JPS6151640B2 - - Google Patents

Info

Publication number
JPS6151640B2
JPS6151640B2 JP11536981A JP11536981A JPS6151640B2 JP S6151640 B2 JPS6151640 B2 JP S6151640B2 JP 11536981 A JP11536981 A JP 11536981A JP 11536981 A JP11536981 A JP 11536981A JP S6151640 B2 JPS6151640 B2 JP S6151640B2
Authority
JP
Japan
Prior art keywords
plating
electrode
plated
predetermined
moving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11536981A
Other languages
Japanese (ja)
Other versions
JPS5819488A (en
Inventor
Kyoshi Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP11536981A priority Critical patent/JPS5819488A/en
Priority to US06/401,247 priority patent/US4430165A/en
Priority to GB08221336A priority patent/GB2106542B/en
Priority to FR828212947A priority patent/FR2513273B1/en
Priority to DE19823227878 priority patent/DE3227878A1/en
Priority to IT8248887A priority patent/IT1148391B/en
Publication of JPS5819488A publication Critical patent/JPS5819488A/en
Publication of JPS6151640B2 publication Critical patent/JPS6151640B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】 本発明は特に複雑な形状の面にも均一なメツキ
を施し得るようにしたメツキ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a plating device that is capable of uniformly plating even surfaces with particularly complex shapes.

凹凸に富む複雑な形状の被メツキ体に均一なメ
ツキを施すことは電気メツキ、化学メツキ等のい
ずれを問わず困難である。即ち、このような面に
メツキを施そうとすると、突出部、特に鋭角をな
して突出する稜部にはメツキ層が厚く発達する
が、凹部、溝内或いはその角部や隅部等にはメツ
キがほとんど付かないという問題が発生する。
Regardless of whether electroplating, chemical plating, etc. are used, it is difficult to uniformly plate a plated object having a complex shape with many irregularities. In other words, when plating is attempted on such a surface, a thick plating layer develops on the protruding parts, especially on the ridges that protrude at acute angles, but it does not develop in the concave parts, grooves, or their corners and corners. A problem arises in that there is almost no plating.

また、被メツキ面の一部にメツキを行なうに
は、いちいち複雑、面倒なマスキング手段を講ず
る必要があり、効率的な部分メツキが行なえず、
寸法的にも限度があつた。
In addition, in order to plate a part of the surface to be plated, it is necessary to take complicated and troublesome masking measures, making it impossible to perform partial plating efficiently.
There were also size limitations.

本発明は叙上の観点にたつてなされたものであ
つて、その目的とするところは、メツキ加工時に
被メツキ面に施されるメツキ層の厚さを測定しつ
つ加工を行ない、被メツキ面に均一または所望の
厚さのメツキ層を施し得るメツキ装置を提供しよ
うとするものである。
The present invention has been made based on the above-mentioned viewpoints, and its purpose is to perform plating while measuring the thickness of the plating layer applied to the surface to be plated, and to The object of the present invention is to provide a plating device capable of applying a plating layer of a uniform or desired thickness to the surface of the material.

以下、図面により本発明の詳細を具体的に説明
する。
Hereinafter, the details of the present invention will be specifically explained with reference to the drawings.

第1図は、本発明にかかるメツキ装置の一実施
例を示す説明図、第2図は、他の実施例を示す説
明図、第3図および第4図は第2図の装置に使用
される電極の一部拡大断面図、第5図は更に他の
実施例を示す説明図、第6図は第5図の装置に使
用される電極の一部拡大断面図である。
FIG. 1 is an explanatory diagram showing one embodiment of the plating device according to the present invention, FIG. 2 is an explanatory diagram showing another embodiment, and FIGS. 3 and 4 are diagrams showing a plating device used in the device of FIG. FIG. 5 is an explanatory diagram showing still another embodiment, and FIG. 6 is a partially enlarged sectional view of the electrode used in the device shown in FIG.

1は例えば3次元形状のメツキすべきキヤビテ
イを有し、電鋳加工に於て電着金属を成形するた
め用いられる電鋳型、2はメツキ槽、3,3はメ
ツキ槽2の壁体上に設けられたレール、4は一対
のIビームを平行に結合して成る車体5、車輪
6,6、車軸7、駆動用モータ8、チエーンホイ
ール9および10、チエーン11等から成るX軸
方向走行台車、12は車体13、車輪14,1
4、駆動用モータ15その他から成り、電極昇降
装置16および測定用電極昇降装置17を搭載し
てX軸方向走行台車4の上でその長手方向に走行
するY軸方向走行台車、18は必要に応じ側面を
絶縁処理した長尺の棒状電極、19は電鋳型に施
されたメツキ槽の厚さを測定する測定用電極、1
9aは測定用電極19表面を覆つている絶縁性部
材、20は電鋳型1と電極18間に所定の極性の
直流電圧、または電圧パルスを供給するメツキ電
源回路、21は測定用電極19の測定量に基づき
昇降装置16と17による電極18のZ軸方向位
置や電極19による測定シークエンス動作、及び
回路20のメツキ条件等をそれぞれの駆動条件を
制御する数値制御装置、22はメツキ液である。
Reference numeral 1 has, for example, a three-dimensional cavity to be plated, and is an electroforming mold used for forming electrodeposited metal in electroforming processing, 2 is a plating tank, and 3 and 3 are on the wall of the plating tank 2. A bogie running in the X-axis direction is provided with rails 4, a car body 5 formed by connecting a pair of I-beams in parallel, wheels 6, 6, an axle 7, a drive motor 8, chain wheels 9 and 10, a chain 11, etc. , 12 is a vehicle body 13, wheels 14,1
4. A Y-axis traveling trolley 18, which is composed of a drive motor 15 and others, and is mounted with an electrode lifting device 16 and a measurement electrode lifting device 17 and runs in the longitudinal direction on the X-axis traveling truck 4; 19 is a measuring electrode for measuring the thickness of the plating tank applied to the electroforming mold;
9a is an insulating member covering the surface of the measurement electrode 19; 20 is a plating power supply circuit that supplies a DC voltage or voltage pulse of a predetermined polarity between the electroforming mold 1 and the electrode 18; and 21 is a measurement electrode for the measurement electrode 19. Numerical control device 22 is a plating liquid that controls drive conditions such as the position of the electrode 18 in the Z-axis direction by the lifting devices 16 and 17, the measurement sequence operation by the electrode 19, and the plating conditions of the circuit 20 based on the amount.

而して、電極18は電極昇降装置16により昇
降自在に支承されており、同装置16に内蔵され
ている図示されていないモータにより電鋳型1の
メツキキヤビテイ形状に応じ、例えば電極18の
先端と電鋳型1との対向間隙が常に所定の、好ま
しくは小さい所定間隙に維持されるように昇降制
御せしめられる。また、測定用電極19も同様に
測定用電極昇降装置17により昇降制御自在に支
承されており、同装置17に内蔵されている図示
されていないモータにより設定測定プログラム等
によるシークエンス制御の昇降せしめられる。
The electrode 18 is supported so as to be able to rise and fall freely by an electrode lifting device 16, and a motor (not shown) built in the device 16 moves the tip of the electrode 18 and the electrode according to the shape of the plating cavity of the electroforming mold 1, for example. The vertical movement is controlled so that the opposing gap with the mold 1 is always maintained at a predetermined, preferably small, predetermined gap. Furthermore, the measuring electrode 19 is similarly supported by a measuring electrode lifting device 17 so as to be able to be controlled up and down, and a motor (not shown) built into the device 17 is used to raise and lower it under sequence control according to a set measurement program, etc. .

X軸方向およびY軸方向走行台車4および12
を走行させるモータ8および15は電極18およ
び測定用電極19を昇降させる前記モータと同様
数値制御装置21により電極18及び19の電鋳
型1上に於けるメツキ及び測定位置の順次走査及
び移動速度等が制御されるようになつている。
X-axis direction and Y-axis direction traveling carts 4 and 12
The motors 8 and 15 that run the electrodes 18 and the measurement electrode 19 are controlled by a numerical control device 21, like the motors that move the electrode 18 and the measurement electrode 19 up and down, to sequentially scan and move the plating and measurement positions of the electrodes 18 and 19 on the electroforming mold 1. is now under control.

電極移動を行なう場合の理想的な様式は、電極
18の中心部が常時被メツキ面の法線と一致せし
められるよう、且つ、その先端と被メツキ面との
間のギヤツプが常時標準極間距離に等しく保たれ
るよう電極18の位置および姿勢を制御すると共
に、被メツキ面の各部に対する滞留時間が均斉と
なるように電極18先端を移動させると云う方式
である。(但し、ここで標準極間距離は、例えば
平面にメツキを施す際適切とされる極間距離であ
る。) この極間距離が大きいと巨視的にはメツキは均
一に施されるが、電力損失が増大する上、被メツ
キ面の起伏、凹凸によつてメツキ層の厚みに不均
一が生ずるという問題がある。
The ideal way to move the electrodes is so that the center of the electrode 18 is always aligned with the normal to the surface to be plated, and the gap between the tip and the surface to be plated is always the same as the standard inter-electrode distance. In this method, the position and posture of the electrode 18 are controlled so that the plating surface is maintained at the same level, and the tip of the electrode 18 is moved so that the residence time for each part of the surface to be plated becomes uniform. (However, the standard inter-electrode distance here is, for example, the inter-electrode distance that is considered appropriate when plating a flat surface.) If this inter-electrode distance is large, plating will be done macroscopically uniformly, but In addition to increased loss, there is a problem in that the thickness of the plating layer becomes non-uniform due to the undulations and irregularities of the surface to be plated.

これに反し、極間距離をあまり小さくすると、
電極パスの全長が長くなり、数値制御プログラム
も冗長となるばかりでなく、電極パスに沿つたう
ねりが生じるので、自ら適切な極間距離が定めら
れるものである。
On the other hand, if the distance between poles is too small,
Not only does the total length of the electrode path become longer and the numerical control program becomes redundant, but also undulations occur along the electrode path, so an appropriate inter-electrode distance must be determined by oneself.

然しながら、このような制御を行なうためには
複雑で高価な電極制御装置を必要とするばかりで
なく、数値制御プログラムの作成にも繁雑な計算
を必要とするので、この方法は実用的とはいえな
い。
However, in order to perform such control, not only a complicated and expensive electrode control device is required, but also complicated calculations are required to create a numerical control program, so this method is not practical. do not have.

而して、本装置においては、電鋳型1表面のメ
ツキが施された部分に測定用電極19が所定の位
置より接触するまで測定用電極昇降装置17が駆
動し、その移動距離が測定される。この測定値は
数値制御装置21において基準値となる電鋳型1
表面にメツキが施される以前の同位置までの測定
用電極19の移動距離と比較され、この比較値に
応じてあらかじめ定められたプログラムに従つて
X軸方向およびY軸方向走行台車4および12を
走行させるモータ8および15、並びに電極18
および測定用電極19を昇降させるモータと、電
鋳型1と電極18間に所定の極性の直流電圧若し
くはパルス電圧を供給する電源回路20を制御す
るので、電鋳型1の形状等を問わずその表面には
略均一な厚さのメツキ加工が施されるのである。
In this device, the measuring electrode lifting device 17 is driven until the measuring electrode 19 comes into contact with the plated portion of the surface of the electroforming mold 1 from a predetermined position, and the moving distance is measured. . This measured value is used as a reference value in the numerical control device 21 for the electroforming mold 1.
The moving distance of the measuring electrode 19 to the same position before the surface was plated is compared, and the moving carts 4 and 12 in the X-axis direction and the Y-axis direction are moved according to a predetermined program according to this comparison value. Motors 8 and 15 that run the motors 8 and 15, and electrodes 18
The motor that raises and lowers the measurement electrode 19 and the power supply circuit 20 that supplies a DC voltage or pulse voltage of a predetermined polarity between the electroforming mold 1 and the electrode 18 are controlled, so regardless of the shape of the electroforming mold 1, the surface The plate is plated to a substantially uniform thickness.

測定用電極19の周壁部は合成樹脂等の絶縁性
部材19aで覆われていて、測定用電極19が腐
蝕するようなことがないようになつている。
The peripheral wall of the measuring electrode 19 is covered with an insulating member 19a made of synthetic resin or the like to prevent the measuring electrode 19 from corroding.

次に第2図、第3図および第4図について説明
する。第2図はメツキ加工時に加工部分に熱線を
照射しつつ加工を行なう装置の実施例を示してお
り、電極および測定用電極の駆動方法、電圧供給
方法等は第1図に示したものと同様であつて、第
3図で第1図と同一な番号を付したものは同一な
構成要素を示し、図中18aは導電性のパイプ状
の電極、23aはパイプ状電極18aの先端に取
り付けられた透明若しくは半透明の凸レンズ、2
3bは素通しのガラス、24は熱線源、25は熱
線源24の下端に固定して設けられ、パイプ状の
電極18aを支承する電極ホルダである。
Next, FIGS. 2, 3, and 4 will be explained. Figure 2 shows an example of a device that performs plating while irradiating the workpiece with heat rays, and the driving method and voltage supply method for the electrodes and measurement electrodes are the same as those shown in Figure 1. In FIG. 3, the same numbers as in FIG. 1 indicate the same components, and in the figure, 18a is a conductive pipe-shaped electrode, and 23a is attached to the tip of the pipe-shaped electrode 18a. transparent or semi-transparent convex lens, 2
3b is transparent glass, 24 is a hot ray source, and 25 is an electrode holder that is fixedly provided at the lower end of the hot ray source 24 and supports the pipe-shaped electrode 18a.

而して、導電性の材質で製作されたパイプ状の
電極18aの先端部分には透明若しくは半透明な
凸レンズ23aが取り付けられ、そして、パイプ
状の電極18aは熱線源24の下端に固定された
電極ホルダ25に取り付けられている。
A transparent or translucent convex lens 23a is attached to the tip of the pipe-shaped electrode 18a made of a conductive material, and the pipe-shaped electrode 18a is fixed to the lower end of the heat ray source 24. It is attached to the electrode holder 25.

熱線源24としてはレーザ光、クセノン光若し
くは赤外線等の実質上の熱線を照射するものが用
いられる。また、熱線源24からの光線は、測定
用電極19が所定の位置より移動して、電鋳型1
表面のメツキが施された部分に接触しその移動距
離を測定すると、この測定値が数値制御装置21
において基準値となる電鋳型1表面のメツキが施
される以前の同位置までの測定用電極19の移動
距離と比較され、この比較値に応じてあらかじめ
定められたプログラムに従つてその強弱が制御さ
れると共に、パイプ状の電極18の先端部分に設
けられている凸レンズ23aで焦点が絞られ、電
鋳型1のメツキが施される部分に照射される。ま
た、本実施例装置は第1図の実施例装置の如く、
電極と対向した電鋳型のある一定の範囲にメツキ
加工が施されるものと異なり、熱線源24からの
光線が照射された部分のみメツキが施されるの
で、測定用電極19の移動方向は常に定まつてい
る。即ち、熱線源24からの照射が行なわれメツ
キ加工が施されたあとを測定用電極19が追随し
て測定して行くように構成されている。
As the heat ray source 24, one that emits substantial heat rays, such as laser light, xenon light, or infrared rays, is used. Furthermore, the light beam from the heat ray source 24 is transmitted to the electroforming mold 1 when the measurement electrode 19 moves from a predetermined position.
When you touch the plated part of the surface and measure the distance it moves, this measured value is sent to the numerical control device 21.
The moving distance of the measurement electrode 19 to the same position before plating on the surface of the electroforming mold 1 is compared with the reference value, and the strength or weakness of the electroforming mold 1 is controlled according to a predetermined program according to this comparison value. At the same time, the light is focused by a convex lens 23a provided at the tip of the pipe-shaped electrode 18, and the part of the electroforming mold 1 to be plated is irradiated with the light. In addition, this embodiment device is similar to the embodiment device shown in FIG.
Unlike the case where plating is applied to a certain range of the electroforming mold facing the electrode, plating is applied only to the area irradiated with the light from the heat ray source 24, so the direction of movement of the measurement electrode 19 is always fixed. It has been decided. That is, the measurement electrode 19 is configured to follow and measure after irradiation from the heat ray source 24 has been performed and plating has been performed.

而して、この実施例装置により加工が行なわれ
る場合には、室温またはこれ以下の温度にメツキ
液22を保つておくと共に、電源回路20の電圧
も従来慣用の条件における電圧前後以下に設定し
て、メツキが極めて遅い速度か、または殆んどメ
ツキが進行しないようにしておく。また、この
時、電鋳型1のメツキを施す部分には熱線源24
からの光線がパイプ状の電極18aの内部を通過
して凸レンズ23aで焦点が絞られてその部分に
照射されるので、その電鋳型1の表面または表面
近くのメツキ液22温度は約45〜60℃のメツキに
最適な温度に加熱され、従つて、当該部分が活性
化されて析出効率が向上し、当該光線照射部分の
みにほぼ選択的にメツキが施される。また、凸レ
ンズ23aを適宜調節してビームスポツトの大き
さに応じた領域に限定してメツキを施すことも可
能である。
When processing is carried out using the apparatus of this embodiment, the plating liquid 22 is kept at room temperature or below, and the voltage of the power supply circuit 20 is set to be around or below the voltage under conventional conditions. The plating speed should be kept very slow or the plating should not proceed at all. Also, at this time, a hot ray source 24 is applied to the part of the electroforming mold 1 to be plated.
The light beam passes through the pipe-shaped electrode 18a, is focused by the convex lens 23a, and is irradiated to that area, so the temperature of the plating liquid 22 on or near the surface of the electroforming mold 1 is approximately 45 to 60℃. It is heated to the optimum temperature for plating of 0.degree. C., thereby activating the region, improving the deposition efficiency, and plating almost selectively only on the region irradiated with the light. It is also possible to perform plating in a limited area depending on the size of the beam spot by adjusting the convex lens 23a as appropriate.

パイプ状の電極18aの先端部分に取り付けら
れる透明若しくは半透明の凸レンズ23aは、照
射部分の形状があまり複雑でなくビームスポツト
の調節等を必要としない場合には素通しのガラス
23b等に変更できるものである。
The transparent or semi-transparent convex lens 23a attached to the tip of the pipe-shaped electrode 18a can be changed to a transparent glass 23b or the like if the shape of the irradiated part is not very complicated and adjustment of the beam spot is not required. It is.

また、上記レンズ23a等の光学素子は、パイ
プ状電極18a内へのメツキ液の侵入を先端の透
光ガラスや管内供給圧給気体によつて防止すると
か、メツキ液22の液位が浅く、電極先端の液中
挿入長さが短い場合には、上記光学素子を電極軸
方向の適宜の位置に設けて熱線の集中、拡散、或
いはビームスポツトの大きさ等を設定制御するよ
うに構成することができ、またパイプ状電極内の
一部または全部を1本以上の光学フアイバグラス
の挿設により導光路とするように構成しても良
い。
In addition, the optical elements such as the lens 23a can prevent the plating liquid from entering into the pipe-shaped electrode 18a by using a transparent glass at the tip or a gas supply pressure inside the tube, or if the liquid level of the plating liquid 22 is shallow, When the insertion length of the electrode tip into the liquid is short, the above-mentioned optical element may be provided at an appropriate position in the electrode axis direction to set and control the concentration and diffusion of the heat rays, the size of the beam spot, etc. Alternatively, a part or all of the inside of the pipe-shaped electrode may be constructed to serve as a light guide path by inserting one or more optical fiber glasses.

次に、第5図および第6図について説明する。
第5図は先端部分が開放されている導電性のパイ
プ状の電極中へメツキ液が侵入するのを防止する
ために圧縮空気を用いた実施例を示しており、電
極および測定用電極の駆動方法、電圧供給方法、
熱線源の制御方法等は第2図に示したものと同様
であつて、第5図で第2図と同一な番号を付した
ものは同一な構成要素を示し、図中18bは両先
端部分が開放されている導電性のパイプ状の電
極、26は絞り、27は調圧弁、28はコンプレ
ツサー、18cは合成樹脂で製作される不溶性の
パイプ、29はパイプ18cの先端周壁部分に取
り付けられる金属性電極部材である。
Next, FIGS. 5 and 6 will be explained.
Figure 5 shows an example in which compressed air is used to prevent the plating liquid from entering a conductive pipe-shaped electrode with an open tip, and shows how to drive the electrode and measurement electrode. method, voltage supply method,
The method of controlling the heat ray source is the same as that shown in Fig. 2, and the same numbers in Fig. 5 as in Fig. 2 indicate the same components, and 18b in the figure indicates both ends. 26 is a constrictor, 27 is a pressure regulating valve, 28 is a compressor, 18c is an insoluble pipe made of synthetic resin, and 29 is a metal attached to the peripheral wall at the tip of pipe 18c. It is a sexual electrode member.

而して、パイプ状の電極18bは電極ホルダ2
5に取り付けられていて、熱線源24からの光線
はパイプ状の電極18b中を通過して電鋳型1の
メツキが施される部分に照射される。然しなが
ら、第5図に示した実施例装置においては、パイ
プ状の電極18bの先端部分が開放されているの
でパイプ状の電極18b内にメツキ液22が浸入
することがないような構造となつている。即ち、
パイプ状の電極18bの側壁にはパイプ状の電極
18b中にコンプレツサー28からの圧縮空気を
送り込むための小穴が設けられている。而して、
測定用電極19が所定の位置より移動して、電鋳
型1表面のメツキが施された部分に接触しその移
動距離を測定すると、この測定値が数値制御装置
21において基準値となる電鋳型1表面のメツキ
が施される以前の同位置までの測定用電極19の
移動距離と比較され、この比較値に応じてあらか
じめ定められたプログラムに従つてパイプ状の電
極18bの先端部分の液圧よりやや高い圧縮空気
になるように調圧弁27を制御してパイプ状の電
極18b内に圧縮空気を送り込む。従つて、パイ
プ状の電極18b内にはメツキ液22が侵入する
ことがないので、光線源24からの光線を電鋳型
1に直接投光せしめることが可能となる。
Thus, the pipe-shaped electrode 18b is attached to the electrode holder 2.
5, and the light beam from the heat ray source 24 passes through the pipe-shaped electrode 18b and is irradiated onto the portion of the electroforming mold 1 to be plated. However, in the embodiment shown in FIG. 5, the tip of the pipe-shaped electrode 18b is open, so that the plating liquid 22 does not enter into the pipe-shaped electrode 18b. There is. That is,
A small hole is provided in the side wall of the pipe-shaped electrode 18b for feeding compressed air from the compressor 28 into the pipe-shaped electrode 18b. Then,
When the measurement electrode 19 moves from a predetermined position and comes into contact with the plated part of the surface of the electroforming mold 1 and measures the distance of movement, this measured value becomes the reference value in the numerical control device 21. The distance traveled by the measurement electrode 19 to the same position before the surface plating is compared, and according to this comparison value, the hydraulic pressure at the tip of the pipe-shaped electrode 18b is adjusted according to a predetermined program. The pressure regulating valve 27 is controlled so that the compressed air becomes a little higher, and the compressed air is sent into the pipe-shaped electrode 18b. Therefore, the plating liquid 22 does not enter into the pipe-shaped electrode 18b, so that the light beam from the light source 24 can be directly projected onto the electroforming mold 1.

また、パイプ状の電極としては導電性のパイプ
状の電極18bに限定されず、第6図に示した如
き合成樹脂等の不溶性パイプ18cの先端周壁部
分に金属性電極部材29を取り付けて電極とした
ものをも使用できるものである。
Further, the pipe-shaped electrode is not limited to the conductive pipe-shaped electrode 18b, and a metallic electrode member 29 is attached to the tip peripheral wall of an insoluble pipe 18c made of synthetic resin or the like as shown in FIG. It is also possible to use the

本発明は叙上の如く構成されるので、本発明装
置によるときは、電鋳型表面に施されたメツキ層
の厚さを逐次測定しつつ加工を行なうので、複雑
な形状の電鋳型にも均一な厚さのメツキ層を形成
することが可能となるのである。
Since the present invention is constructed as described above, when using the apparatus of the present invention, processing is performed while successively measuring the thickness of the plating layer applied to the surface of the electroforming mold, so that electroforming molds with complex shapes can be uniformly coated. This makes it possible to form a plating layer with a certain thickness.

なお、本発明の構成は叙上の実施例に限定され
るものではない。即ち、例えば、本実施例におい
ては電鋳型を固定しておき電極を三軸方向に移動
させて加工を行なうように構成したが、電極を固
定しておきメツキ槽全体をクロススライドテーブ
ルで三軸方向に移動させて電鋳型にメツキ層を形
成するようにしてもよい。また、パイプ状の電極
内にオプチカルフアイバを多数結束してなるもの
を設け光線源からの光線を別異の方向へ投光せし
めるようにしてもよく、本発明はその目的の範囲
内で自由に設計変更できるものであり、本発明は
それらの全てを包摂するものである。例えば、測
定用電極の昇降によるメツキ厚さの測定には、電
極19の先端が、之に対向する電鋳型1のメツキ
面に直接触したのを電気的手段等によつて検出す
るものの外に、上記先端に所定の比較的小さな近
接間隙となつたとき之をその間隙の抵抗、静電容
量、電圧、電流、又は光や超音波の送受波等によ
つて検出することにより電極の下降を停止させる
とか、所定のプログラム等された予定量の下降を
させてその際に形成される間隙を先端に設けた検
出器によつて測定する等の変更実施が可能なもの
である。
Note that the configuration of the present invention is not limited to the above-mentioned embodiments. That is, for example, in this example, the electroforming mold was fixed and the electrode was moved in three axes to perform processing, but the electrode was fixed and the entire plating tank was moved in three axes using a cross slide table. A plating layer may be formed on the electroforming mold by moving the electroforming mold in the direction shown in FIG. Furthermore, a pipe-shaped electrode may be provided with a plurality of optical fibers bundled together to project light from a light source in different directions, and the present invention is free to do so within the scope of its purpose. The design can be changed, and the present invention encompasses all of them. For example, to measure the plating thickness by raising and lowering the measuring electrode, it is necessary to detect by electrical means or the like that the tip of the electrode 19 directly contacts the plating surface of the electroforming mold 1 facing the electrode. When a predetermined relatively small gap is formed at the tip, the electrode is lowered by detecting the resistance, capacitance, voltage, current, transmission and reception of light or ultrasonic waves in the gap, etc. It is possible to make changes such as stopping it, or lowering it by a predetermined amount according to a predetermined program, and measuring the gap formed at that time using a detector provided at the tip.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明にかかるメツキ装置の一実施
例を示す説明図、第2図は、他の実施例を示す説
明図、第3図および第4図は第2図の装置に使用
される電極の一部拡大断面図、第5図は更に他の
実施例を示す説明図、第6図は第5図の装置に使
用される電極の一部拡大断面図である。 1……電鋳型、2……メツキ槽、3……レー
ル、4……X軸方向走行台車、5,13……車
体、6,14……車輪、7……車軸、8,15…
…駆動用パルスモータ、12……Y軸方向走行台
車、18……棒状電極、18a,18b……導電
性のパイプ状の電極、19……測定用電極、20
……電源回路、21……数値制御回路、22……
メツキ液、23a……凸レンズ、23b……素通
しのガラス、24……熱線源、25……電極ホル
ダ、26……絞り、27……調圧弁、28……コ
ンプレツサー、29……金属性電極部材。
FIG. 1 is an explanatory diagram showing one embodiment of the plating device according to the present invention, FIG. 2 is an explanatory diagram showing another embodiment, and FIGS. 3 and 4 are diagrams showing a plating device used in the device of FIG. FIG. 5 is an explanatory diagram showing still another embodiment, and FIG. 6 is a partially enlarged sectional view of the electrode used in the device shown in FIG. 1...Electroforming mold, 2...Plating tank, 3...Rail, 4...X-axis direction traveling trolley, 5, 13...Car body, 6, 14...Wheel, 7...Axle, 8, 15...
... Drive pulse motor, 12 ... Y-axis direction traveling trolley, 18 ... Rod-shaped electrodes, 18a, 18b ... Conductive pipe-shaped electrodes, 19 ... Measurement electrode, 20
...Power supply circuit, 21...Numerical control circuit, 22...
Plating liquid, 23a... Convex lens, 23b... Transparent glass, 24... Heat ray source, 25... Electrode holder, 26... Aperture, 27... Pressure regulating valve, 28... Compressor, 29... Metallic electrode member .

Claims (1)

【特許請求の範囲】 1 被メツキ体とメツキ用電極との間にメツキ液
を供給し、上記メツキ用電極を被メツキ体表面上
の所望の位置に移動させると共に、上記メツキ用
電極と被メツキ体表面との間の間隙を一定に保ち
つゝ上記被メツキ体と上記メツキ用電極との間に
所定の通電を行なつて被メツキ体にメツキ加工を
施すメツキ装置において、 下記(a)項ないし(c)項までの構成要素からなるメ
ツキ厚さ調整装置を具備したことを特徴とするメ
ツキ装置。 (a) 被メツキ体表面に施されたメツキ面に所定の
位置より移動し、上記メツキ面に近接又は接触
してその移動量を測定する測定用電極。 (b) 上記測定用電極を被メツキ体表面上の所望の
位置に移動させると共に、上記測定用電極を予
め定められた基準位置から被メツキ体に向けて
上記測定用電極が上記被メツキ体に対して所定
の近接、又は接触状態となるまで移動させる測
定用電極移動装置。 (c) 上記測定用電極の上記基準位置から被メツキ
体に近接又は接触するまでの移動距離と、予め
メモリーされた基準位置から被メツキ体までの
距離とを比較することによりメツキ厚さを算出
し、その算出値に基づきメツキ加工を制御する
制御回路。 2 被メツキ体とメツキ用電極との間にメツキ液
を供給し、上記メツキ用電極を被メツキ体表面上
の所望の位置に移動させると共に、上記メツキ用
電極と被メツキ体表面との間の間隙を一定に保ち
つゝ上記被メツキ体と上記メツキ用電極との間に
所定の通電を行ない、且つ、上記被メツキ体の被
メツキ部分に熱線を照射して被メツキ体にメツキ
加工を施すメツキ装置において、 下記(a)項ないし(c)項までの構成要素からなるメ
ツキ厚さ調整装置を具備したことを特徴とするメ
ツキ装置。 (a) 被メツキ体表面に施されたメツキ面に所定の
位置より移動し、上記メツキ面に近接又は接触
してその移動量を測定する測定用電極。 (b) 上記測定用電極を被メツキ体表面上の所望の
位置に移動させると共に、上記測定用電極を予
め定められた基準位置から被メツキ体に向けて
上記測定用電極が上記被メツキ体に対して所定
の近接、又は接触状態となるまで移動させる測
定用電極移動装置。 (c) 上記測定用電極の上記基準位置から被メツキ
体に近接又は接触するまでの移動距離と、予め
メモリーされた基準位置から被メツキ体までの
距離とを比較することによりメツキ厚さを算出
し、その算出値に基づきメツキ加工を制御する
制御回路。
[Scope of Claims] 1. Supplying a plating liquid between the object to be plated and the electrode for plating, moving the electrode for plating to a desired position on the surface of the object to be plated, and moving the electrode for plating and the electrode for plating to a desired position on the surface of the object to be plated. In a plating device for plating a body to be plated by applying a predetermined current between the body to be plated and the plating electrode while maintaining a constant gap between the body surface and the body surface, the following item (a) is provided. A plating device characterized by being equipped with a plating thickness adjustment device consisting of the components listed in items (c) to (c) above. (a) A measurement electrode that moves from a predetermined position onto a plating surface applied to the surface of the object to be plated, approaches or contacts the plating surface, and measures the amount of movement. (b) Move the measurement electrode to a desired position on the surface of the object to be plated, and direct the measurement electrode from a predetermined reference position toward the object to be plated. A measuring electrode moving device that moves the measuring electrode until it comes into a predetermined proximity or contact state. (c) Calculate the plating thickness by comparing the moving distance of the measuring electrode from the reference position to the point where it comes close to or in contact with the object to be plated and the distance from the reference position stored in advance to the object to be plated. and a control circuit that controls plating processing based on the calculated value. 2. Supplying plating liquid between the body to be plated and the electrode for plating, moving the electrode for plating to a desired position on the surface of the body to be plated, and removing the gap between the electrode for plating and the surface of the body to be plated. A predetermined current is applied between the body to be plated and the plating electrode while keeping the gap constant, and a heat ray is irradiated to the part of the body to be plated to plate the body to be plated. A plating device characterized by being equipped with a plating thickness adjusting device consisting of the following components (a) to (c). (a) A measurement electrode that moves from a predetermined position onto a plating surface applied to the surface of the object to be plated, approaches or contacts the plating surface, and measures the amount of movement. (b) Move the measurement electrode to a desired position on the surface of the object to be plated, and direct the measurement electrode from a predetermined reference position toward the object to be plated. A measuring electrode moving device that moves the measuring electrode until it comes into a predetermined proximity or contact state. (c) Calculate the plating thickness by comparing the moving distance of the measuring electrode from the reference position to the point where it comes close to or in contact with the object to be plated and the distance from the reference position stored in advance to the object to be plated. and a control circuit that controls plating processing based on the calculated value.
JP11536981A 1981-07-24 1981-07-24 Plating device Granted JPS5819488A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP11536981A JPS5819488A (en) 1981-07-24 1981-07-24 Plating device
US06/401,247 US4430165A (en) 1981-07-24 1982-07-23 Laser-activated electrodepositing method and apparatus
GB08221336A GB2106542B (en) 1981-07-24 1982-07-23 A method and apparatus for electrodeposition
FR828212947A FR2513273B1 (en) 1981-07-24 1982-07-23 METHOD AND APPARATUS FOR ELECTRO-DEPOSITION OF METAL ON A WORKPIECE USING A LASER BEAM OR THE LIKE THERMAL LIGHT BEAM
DE19823227878 DE3227878A1 (en) 1981-07-24 1982-07-26 METHOD AND DEVICE FOR GALVANIC DEPOSITING A METAL ONTO A WORKPIECE
IT8248887A IT1148391B (en) 1981-07-24 1982-07-26 METHOD AND EQUIPMENT FOR ELECTRODEPOSITION ACTIVATED WITH LASER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11536981A JPS5819488A (en) 1981-07-24 1981-07-24 Plating device

Publications (2)

Publication Number Publication Date
JPS5819488A JPS5819488A (en) 1983-02-04
JPS6151640B2 true JPS6151640B2 (en) 1986-11-10

Family

ID=14660815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11536981A Granted JPS5819488A (en) 1981-07-24 1981-07-24 Plating device

Country Status (1)

Country Link
JP (1) JPS5819488A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS644546A (en) * 1987-06-29 1989-01-09 Fujikura Ltd Manufacture of trolley steel wire covered with copper

Also Published As

Publication number Publication date
JPS5819488A (en) 1983-02-04

Similar Documents

Publication Publication Date Title
US3695497A (en) Method of severing glass
US5173102A (en) Apparatus for curving glass sheets
EP0077207B1 (en) Laser-activated chemical-depositing method and apparatus
JP3258331B2 (en) Method and apparatus for treating any 3D shaped surface with a laser, especially for polishing (polishing) and polishing (texture) a workpiece and for treating the sealing surface of a die
CN109848566B (en) Method and device for grinding and polishing parts and dies by mixed laser
BRPI9912231B1 (en) "System for automatically controlling layering of a material on a substrate and method of manufacturing an article"
ITMI992478A1 (en) METHOD AND DEVICE FOR THE DETECTION OF A CONTRAST LINE
US4430165A (en) Laser-activated electrodepositing method and apparatus
JPS6151640B2 (en)
CN205614193U (en) Rotatory thermally equivalent most advanced hot formed device of probe that declines
KR20220008439A (en) Ship surface treatment system
CN210010598U (en) Device for grinding and polishing parts and dies by mixed laser
CN111138076B (en) Laser glass welding control system and method
KR20190045712A (en) Laser welding apparatus
CN115351427A (en) Processing method of dynamic focusing laser marking machine
JP2000146564A (en) Precision confirmation device for contact system measuring instrument of tube inner diameter
CN109434275A (en) A kind of transparent material surface laser processing auxilary focusing method
CN204381661U (en) A kind of equipment adopting laser ablation processing metal minute surface
CN114231728A (en) Device and method for strengthening curved surface part by laser impact on surface layer
CN207965921U (en) A kind of welding position calibration system
JPS591693A (en) Plating method
CN115302375B (en) High-efficiency high-precision composite processing equipment and method for diamond wafer
CN217096159U (en) Accurate temperature measuring device and welding frock
CN115090740B (en) Measuring method for measuring spinning forming precision of curved surface piece on line
CN114378309A (en) Flexible manufacturing system and flexible manufacturing method for complex component