復動し、
その復動時燃料油タンクから燃料加圧室内へ燃料
油を吸入し、その往動時、燃料加圧室内の燃料油
を燃料噴射弁に圧送するプランジヤーと、上記油
圧シリンダー室内のピストン行程の前後間を該油
圧シリンダー室外で連絡する作動油流路と、上記
作動油流路を開閉すると共に流量調整を行なう制
御バルブと、エアー源に並列接続された高圧用圧
力調整弁と低圧用圧力調整弁とに三方コツクを介
して切替接続されるエアー圧を上記エアーシリン
ダー室の両端部の給排気口へ交互に送気する切換
バルブと、上記燃料加圧室から燃料噴射弁への燃
料油の圧送路の途中に接続される高圧用油圧ゲー
ジと、上記燃料加圧室から燃料噴射弁への燃料油
の圧送路の途中に圧力伝達経路を介して接続さ
れ、該圧力伝達経路の途中に上記三方コツクの高
圧用圧力調整弁への切替接続により閉じ、低圧用
圧力調整弁への切替接続により開となるように連
動する二方コツクを介して接続された低圧用油圧
ゲージとからなり、上記油圧シリンダー室内のピ
ストン前後室を連絡する作動油流路に設けた制御
バルブによつて、上記エアシリンダー室に供給さ
れるエアー圧を駆動源とするプランジヤーの動作
速度を制御させたことを特徴とする燃料噴射弁試
験装置。
1. In an air booster type fuel injection valve testing device that uses air pressure as a driving source to pressurize fuel oil to a high pressure state and forcefully feed it to the fuel injection valve,
It communicates with the fuel injection valve through a check valve that enables pressure feeding of fuel oil and prevents backflow, and communicates through a check valve that allows fuel oil to be sucked from the fuel oil tank and prevents backflow. a fuel pressurizing chamber, a hydraulic cylinder chamber adjacent to the fuel pressurizing chamber filled with hydraulic oil, an air cylinder chamber adjacent to the hydraulic cylinder chamber, and a piston located in the hydraulic cylinder chamber and the air cylinder chamber, respectively. is fixed coaxially to the fuel pressurizing chamber and reciprocates within the fuel pressurizing chamber,
A plunger that sucks fuel oil from the fuel oil tank into the fuel pressurizing chamber during the backward movement, and pressurizes the fuel oil in the fuel pressurizing chamber to the fuel injection valve during the forward movement, and a plunger before and after the stroke of the piston in the hydraulic cylinder chamber. a hydraulic oil flow path that communicates between the hydraulic oil flow path outside the hydraulic cylinder, a control valve that opens and closes the hydraulic oil flow path and adjusts the flow rate, and a high-pressure pressure regulating valve and a low-pressure pressure regulating valve that are connected in parallel to the air source. A switching valve that alternately sends air pressure connected via a three-way valve to the supply and exhaust ports at both ends of the air cylinder chamber, and a pressure feed of fuel oil from the fuel pressurization chamber to the fuel injection valve. A high-pressure oil pressure gauge is connected in the middle of the pressure transmission path, and a pressure transmission path is connected to the pressure transmission path for fuel oil from the fuel pressurizing chamber to the fuel injection valve, and the three-way pressure gauge is connected in the middle of the pressure transmission path. It consists of a low-pressure oil pressure gauge connected via a two-way Kotuku, which is linked so that it is closed by switching the Kotuku to the high-pressure pressure regulating valve and opened by switching the Kotuku to the low-pressure pressure regulating valve. The operating speed of the plunger, which is driven by the air pressure supplied to the air cylinder chamber, is controlled by a control valve provided in a hydraulic oil flow path that communicates the front and rear piston chambers in the cylinder chamber. Fuel injection valve testing equipment.
JP9954482A 1982-06-09 1982-06-09 Testing device for fuel injection valve Granted JPS58217761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9954482A JPS58217761A (en) 1982-06-09 1982-06-09 Testing device for fuel injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9954482A JPS58217761A (en) 1982-06-09 1982-06-09 Testing device for fuel injection valve

Publications (2)

Publication Number Publication Date
JPS58217761A JPS58217761A (en) 1983-12-17
JPS6151665B2 true JPS6151665B2 (en) 1986-11-10

Family

ID=14250120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9954482A Granted JPS58217761A (en) 1982-06-09 1982-06-09 Testing device for fuel injection valve

Country Status (1)

Country Link
JP (1) JPS58217761A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0130676D0 (en) * 2001-12-21 2002-02-06 Assembly Technology & Test Ltd An engine injector tester

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5334252A (en) * 1976-09-09 1978-03-30 Shin Meiwa Ind Co Ltd Carrier supporting structure for truck with crane

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5334252A (en) * 1976-09-09 1978-03-30 Shin Meiwa Ind Co Ltd Carrier supporting structure for truck with crane

Also Published As

Publication number Publication date
JPS58217761A (en) 1983-12-17

Similar Documents

Publication Publication Date Title
KR100541336B1 (en) Droplets forming method and device for discharging constant-volume droplets
CA1116962A (en) Electronically controlled, solenoid operated fuel injection system
KR100941794B1 (en) Fuel injector with controlled high pressure fuel passage
EP0774067B1 (en) Solenoid actuated miniservo spool valve
KR920003385B1 (en) Three-way hydraulic valve
EP0879954A2 (en) Common rail injector
EP0372714B1 (en) Fuel injection nozzle
US3839943A (en) Electromagnetic injector with assist
GB2330947A (en) An electrical actuator with a multiple position armature arrangement
US4041778A (en) Fuel injection valve testing apparatus
EP1249598A2 (en) Oil activated fuel injector control valve
JPS6151665B2 (en)
DE10056165C2 (en) Sammelraumbeaufschlagter injector with a cascade control arrangement
US5494078A (en) Pneumatic lift device for dual flow valve
JPS624687Y2 (en)
US5174189A (en) Fluid control apparatus
US5032061A (en) Hydraulic pumps
US6749130B2 (en) Check line valve faster venting method
CA2367618A1 (en) Fuel pressure delay cylinder
KR20030017634A (en) Fuel injection device
US5573146A (en) Adjustable pneumatic lift device for dual flow valve
JP4045922B2 (en) Fuel injection device for internal combustion engine
US6923382B2 (en) Hydraulically actuated injector with delay piston and method of using the same
US4872613A (en) Mastic adhesive fixture
JPH0821473A (en) Free lock cylinder equipped with pressurizing pump means