JPS6151631B2 - - Google Patents

Info

Publication number
JPS6151631B2
JPS6151631B2 JP816883A JP816883A JPS6151631B2 JP S6151631 B2 JPS6151631 B2 JP S6151631B2 JP 816883 A JP816883 A JP 816883A JP 816883 A JP816883 A JP 816883A JP S6151631 B2 JPS6151631 B2 JP S6151631B2
Authority
JP
Japan
Prior art keywords
electrode
electrodes
needle
discharge
reactive gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP816883A
Other languages
Japanese (ja)
Other versions
JPS59136475A (en
Inventor
Shunpei Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP816883A priority Critical patent/JPS59136475A/en
Publication of JPS59136475A publication Critical patent/JPS59136475A/en
Publication of JPS6151631B2 publication Critical patent/JPS6151631B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 この発明は、プラズマ気相反応(以下PCVDと
いう)に関するものである。この発明は、容量結
合型の方式で、PCVDにおける被膜形成を大きな
領域で行う場合、特に電極面積を大面積とすると
きにまたは容量結合型のグロー放電をその電極間
距離を10cm以上例えば30〜50cm離して行うときに
おいても、グロー放電を均一に行うことを目的に
している。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to plasma gas phase reaction (hereinafter referred to as PCVD). This invention is a capacitively coupled type method, and when forming a film in a large area by PCVD, especially when the electrode area is large, or when using a capacitively coupled type glow discharge, the distance between the electrodes is 10 cm or more, for example, 30 to 30 cm. The aim is to perform glow discharge uniformly even when performed at a distance of 50 cm.

一般にPCVD法において、基板を配設し被膜を
形成する有効空間(被膜形成領域)を大きく0.2
m3(電極面積0.7m×0.7m、×電極間隔0.4m)以
上有する場合グロー放電がきわめて不均質にな
り、局部的に強い放電が弱い均質な放電とともに
発生し、さらにこの電極より陽光柱の方向に延び
る強い放電が電極上をランダムに0.1〜3m/分
の速度で移動(ここではおどりという)し、この
放電によるスパツタ効果により、形成される膜質
を劣化させてしまうことが知られている。この発
明はかかる局部強放電のおどりを除去し、均質な
グロー放電が発生するようにすることを目的とし
ている。
Generally, in the PCVD method, the effective space (film formation area) in which the substrate is placed and the film is formed is increased by 0.2
m 3 (electrode area 0.7m x 0.7m, electrode spacing 0.4m) or more, the glow discharge becomes extremely inhomogeneous, with locally strong discharge occurring together with weak homogeneous discharge, and further It is known that strong electrical discharges extending in the direction of the electrode randomly move at a speed of 0.1 to 3 m/min (referred to here as dancing), and that the spatter effect caused by this electrical discharge deteriorates the quality of the formed film. . The object of the present invention is to eliminate such fluctuations in localized strong discharge and to generate a homogeneous glow discharge.

この発明は、局部強放電を除去するため、容量
結合の一対をなす電極を平坦面上にするのではな
く複数の針状電極とし、この針状電極を互いに離
間することにより、1つの電極の放電が他の電極
の放電に集中しないようにさせたものである。さ
らにこの電極から電極へと放電が飛ぶことを禁止
するため、電極間にフローテイング・グリツド
(電気的に電極、反応炉等から遊離して等電位を
形成させるための網目状の導体)を配設したこと
を特徴としている。
In order to eliminate strong local discharge, this invention uses a plurality of needle-shaped electrodes instead of a pair of capacitively coupled electrodes on a flat surface, and by separating the needle-shaped electrodes from each other, This prevents the discharge from concentrating on the discharge of other electrodes. Furthermore, in order to prevent discharge from flying from one electrode to another, a floating grid (a mesh-like conductor that is electrically released from the electrodes, reactor, etc. to form an equipotential) is placed between the electrodes. It is characterized by the fact that it was established.

この発明は、反応性気体の供給口のノズルと電
極とグリツトとの関係において、ノズルを針状電
極またはグリツトとを併用させることにより、電
極近傍の構造を簡素化したことを特徴としてい
る。
This invention is characterized in that, in the relationship between the nozzle, electrode, and grit of the reactive gas supply port, the structure in the vicinity of the electrode is simplified by using the nozzle in combination with a needle electrode or grit.

この発明は、一対をなす電極の双方を複数の電
極構造とすることにより、さらにその電極間に被
膜形成領域を設けることにより、放電の均一化を
促したことを特徴としている。
The present invention is characterized in that both of the pair of electrodes have a plurality of electrode structures, and furthermore, a film formation region is provided between the electrodes, thereby promoting uniformity of discharge.

この発明は、グリツトを針状電極の端部(もつ
とも被膜形成領域に近い部分)に比べて横または
後方に配設せしめ、グリツトにフレークが形成さ
れないようにしたことを他の特徴としている。
Another feature of the present invention is that the grit is disposed laterally or rearward compared to the end of the needle-like electrode (the part closest to the film forming area) to prevent flakes from forming on the grit.

従来PCVDに関しては、第1図にその概要を示
しているが、グロー放電法を用いた平行平板電極
型においては、その平板間隔を1〜7cm例えば4
cmとして放電を行いやすくしていた。
An overview of conventional PCVD is shown in Figure 1. In the parallel plate electrode type using the glow discharge method, the plate spacing is 1 to 7 cm, for example, 4 cm.
cm, making it easier to discharge.

第1図はかかる構造を示したものであり、反応
炉2には一対の電極3,8が13.5MHzの高周波
電源25と41,42により連続して設けられて
いる。さらに反応系24は、反応性気体は、2
6,27,28より、例えば水素シラン、ドーピ
ングガス(B2H6、PH3等)がそれぞれ導入され、
流量計22、バルブ23よりなつており、これら
はノズル(反応性気体の供給口)5より放電領域
45に供給される。基板1はヒータ46により加
熱され、一方の電極8上に設けられている。
FIG. 1 shows such a structure, in which a pair of electrodes 3 and 8 are successively provided in the reactor 2 by a 13.5 MHz high frequency power source 25 and 41, 42. Further, in the reaction system 24, the reactive gas is 2
6, 27, and 28, for example, hydrogen silane and doping gas (B 2 H 6 , PH 3, etc.) are introduced, respectively.
It consists of a flow meter 22 and a valve 23, which are supplied to the discharge region 45 from a nozzle (reactive gas supply port) 5. The substrate 1 is heated by a heater 46 and is provided on one electrode 8 .

かかる構造によつて反応性気体例えばシランを
分解して基板1の被形成面上に非単結晶半導体を
形成させている。この反応後は反応生成物は44
を経て排気系32にバルブ14,15、真空ポン
プ16により放出される。ニードルバルブ14に
より反応炉内は0.01〜0.5torr例えば0.1torrに保持
され、電気エネルギーを25より供給することに
より、有効空間似はグロー放電がおき、反応生成
物例えば非単結晶シリコン膜が基板1上に形成さ
れる。
With this structure, a reactive gas such as silane is decomposed to form a non-single crystal semiconductor on the formation surface of the substrate 1. After this reaction, the reaction product is 44
The gas is then discharged into the exhaust system 32 by the valves 14 and 15 and the vacuum pump 16. The inside of the reactor is maintained at 0.01 to 0.5 torr, for example 0.1 torr, by the needle valve 14, and by supplying electrical energy from 25, a glow discharge is generated in the effective space, and a reaction product, such as a non-single crystal silicon film, is transferred to the substrate 1. formed on top.

しかしこの時この電極3,8が50cmまたはそれ
以上である場合、この放電はきわめて不安定手あ
り、局部的に輝度の大きい(明るい)強い放電4
3が数個観察され、この線状(帯状)の電極間を
走る放電は電極上を5〜50cm/秒の速さでランダ
ムに移動している。
However, if the electrodes 3 and 8 are 50 cm or longer, this discharge will be extremely unstable, resulting in a locally strong (bright) discharge 4.
3 was observed, and the discharge running between these linear (band-shaped) electrodes was moving randomly on the electrodes at a speed of 5 to 50 cm/sec.

この局部強放電のおきている領域は他の均質な
放電領域に比べて10倍以上の高エネルギー密度と
なるため、ここで反応した反応生成物は強い運動
エネルギーを持ち、基板表面をスパツタ(損傷)
してしまう。そのため形成された被膜は特性がき
わめて悪く、例えば珪素を用いたアモルフアス太
陽電池を作ろうとする時、その中にいわゆる粒状
の多結晶体が混入し、その変換効率を5%も悪く
し、さらに製造のバラツキも0〜5%も大きく、
実用上きわめて重大な問題であつた。
The area where this local strong discharge occurs has a high energy density more than 10 times compared to other homogeneous discharge areas, so the reaction products that react here have strong kinetic energy and cause spatter (damage) to the substrate surface. )
Resulting in. Therefore, the properties of the formed film are extremely poor. For example, when trying to make an amorphous solar cell using silicon, so-called granular polycrystals are mixed in, reducing the conversion efficiency by as much as 5%. The variation in 0 to 5% is large,
This was an extremely serious problem in practical terms.

さらにこの局部強放電は電極間隔を5cm以上例
えば10〜50cm離すとさらに頻繁に起き、放電がき
わめて不安定になつてしまうことが判明した。
Furthermore, it has been found that this localized strong discharge occurs more frequently when the electrodes are separated by 5 cm or more, for example, 10 to 50 cm, and the discharge becomes extremely unstable.

さらにこの局部強放電を防ぐため、一方の電極
3のみを針状の複数の電極にすることが可能であ
る。しかしこの場合他方の電極8はこの従来例の
構造においては、基板の配向が電極8上に平坦に
設けているため不可能である。このため一対をな
す電極のひとつのみを針状とするだけでは不十分
であることが判明した。本発明はかかる放電の不
均一性を防ぐため、一方の電極側を、反応性気体
の供給側においては、複数の針状電極にするに加
えて、針状電極間にフローテイング・グリツトを
配設し、完全に局部強放電を除去したことを特徴
としている。
Furthermore, in order to prevent this strong local discharge, it is possible to use only one electrode 3 as a plurality of needle-shaped electrodes. However, in this case, the other electrode 8 is not possible in this conventional structure because the substrate is oriented flat on the electrode 8. For this reason, it has been found that it is insufficient to make only one of the electrodes in the pair needle-like. In order to prevent such non-uniformity of discharge, the present invention provides a plurality of needle electrodes on one electrode side and a plurality of needle electrodes on the reactive gas supply side, and also arranges floating grit between the needle electrodes. It is characterized by completely eliminating strong local discharges.

本発明は、被膜形成領域をはさむごとくにして
配置した一対の電極のそれぞれに対し、複数の針
状電極として、局部強放電を完全に防止したこと
を特徴としている。
The present invention is characterized in that a plurality of needle-like electrodes are used for each of a pair of electrodes arranged so as to sandwich the film formation region, thereby completely preventing strong local discharge.

本発明は、この局部強放電の電極から電極への
「とび」を防ぐため、針状電極の長さを20mm以上
とし、さらにその間隔も20mm以上好ましくは30〜
50mmとしたことを特徴としている。
In order to prevent this localized strong discharge from "jumping" from electrode to electrode, the present invention makes the length of the needle electrodes 20 mm or more, and furthermore, the interval between them is 20 mm or more, preferably 30 to 30 mm.
It is characterized by being 50mm.

そのため太陽電池をPIN接合型を有して珪素を
用いて行つた時に6〜8%を大面積例えば20cm×
60cmという基板で作ることができ、製造歩留りも
従来の30%より80%以上に向上させることができ
るという大きな特徴を有する。
Therefore, when a solar cell has a PIN junction type and is made of silicon, 6 to 8%
It has the great feature of being able to be manufactured using a 60cm substrate and improving manufacturing yield from 30% to more than 80%.

以下に図面に従つて本発明の実施例をしるす。 Embodiments of the present invention will be described below with reference to the drawings.

実施例 1 第2図は本発明のPCVD装置の概要を示すもの
である。
Example 1 FIG. 2 shows an outline of the PCVD apparatus of the present invention.

図面において、被形成面を表面に有する基板1
は裏面を互いに重合わせて対をてし、石英ホルダ
ー19に配列されている。反応炉2へは予備室2
9に扉21より挿入し、ポンプ31にてバルブ3
0を開として真空引きをする。10-3torr以下の十
分な真空引きが行われた後、ゲート弁20を開け
て図のごとく基板1ホルダ19を配設する。反応
炉2内で基板1は上方下方より赤外線ランプ7,
7′により加熱され、100〜400℃例えば250℃に加
熱される。
In the drawings, a substrate 1 having a surface to be formed on
are arranged in pairs on the quartz holder 19 with their back surfaces overlapping each other. Preliminary room 2 to reactor 2
9 through the door 21, and use the pump 31 to close the valve 3.
Open it to 0 and draw a vacuum. After sufficient evacuation to 10 -3 torr or less is performed, the gate valve 20 is opened and the substrate 1 holder 19 is placed as shown in the figure. In the reactor 2, the substrate 1 is exposed to infrared lamps 7 from above and below.
7' to 100-400°C, for example 250°C.

反応性気体をドーピング系24にて26,2
7,28,29より流量計22、バルブ23を経
て供給口10を経て反応炉2内に供給する。供給
口はノズル5が一対をなす電極3,8の一方の電
極3を兼ね、他方の電極8と容量結合型のグロー
放電をおこさしめる。この一対の電極はその外側
を石英フード33,34でおおわれ、反応炉2の
内壁との寄生放電を防止している。電極3,8は
高周波電源25の端子41,42を介して電気エ
ネルギーが供給される。
26,2 reactive gas in doping system 24
7, 28, and 29, it is supplied into the reactor 2 through the flow meter 22, the valve 23, and the supply port 10. The supply port serves as one electrode 3 of the pair of electrodes 3 and 8, and causes a capacitively coupled glow discharge with the other electrode 8. This pair of electrodes is covered with quartz hoods 33 and 34 on the outside to prevent parasitic discharge with the inner wall of the reactor 2. Electrical energy is supplied to the electrodes 3 and 8 via terminals 41 and 42 of a high frequency power source 25.

さらに第2図においては、本発明の電極、グリ
ツトに関し、上方および下方に容量結合法による
グロー放電プラズマCVDを行うための電極3,
8がそれぞれ設けられている。
Furthermore, in FIG. 2, regarding the electrode and grit of the present invention, an electrode 3 for performing glow discharge plasma CVD using a capacitive coupling method is shown above and below.
8 are provided respectively.

上方の電極3は、針状の複数の電極54と電極
54に電気エネルギーを導く中空の導体55とよ
り構成され、この導体55は41と電気的に連結
しており、且つ反応性気体の供給口10とは電気
的に離間している。又反応性気体は中空の導体5
5を通つてノズル5より被膜形成領域に供給され
ている。このノズル5を有する針状電極(例えば
ステンレス製または銅にニツケルメツキをしたも
の)は、長さ20mm以上好ましくは30〜70mm例えば
40mmとした。この長さが15mm以下と短すぎると、
放電電極としての機能を有さず、また長すぎて必
要以上に空間を専有する必要がなく、20〜100mm
が実用範囲であつた。また各針状電極の間隔は20
mm以上好ましくは30〜70mm例えば50mmとした。こ
れも20〜100mmが実用範囲であり、100mm以上では
各電極間に放電がない領域ができてしまつた。
The upper electrode 3 is composed of a plurality of needle-shaped electrodes 54 and a hollow conductor 55 that conducts electrical energy to the electrode 54, and this conductor 55 is electrically connected to 41 and is also configured to supply reactive gas. It is electrically separated from the mouth 10. Also, the reactive gas is passed through the hollow conductor 5.
5 and is supplied to the film forming area from the nozzle 5. The needle-shaped electrode (for example, made of stainless steel or copper plated with nickel) having this nozzle 5 has a length of 20 mm or more, preferably 30 to 70 mm, for example.
It was set to 40mm. If this length is too short, less than 15 mm,
It does not have the function of a discharge electrode and does not need to be too long and take up more space than necessary;
was within the practical range. Also, the spacing between each needle electrode is 20
mm or more, preferably 30 to 70 mm, for example 50 mm. Again, the practical range is 20 to 100 mm, and over 100 mm, there is a region between each electrode where there is no discharge.

さらに反応性気体の供給側の電極系50にはこ
の針状電極をマトリツクス状に40mm間隔に配設し
その中間部に網状に等電位を構成して針状電極間
に局部放電がとびわたらないようにグリツトをも
うけた。これは0.5〜1mmφのステンレスを40mm
の空隙(その中央部には針状電極端54が設けら
れている)を有して設けた。このグリツトは針状
電極の長さを50mm以下とする時、特にその局部放
電の発生防止に対してきわめて有効であつた。
Further, in the electrode system 50 on the reactive gas supply side, these needle-like electrodes are arranged in a matrix at intervals of 40 mm, and a net-like equipotential is formed in the middle part of the needle-like electrodes to prevent local discharge from spreading between the needle-like electrodes. I made grit so that it wouldn't be there. This is 40mm of stainless steel with a diameter of 0.5 to 1mm.
(The needle electrode end 54 is provided in the center of the gap). This grit was extremely effective in preventing the occurrence of local discharge, especially when the length of the needle electrode was 50 mm or less.

さらに第2図において、本発明の電極は上方の
電極系50下方の電極系51をともに針状電極と
して設けた。下方の電極に関しては、電極8は針
状を電極3と同様の寸法、形状で有している。し
かし図面から明らかなごとく、電極8は反応後の
不要反応生成物が穴の部分でつまつてしまうこと
を防ぐため、板状のステンレス板に40mmごとに針
状電極を設け、この板に3〜5mmの穴を多数開
け、不要反応生成物、キヤリアガスは穴9より6
を通つて排気口6より排気系32にいたらしめ
た。
Furthermore, in FIG. 2, in the electrode of the present invention, an upper electrode system 50 and a lower electrode system 51 are both provided as needle-shaped electrodes. Regarding the lower electrode, the electrode 8 has a needle shape with the same dimensions and shape as the electrode 3. However, as is clear from the drawing, in order to prevent unnecessary reaction products from clogging the holes after the reaction, the electrode 8 is a plate-shaped stainless steel plate with needle-shaped electrodes provided every 40 mm. -Multiple holes of ~5 mm are drilled, and unnecessary reaction products and carrier gas are removed from holes 9 to 6.
The air was allowed to enter the exhaust system 32 from the exhaust port 6 through the exhaust port 6.

かくのごとく上方および下方の双方を針状とす
ることにより、被膜形成領域の実効電極面積70cm
電極間隔50cmにおいても局部強放電がみられなか
つた。
By making both the upper and lower parts needle-shaped, the effective electrode area of the film formation area is 70 cm.
No strong local discharge was observed even when the electrode spacing was 50 cm.

図面における実施例において、反応炉は高さ
800mm、巾800mm、奥行き1000mmを有し、被膜形成
領域としての有効空間45は20cm×60cmの基板を
互いに8cm離し20枚(10セツト)配し、20cm×60
cm×60cmの場合である。
In the embodiment in the drawings, the reactor has a height
800 mm, width 800 mm, and depth 1000 mm, and the effective space 45 as a film forming area consists of 20 20 cm x 60 cm substrates (10 sets) arranged 8 cm apart from each other.
This is the case of cm x 60cm.

かくのごとくして一対の電極の針状電極端間の
間隔も約30cm離れ、また電極面積も65cmとおおき
くても本発明の双方に針状電極を形成させた場
合、または一方に形成する場合にはグリツトと併
用して設けることにより、従来例で見られた局部
強放電を全く除去することができた。特に局部強
放電の起きるおきやすさは、反応性気体がシラン
等の反応性固体となりやすい場合が水素、アルゴ
ン、窒素等よりもきわめておきやすい。しかし本
発明においては、シラン(SinH2o+2o1)にお
いて0.05〜0.2torr、30Wにおいて全く観察されな
かつた。そのため反応性気体を26よりシラン2
7よりジボラン28よりフオスピン29よりキヤ
リアガス例えば水素を供給して、一つのP(100
Å)I(5000Å)N(100Å)のPIN接合をガラ
ス基板上のCTF(透明導電膜)上に設けると、
その変換効率は20 60cmにて従来の第1図の構造
のプラズマCVD装置においては1%を得ること
も不可能であつた。他方本発明の第2図のプラズ
マCVD装置においては420cm×60cmのパネルに対
し15mm×40cmのセルを40段直列連結した方式にお
いて、開放電圧30V以上(30〜35V)短絡電流600
mA以上(700〜800mA)効率5%(5〜6.5
%)以上をAMI(100mW/cm2)にて得ることがで
きた。このため従来電圧は5〜25Vと大きくばら
つき、電流は70〜500mAと大きくばらつき、さ
らに効率0.1〜2%と大きくばらついてしまつた
ことを考えると、画期的なことであつた。
In this way, even though the distance between the needle-shaped electrodes of a pair of electrodes is about 30 cm and the electrode area is as large as 65 cm, in the case where the needle-shaped electrodes are formed on both sides of the present invention, or when they are formed on one side. By providing this in combination with grit, it was possible to completely eliminate the localized strong discharge that was observed in the conventional example. In particular, strong local discharge is more likely to occur when the reactive gas tends to become a reactive solid such as silane than when hydrogen, argon, nitrogen, etc. are used. However, in the present invention, it was not observed at all in silane (SinH 2o+2o 1) at 0.05 to 0.2 torr and 30W. Therefore, the reactive gas is less silane than 26.
A carrier gas such as hydrogen is supplied from diborane 28 and phospin 29 from 7, and one P (100
Å) When a PIN junction of I (5000 Å) N (100 Å) is provided on a CTF (transparent conductive film) on a glass substrate,
It was impossible to achieve a conversion efficiency of 1% at 2060 cm using a conventional plasma CVD apparatus having the structure shown in FIG. On the other hand, in the plasma CVD apparatus of the present invention shown in Fig. 2, in a system in which 40 stages of 15 mm x 40 cm cells are connected in series to a 420 cm x 60 cm panel, the open circuit voltage is 30 V or more (30 to 35 V) and the short circuit current is 600 V.
More than mA (700~800mA) Efficiency 5% (5~6.5
%) or more could be obtained at AMI (100 mW/cm 2 ). This was an epoch-making achievement considering that conventional voltages varied widely from 5 to 25 V, currents varied widely from 70 to 500 mA, and efficiency varied widely from 0.1 to 2%.

この図面では反応炉はひとつであるが、これを
PIN接合を形成する反応炉をそれぞれ独立せしめ
P型半導体層用の反応炉、I型半導体層用の反応
炉およびN型半導体層用の反応炉とし、それらを
たがいに連続し、外部に触れることなく、基板を
移動するマルチチヤンバー方式例えば本発明人の
出願になる特許願56−55608(53−152887、
S53.12.10出願の分割)を用いると有効である。
また本発明は、第2図に示すごとく、グリツトを
正極8負極3のそれぞれ側に各一対12,13と
もうけている。
In this drawing, there is only one reactor, but this
The reactors that form the PIN junction are made independent, and are used as a reactor for a P-type semiconductor layer, a reactor for an I-type semiconductor layer, and a reactor for an N-type semiconductor layer, and they are connected to each other and touch the outside. For example, patent application No. 56-55608 (53-152887) filed by the present inventor.
S53.12.10 Division of application) is effective.
Further, in the present invention, as shown in FIG. 2, a pair of grits 12 and 13 are provided on each side of the positive electrode 8 and the negative electrode 3, respectively.

このグリツトは一方のみでもそのグリツトの設
けられた電極側では有効であるが、膜質改善のた
め双方にもうけることにより局部強放電を完全に
防止することができた。
Although this grit is effective on only one side of the electrode, strong local discharge can be completely prevented by adding it to both sides to improve film quality.

本発明の実施例において、針状電極はステンレ
スの管(外径3mm、内径2mm)をもちいた。しか
しこの針状電極の端部(被膜形成領域に最も近い
部分)に平板状または球状の付属物を局部強放電
が起きない範囲に設けて放電の均一性をさらに高
めることは有効である。かくすると構造的にはさ
らにマルチ電極方式に至る。
In the embodiment of the present invention, a stainless steel tube (outer diameter 3 mm, inner diameter 2 mm) was used as the needle electrode. However, it is effective to further improve the uniformity of the discharge by providing a flat or spherical appendage at the end of the needle electrode (the part closest to the film forming area) within a range where strong local discharge does not occur. This further leads to a multi-electrode structure.

実施例 2 第2図においては、ノズル5と電極3とが同一
物よりなつており、ステンレスの針状電極を管状
としてノズル穴5を設けたものである。さらにこ
の電極3、ノズル5、グリツトの関係に関し、第
2図のPCVD装置であつて特にその電極、グリツ
ト等の上側電極50下側電極51を第3図Aのご
とくに変形を有せしめることができる。
Embodiment 2 In FIG. 2, the nozzle 5 and the electrode 3 are made of the same material, and the nozzle hole 5 is provided in a tubular stainless steel needle electrode. Furthermore, regarding the relationship between the electrode 3, nozzle 5, and grit, it is possible to deform the upper electrode 50 and lower electrode 51 of the electrode, grit, etc. as shown in FIG. 3A in the PCVD apparatus shown in FIG. can.

第3図Aは電極3が導体55にステンレスの針
金54(1〜3mmφ)が針状電極55として設け
られており、この針状電極間にグリツト12が設
けられている。反応性気体はこのグリツト(管状
を有し、ドーピング系24反応炉と電気的に遊離
した導体よりなる)にもうけられた0.5〜1mmφ
のノズル5より被膜形成領域に放出され、プラズ
マ反応がなされる。その他は実施例1と同じであ
る。機構的に電極部50の構造を簡単にすること
ができた。実施例1と同様の効果を有せしめるこ
とができた。
In FIG. 3A, the electrode 3 is a conductor 55, and a stainless steel wire 54 (1 to 3 mm in diameter) is provided as a needle electrode 55, and a grit 12 is provided between the needle electrodes. The reactive gas is introduced into this grit (which has a tubular shape and consists of a doping system 24 reactor and an electrically free conductor) with a diameter of 0.5 to 1 mm.
is ejected from the nozzle 5 into the film forming area, and a plasma reaction occurs. The rest is the same as in Example 1. Mechanically, the structure of the electrode section 50 could be simplified. The same effects as in Example 1 could be achieved.

実施例 3 第3図Bは本発明の他の実施例をしめす。Example 3 FIG. 3B shows another embodiment of the invention.

図面より明らかなごとく、上側電極部50下側
電極部51をともに針状電極とし、フレークの発
生の原因となるグリツトを全く設けない場合であ
る。その他は実施例1と同様である。
As is clear from the drawings, both the upper electrode part 50 and the lower electrode part 51 are needle-shaped electrodes, and no grit, which causes flakes, is provided. The rest is the same as in Example 1.

かくのごとくすると、実施例1、2に比べて、
フレーク(雪片)の発生が少なくなつた。すなわ
ちフレークがグリツト部に付着し落下することに
より被形成面に付着し、ピンホール等を作りやす
いが、これを防ぐことができた。しかし同時に局
部強放電をなくす針状電極の長さを50〜80mmにす
ることが必要になり、針状電極間も同様に50〜80
mmと電極長と同程度に大きく開けなければならず
被膜成長速度が実施例1の3Å/秒より1Å/秒
に少なくなつた。
In this way, compared to Examples 1 and 2,
The occurrence of flakes (snowflakes) has decreased. That is, the flakes adhere to the grit portion and fall, thereby adhering to the surface to be formed and easily creating pinholes, etc., but this could be prevented. However, at the same time, it is necessary to set the length of the needle electrode to 50 to 80 mm to eliminate strong local discharge, and the length between the needle electrodes must also be 50 to 80 mm.
The opening had to be as wide as the electrode length (mm), and the film growth rate was reduced to 1 Å/sec from 3 Å/sec in Example 1.

本発明においてはシランを用いた半導体膜の作
製を示した。しかし半導体膜としてSiF2SiF4との
PCVD反応によるSi、シランとメタンとのPCVD
によるSixC1-x(o<x<1)シランとゲルマン
とによるSixGe1-x(0<x<1)シランとアンモ
ニアとの反応によるSi3N4-x(0<x<1)を非
単結晶半導体として設けることも本発明は有効で
ある。
In the present invention, the production of a semiconductor film using silane has been described. However, as a semiconductor film, SiF 2 SiF 4
PCVD with Si, silane and methane by PCVD reaction
SixC 1-x (o<x<1) by silane and germane SixGe 1-x (0<x<1) Si 3 N 4-x (0<x<1) by reaction with silane and ammonia The present invention is also effective when provided as a single crystal semiconductor.

また形成させる被膜として絶縁体である酸化珪
素、窒化珪素を作つてもよい。さらにTMA(Al
(CH33)を用いた金属アルミニユーム、TMAと
シランを用いたシリコン添加アルミニユームのご
とき導体、またはSnCl4と酸化物気体とを用いた
酸化スズ、InCl3、SnCl4と酸化物気体とを用いた
酸化インジユームスズ等の透光性導電膜を形成し
てもよいことはいうまでもない。
Furthermore, the film to be formed may be made of insulators such as silicon oxide or silicon nitride. In addition, TMA (Al
Conductors such as metallic aluminum using (CH 3 ) 3 ), silicon-added aluminum using TMA and silane, tin oxide using SnCl 4 and oxide gas, InCl 3 , SnCl 4 and oxide gas It goes without saying that a light-transmitting conductive film made of indium tin oxide or the like used may also be formed.

さらに本発明においては、第2図の実施例より
も明らかなごとく、反応性気体を上方より下方に
流し、その流れにそつて基板の被形成面を配し、
さらにプラズマCVDの電界も被形成面に平行に
なさしめた。しかし本発明の電極、グリツトに関
しては、基板表面、反応性気体、電界の向きを変
えて基板表面を反応生成物がスパツタさせないか
ぎりにおいて変形し応用してもよい。
Furthermore, in the present invention, as is clearer from the embodiment shown in FIG.
Furthermore, the electric field of plasma CVD was made parallel to the surface to be formed. However, the electrode and grit of the present invention may be modified and applied as long as the directions of the substrate surface, reactive gas, and electric field are changed so that the reaction products do not sputter on the substrate surface.

本発明は、以上のごとく大面積電極または電極
間隔を10cm以上離した場合すなわち電極間電圧が
500V以上になつてしまう場合特に有効であり、
かかるフローテイング・グリツトは電圧駆動式の
グロー放電方法を用いたPCVDにおいて特に有効
であるものと信じる。
As described above, in the case of large-area electrodes or electrodes separated by 10 cm or more, the voltage between the electrodes is
This is especially effective when the voltage exceeds 500V.
We believe that such floating grits are particularly effective in PCVD using voltage driven glow discharge methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のプラズマCVD法を示す。第2
図は本発明のプラズマCVD装置を示す。第3図
は反応性気体の電極配置を特に示したものであ
る。
Figure 1 shows the conventional plasma CVD method. Second
The figure shows a plasma CVD apparatus of the present invention. FIG. 3 specifically shows the electrode arrangement for the reactive gas.

Claims (1)

【特許請求の範囲】 1 1気圧以下の減圧状態に保持された反応容器
と、該反応容器に反応性気体を供給する供給系
と、不要反応生成物またはキヤリアガスを真空排
気する排気系と、前記供給系と排気系との間に被
形成面を有する基板を配設する被膜形成領域とを
具備したプラズマ気相反応装置において、電気エ
ネルギーを前記反応性気体に供給する一対をなす
第一および第二の電極の一方の前記反応性気体を
供給する側に設けられた電極は、複数の針状電極
を有し、前記針状電極間には導電性を有し、且つ
電気的にいずれの電極とも遊離したグリツドを配
設せしめたことを特徴とするプラズマ気相反応装
置。 2 特許請求の範囲第1項において、複数の針状
電極またはグリツドは、反応性気体が被膜形成領
域に導出される開穴を有することを特徴とするプ
ラズマ気相反応装置。
[Scope of Claims] 1. A reaction vessel maintained at a reduced pressure of 1 atmosphere or less, a supply system for supplying a reactive gas to the reaction vessel, an exhaust system for evacuating unnecessary reaction products or carrier gas, In a plasma vapor phase reactor comprising a film forming region in which a substrate having a surface to be formed is disposed between a supply system and an exhaust system, a pair of first and second film forming regions supply electrical energy to the reactive gas. One of the two electrodes, which is provided on the side that supplies the reactive gas, has a plurality of needle-like electrodes, and has conductivity between the needle-like electrodes, and is electrically connected to either electrode. A plasma gas phase reactor characterized in that a grid is disposed in which both are free. 2. The plasma vapor phase reactor according to claim 1, wherein the plurality of needle-like electrodes or grids have openings through which reactive gas is led out to the film forming region.
JP816883A 1983-01-21 1983-01-21 Apparatus for plasma vapor-phase reaction Granted JPS59136475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP816883A JPS59136475A (en) 1983-01-21 1983-01-21 Apparatus for plasma vapor-phase reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP816883A JPS59136475A (en) 1983-01-21 1983-01-21 Apparatus for plasma vapor-phase reaction

Publications (2)

Publication Number Publication Date
JPS59136475A JPS59136475A (en) 1984-08-06
JPS6151631B2 true JPS6151631B2 (en) 1986-11-10

Family

ID=11685800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP816883A Granted JPS59136475A (en) 1983-01-21 1983-01-21 Apparatus for plasma vapor-phase reaction

Country Status (1)

Country Link
JP (1) JPS59136475A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61147879A (en) * 1984-12-19 1986-07-05 Hitachi Ltd Method and device for surface treatment

Also Published As

Publication number Publication date
JPS59136475A (en) 1984-08-06

Similar Documents

Publication Publication Date Title
EP2080216B1 (en) Method for forming a film with a graded bandgap by deposition of an amorphous material from a plasma
US7998785B2 (en) Film deposition of amorphous films with a graded bandgap by electron cyclotron resonance
EP2469611B1 (en) Movable jig for silicon-based thin film solar cell
JP4557400B2 (en) Method for forming deposited film
KR20090031492A (en) Methods and apparatus for depositing a microcrystalline silicon film for photovoltaic device
JP2002299670A (en) Silicon-based thin film and photovoltaic element
CN101882646B (en) Deposition clamp of film solar cell
JP5512886B2 (en) Surface-fed electrode for deposition of thin-film solar cells and signal feeding method thereof
JP2000109979A (en) Surface treatment method by dc arc discharge plasma
KR20090016232A (en) Plasma processing apparatus for film deposition and deposition method of micro crystalline silicon layer using the same
JPS6151631B2 (en)
JPH10209479A (en) Manufacturing apparatus of semiconductor thin film and photovoltaic device
JPS59136476A (en) Apparatus for plasma vapor-phase reaction
JP4510242B2 (en) Thin film formation method
JPH0622203B2 (en) Amorphous semiconductor thin film generator
JP2018019107A (en) Plasma cvd system, crystal silicon-based solar battery, and plasma cvd method for manufacturing the same
JPH10229213A (en) Forming method of semiconductor thin film
JPS621535B2 (en)
JP4251256B2 (en) Method for producing microcrystalline film
JP3347383B2 (en) Microwave plasma processing equipment
CN201756586U (en) Solar battery deposition box
JPS63142627A (en) Manufacture of semiconductor thin film
JP3968649B2 (en) Thin film forming method and apparatus
JP2005310834A (en) Plasma processing apparatus
JP2515329B2 (en) Thin film formation method