JPS6151502B2 - - Google Patents

Info

Publication number
JPS6151502B2
JPS6151502B2 JP4099681A JP4099681A JPS6151502B2 JP S6151502 B2 JPS6151502 B2 JP S6151502B2 JP 4099681 A JP4099681 A JP 4099681A JP 4099681 A JP4099681 A JP 4099681A JP S6151502 B2 JPS6151502 B2 JP S6151502B2
Authority
JP
Japan
Prior art keywords
iron core
laminated iron
punching
laminated
core pieces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4099681A
Other languages
Japanese (ja)
Other versions
JPS57156656A (en
Inventor
Takaaki Mitsui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MITSUI HAITETSUKU KK
Original Assignee
MITSUI HAITETSUKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MITSUI HAITETSUKU KK filed Critical MITSUI HAITETSUKU KK
Priority to JP4099681A priority Critical patent/JPS57156656A/en
Publication of JPS57156656A publication Critical patent/JPS57156656A/en
Publication of JPS6151502B2 publication Critical patent/JPS6151502B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies

Description

【発明の詳細な説明】 本発明は積層鉄芯の製造方法に関する。[Detailed description of the invention] The present invention relates to a method for manufacturing a laminated iron core.

電動機の固定子または回転子の積層鉄芯は広幅
鉄板を長手方向にスリツトした帯状鉄板を、1列
または複個列順次に所定形状に打抜き、この打抜
いた鉄板を順次積層固着して製造される。この広
幅鉄板は広幅鉄板を圧延する時の圧延ローラの撓
みのために幅方向の断面形状が板幅全体に亘つて
一様ではなく第1図に示すように略台形状となつ
ている。従つて、この広幅鉄板1から宿定幅にス
リツトされた帯状鉄板もまた台形状の断面形状と
なる。特に鉄板の両側部PLa,PLbに近に部分か
らスリツトされた帯状鉄板は左右の板厚の偏差δ
が著しく大きく、この偏差は板幅の広い程大きく
なる。従つて、このような帯状鉄板を使用して回
転子または固定子鉄芯を積層形成すると、この積
層鉄芯の回転子または固定子の断面形状もまた台
形の断面形状(第2図)を有するものとなる。特
に積層固定子断面は正確な四角形でなければなら
ず許容し難い問題となる。特に、鉄芯の積み厚が
厚い程、外径が大きい程左右の偏差が大きく、ス
ロツトの倒し、軸孔の直角度に極めて悪い影響を
及ぼす。因みに、鉄芯板厚の左右の偏差が0.02
m/mある場合、70枚積層して形成した固定子鉄
芯の左右の偏差は1.4m/mとなり、積層カシメ
固着の状態も悪くなる。
The laminated iron core of the stator or rotor of an electric motor is manufactured by punching strip iron plates made by longitudinally slitting wide iron plates into a predetermined shape in one or more rows, and then stacking and fixing the punched iron plates one after another. Ru. The cross-sectional shape of this wide steel plate in the width direction is not uniform over the entire width of the plate due to the deflection of the rolling roller when rolling the wide steel plate, but is approximately trapezoidal as shown in FIG. Therefore, a band-shaped iron plate slit to a predetermined width from this wide iron plate 1 also has a trapezoidal cross-sectional shape. In particular, for strip-shaped steel plates that are slit from the parts close to both sides of the steel plate PLa and PLb, the difference in thickness between the left and right sides is δ.
is extremely large, and this deviation increases as the plate width increases. Therefore, when a rotor or stator iron core is laminated using such strip-shaped iron plates, the cross-sectional shape of the rotor or stator of this laminated iron core also has a trapezoidal cross-sectional shape (Fig. 2). Become something. In particular, the cross section of the laminated stator must be a precise square, which poses an unacceptable problem. In particular, the thicker the stack of iron cores and the larger the outer diameter, the larger the lateral deviation, which has a very negative effect on the tilting of the slot and the perpendicularity of the shaft hole. By the way, the left and right deviation of the iron core plate thickness is 0.02
m/m, the left and right deviation of the stator core formed by laminating 70 sheets is 1.4 m/m, and the state of lamination caulking also deteriorates.

上述の問題を解決するために、積層鉄芯片の外
形打抜きおよびかしめを行なうステーシヨンの下
型部分を積層鉄芯片が所定枚数に達する毎に180
゜づつ回転させ、板厚偏差を相殺して積層固定す
るようにした積層鉄芯の製造方法が最近提案され
ている。
In order to solve the above-mentioned problem, the lower mold part of the station for punching out the outer shape of the laminated iron core pieces and caulking them is heated by 180 mm every time the laminated iron core pieces reach a predetermined number.
Recently, a method of manufacturing a laminated iron core has been proposed in which the laminated iron core is rotated by degrees to offset deviations in plate thickness and then fixed in a laminated manner.

しかし、かかる積層鉄芯の製造方法において
は、下型部分が回転可能となる期間、すなわちプ
レスのクランク角が所定の角度範囲となる期間
に、下型部分を1度に180゜回転させなければな
らない。したがつて、下型部分を正確に180゜回
転させるためには、その回転角が大きいため回転
位置決め精度上、および下型部分を回転させる機
構の機械強度、駆動力などの能力上の問題があつ
て、プレス速度に制限が加わり、プレス速度はせ
いぜい毎分200〜300ストローク程度に抑えられて
いた。
However, in this method of manufacturing a laminated iron core, the lower mold part must be rotated 180 degrees at a time during the period when the lower mold part is rotatable, that is, during the period when the crank angle of the press is within a predetermined angular range. It won't happen. Therefore, in order to accurately rotate the lower mold part by 180 degrees, the rotation angle is large, so there are problems in terms of rotational positioning accuracy and in the mechanical strength and driving force of the mechanism that rotates the lower mold part. At that time, restrictions were placed on the press speed, which was limited to 200 to 300 strokes per minute at most.

本発明は上記実情に鑑みてなされたもので、積
層鉄芯の高精度化およびプレス速度の高速化が可
能な積層鉄芯の製造方法を提供することを目的と
する。
The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide a method for manufacturing a laminated iron core that can improve the precision of the laminated iron core and increase the press speed.

この発明によれば、帯状鉄芯板から積層鉄芯片
を打抜く打抜きステーシヨンを前記帯状鉄芯板の
送り方向に複数ケ所設け、各打抜きステーシヨン
に配設され各打抜きステーシヨンで打抜かれた積
層鉄芯片をかしめる各ブランキングダイをプレス
ストロークごとに180゜/(打抜きステーシヨン
の数)づつ回転させるとともに、各打抜きステー
シヨンのポンチを打抜きステーシヨン数と同数の
プレスストローク数ごとに打抜き状態に押し下げ
て複数の打抜きステーシヨンにおいて積層鉄芯片
の打抜きかしめを行なうようにしている。
According to this invention, a plurality of punching stations for punching laminated iron core pieces from a band-shaped iron core plate are provided at a plurality of locations in the feeding direction of the band-shaped iron core plate, and the laminated iron core pieces are arranged at each punching station and punched by each punching station. Rotate each blanking die by 180°/(number of punching stations) for each press stroke, and push down the punch of each punching station to the blanking state every press stroke number equal to the number of punching stations. The laminated iron core pieces are punched and caulked at a punching station.

以下この発明を添付図面の実施例にもとづいて
詳細に説明しよう。
Hereinafter, the present invention will be explained in detail based on the embodiments shown in the accompanying drawings.

第3図は、積層鉄芯製造用順送り金型装置にお
けるステータコア用鉄芯片の外形抜き及びかしめ
のための打抜きステーシヨンをストリツプ送り方
向に2ケ所設けた場合の平面図であり、第4図は
第3図のA―A断面図である。これらのステーシ
ヨンにおける筒状下型部分(ブランキングダイ)
1,1′は、ベアリング2,2′,3,3′の介在
によつて回転可能となつており、その外周にスプ
ロケツト4,4′が取付けられている。スプロケ
ツト4,4′に懸けられたリンクチエーン5は金
型内に設けられた溝6a,6bを通つて、金型外
に設置されたインデツクス手段7の出力軸に取付
けられたスプロケツト8に懸けられている。イン
デツクス手段7は第5図に示すようにローラカム
インデツクス装置9と変速装置10とから成る。
FIG. 3 is a plan view of a case where two punching stations are provided in the strip feeding direction for punching out the outer shape and caulking of core pieces for stator cores in a progressive die device for manufacturing laminated iron cores, and FIG. 3 is a sectional view taken along line AA in FIG. 3. FIG. The cylindrical lower mold part (blanking die) in these stations
1 and 1' are rotatable through the interposition of bearings 2, 2', 3 and 3', and sprockets 4 and 4' are attached to their outer peripheries. The link chain 5 suspended on the sprockets 4 and 4' passes through grooves 6a and 6b provided in the mold, and is suspended on the sprocket 8 attached to the output shaft of the indexing means 7 installed outside the mold. ing. The indexing means 7 consists of a roller cam indexing device 9 and a transmission 10, as shown in FIG.

ローラカムインデツクス装置9の入力軸9aに
はプレスのクランクシヤフトの回転が伝達される
ようになつている。すなわち、第5図に示すよう
に、プレスのクランクシヤフトの端部11にプー
リ12が取付けられており、クランクシヤフトの
回転が、プーリ12、ベルト13、プーリ14,
15、ベルト16、プーリ17、ユニバーサルジ
ヨイント18を介してローラカムインデツクス装
置9の入力端9aに1対1で伝達される。プーリ
12,14,15,17は同径であり、プーリ1
4と15は同軸である。尚、符号19は軸受装
置、20は下型装置、21は上型装置、22はプ
レスのスライド、である。
The rotation of the crankshaft of the press is transmitted to the input shaft 9a of the roller cam indexing device 9. That is, as shown in FIG. 5, a pulley 12 is attached to the end 11 of the crankshaft of the press, and the rotation of the crankshaft is controlled by the pulley 12, belt 13, pulley 14,
15, a belt 16, a pulley 17, and a universal joint 18, it is transmitted one-to-one to the input end 9a of the roller cam indexing device 9. Pulleys 12, 14, 15, and 17 have the same diameter, and pulley 1
4 and 15 are coaxial. The reference numeral 19 is a bearing device, 20 is a lower die device, 21 is an upper die device, and 22 is a press slide.

ローラカムインデツクス装置9は入力軸9aの
1回転(すなわちクランクシヤフト1回転)のう
ち所定の位相角範囲、例えば第6図に示すように
クランクシヤフト1回転(1ストローク)のうち
上死点を含むθ=90゜の範囲において作動し、変
速装置10に回転駆動力を伝達する。変速装置1
0はスプロケツト4,4′の回転角度を正確に90
゜に規正するためのもので、ローラカムインデツ
クス装置9から伝達された回転を前記90゜の回転
角度に変換する。これによつて、90゜の回転角度
が変速装置10の出力軸に取付けられたスプロケ
ツト8にもたらされ、下型部分1,1′はそれぞ
れ90゜回転する。
The roller cam indexing device 9 calculates a phase angle within a predetermined phase angle range within one revolution of the input shaft 9a (that is, one revolution of the crankshaft), for example, the top dead center within one revolution (one stroke) of the crankshaft as shown in FIG. The rotational driving force is transmitted to the transmission 10. Gearbox 1
0 means the rotation angle of sprockets 4 and 4' is exactly 90
This is for adjusting the rotation angle of 90 degrees, and converts the rotation transmitted from the roller cam indexing device 9 into the rotation angle of 90 degrees. This provides a rotation angle of 90 DEG to the sprocket 8 mounted on the output shaft of the transmission 10, and the lower mold parts 1, 1' are each rotated by 90 DEG.

なお、下型部分1,1′には帯状鉄芯板(スト
リツプ)28が所定のピツチごとに間歇移送され
る。下型部分1,1′のステーシヨンに到達する
ストリツプ28は、第7図に示すように仮想線2
9で示す積層鉄芯片30中心の点対称位置にかし
め用の切起し突起26とストローク27が前記ス
テーシヨンの前のステーシヨンにおいて加工され
ている。
Incidentally, a band-shaped iron core plate (strip) 28 is intermittently transferred to the lower mold portions 1, 1' at predetermined pitches. The strip 28 reaching the station of the lower mold part 1, 1' follows the imaginary line 2 as shown in FIG.
A caulking protrusion 26 and a stroke 27 are machined at a point symmetrical position with respect to the center of the laminated iron core piece 30 shown at 9 in the station in front of the station.

一方、上型装置21は、ポンチ23,23′
と、プレスストローク数を計数するカウンタ(図
示せず)、カム24,24′およびソレノイド2
5,25′からなるカム装置とを具えている。こ
のカム装置は前記カウンタの計数値に応じてソレ
ノイド25,25′を交互に付勢し、カム装置に
接触するポンチ23,23′を交互に打抜き状態
に押し下げる。
On the other hand, the upper die device 21 has punches 23, 23'
, a counter (not shown) for counting the number of press strokes, cams 24, 24' and solenoid 2.
5, 25' cam device. This cam device alternately energizes the solenoids 25, 25' in accordance with the count value of the counter, and alternately pushes down the punches 23, 23' in contact with the cam device to the punched state.

したがつて、下型部分1,1′のステーシヨン
に到達するストリツプ28は、前記交互に打抜き
状態に押し下げられるポンチ23,23′(第8
図)によつて第7図の仮想線29で示す形状で交
互に下型部分1,1′内に打抜かれ、また下型部
分1,1′内に打抜かれた積層鉄芯片30は、シ
リンダ(図示せず)によつてポンチ23,23′
の押圧力よりやや小さい押圧力で押上げるように
なつている受け台31上でかしめられる。なお、
前記シリンダは、1個の積層鉄芯を構成する所定
数の積層鉄芯片が打抜かれ、かしめられる毎に受
け台31を下降させ、製品積層鉄芯を取り出すよ
うに構成されている。周知のように、所定個数毎
に切起し突起26が打抜き落され、前に打抜かれ
た積層鉄芯片とかしめられないことによつて1個
ずつの製品積層鉄芯が分離される。
Therefore, the strip 28 reaching the station of the lower mold part 1, 1' is connected to the punches 23, 23' (the eighth
The laminated iron core pieces 30 punched into the lower mold parts 1 and 1' are alternately punched into the lower mold parts 1 and 1' in the shape shown by the imaginary line 29 in FIG. (not shown) punches 23, 23'
It is caulked on a pedestal 31 which is designed to be pushed up with a pressing force slightly smaller than the pressing force of . In addition,
The cylinder is configured so that each time a predetermined number of laminated iron core pieces constituting one laminated iron core are punched out and caulked, the pedestal 31 is lowered and the product laminated iron core is taken out. As is well known, a predetermined number of cut and raised protrusions 26 are punched out, and the product laminated iron cores are separated one by one by not being caulked with the previously punched laminated iron core pieces.

プレスの1ストロークにおいて上死点を含む90
゜の範囲で、リンクチエーン5が回転角90゜に対
応する量だけ駆動され、スプロケツト4,4′と
共に筒状下型部分1,1′が90゜だけ回動され
る。既に下型部分1内に打き抜かれて相互にかし
められている積層鉄芯片30は、下型部分1,
1′の内周に密に接しているので下型部分1,
1′と共に一体に回動される。従つてプレスの2
ストロークごとに交互にポンチがストリツプを打
抜く直前においては強制回転が既に終了してお
り、新たに打抜かれる積層鉄芯片と、既に下型部
分1内に打抜かれている最上部の積層鉄芯片30
との間には180゜の角度だけ位相ずれが生じてい
る。これにより、新たに下型部分1内に打抜かれ
た積層鉄芯片が既に打抜かれている積層鉄芯片に
かしめられる。このようにして交互に180゜ずつ
位相をずらせて重ねることにより板厚の偏差を相
殺し、第9図に示すように積層鉄芯のステータ4
0の断面形状を正確な角形に形成することができ
る。
90 including top dead center in one press stroke
In the range of 90°, the link chain 5 is driven by an amount corresponding to a rotation angle of 90°, and the cylindrical lower die portions 1, 1' are rotated by 90° together with the sprockets 4, 4'. The laminated iron core pieces 30, which have already been punched into the lower mold part 1 and caulked together, are attached to the lower mold part 1,
Since it is in close contact with the inner circumference of 1', the lower mold part 1,
1' are rotated together. Therefore, press 2
Immediately before the punch punches out the strip alternately with each stroke, the forced rotation has already finished, and the newly punched laminated iron core piece and the uppermost laminated iron core piece that has already been punched into the lower mold part 1 are removed. 30
There is a phase shift of 180° between them. As a result, the laminated iron core piece newly punched into the lower mold part 1 is caulked to the already punched laminated iron core piece. In this way, by alternately stacking the plates with a phase shift of 180 degrees, deviations in plate thickness are canceled out, and as shown in Figure 9, the laminated iron core stator 4
The cross-sectional shape of 0 can be formed into an accurate rectangular shape.

第10図は1台のプレスで2列の順送り金型を
使用する場合の実施例を示したもので、第3図及
び第4図に示した筒状下型部分1,1′と同じ筒
状下型部分1A,1′Aおよび1B,1′Bが、各
列の打抜き及びかしめを行なうべきステーシヨン
に設けられている。これらの下型部分1A,1′
Aおよび1B,1′Bには前記スプロケツト4と
同じようにしてスプロケツト4A,4′Aおよび
4B,4′Bが取付けられている。そして、これ
らのスプロケツト4A,4′Aおよび4B,4′B
とインデツクス手段7のスプロケツト8にはリン
クチエーン5′が懸けられ、1台のインデツクス
手段7によりプレスの1ストロークごとに角度90
゜の回転が与えられる。2列に限らず、複数列の
順送り金型においても、1台のインデツクス手段
7により打抜き及びかしめを行なうことが可能で
ある。
Figure 10 shows an example in which two rows of progressive molds are used in one press. Lower mold parts 1A, 1'A and 1B, 1'B are provided at the station where each row is to be punched and crimped. These lower mold parts 1A, 1'
Sprockets 4A, 4'A and 4B, 4'B are attached to A, 1B, 1'B in the same manner as the sprocket 4 described above. And these sprockets 4A, 4'A and 4B, 4'B
A link chain 5' is hung on the sprocket 8 of the indexing means 7, and one indexing means 7 moves an angle of 90 degrees per stroke of the press.
A rotation of ° is given. Punching and caulking can be performed by one indexing means 7 not only in two rows but also in a plurality of rows of progressive molds.

なお、本実施例においては積層鉄芯製造用順送
り金極装置におけるステータコア用鉄芯片の外形
抜き及びかしめのための打抜きステーシヨンを2
ケ所設けたが、これに限らず複数設けてもよく、
この場合にはプレスの1ストロークごとにブラン
キングダイを180゜/打抜きステーシヨンの数)
ずつ回転させるようにすればよい。また、本方式
はステータに限らずロータにも用いることができ
ることは勿論である。
In this example, two punching stations are used for punching out the outer shape and caulking of the iron core piece for the stator core in the progressive metal electrode apparatus for manufacturing the laminated iron core.
Although we have provided two locations, you are not limited to these and may provide multiple locations.
In this case, the blanking die is 180°/number of punching stations for each stroke of the press)
All you have to do is rotate it one by one. Furthermore, it goes without saying that this method can be used not only for stators but also for rotors.

以上説明したように本発明によれば、積層鉄芯
片を180゜づつ回転して積層することにより各積
層鉄芯片の板厚偏差を相殺して寸法精度の高い積
層鉄芯を製造する際に、各積層鉄芯片の打抜き及
びかしめを行なうステーシヨンにおけるブランキ
ングダイをプレスクランクシヤフトの回転を利用
して回転させることによつて、これを達成するよ
うにしたため、上記積層鉄芯片を180゜回転して
積層する機能を、積層鉄芯製造用順送り金型装置
に簡単に組み込むことができる。
As explained above, according to the present invention, when manufacturing a laminated iron core with high dimensional accuracy by canceling out the plate thickness deviation of each laminated iron core piece by rotating the laminated iron core pieces by 180 degrees and stacking them, This was achieved by rotating the blanking die in the station for punching and caulking each laminated iron core piece using the rotation of the press crankshaft. The laminating function can be easily incorporated into a progressive die device for manufacturing laminated iron cores.

特に、上記ブランキングダイを有する打抜きス
テーシヨンを帯状鉄芯板の送り方向に複数ケ所設
け、各ブランキングダイはプレスストロークごと
に180゜/(打抜きステーシヨン数)づつ回転さ
せ、一方各打抜きステーシヨンのポンチは打抜き
ステーシヨン数と同数のプレスストローク数ごと
に打抜き状態に押し下げるようにしたため、プレ
スストロークごとに各ブランキングダイを回転さ
せる回転角を減少させることができる。これによ
り、プレス速度の高速化を図る上で、ブランキン
グダイを回転させる手段による影響が軽減され、
積層鉄芯片を1枚ずつ180゜反転して積層固着し
てなる製品積層鉄芯を、従来の製品積層鉄芯の生
産効率とほとんど変わらずに製造することができ
る。
In particular, a plurality of punching stations having the above-mentioned blanking dies are provided in the feeding direction of the strip iron core plate, and each blanking die is rotated by 180°/(number of punching stations) for each press stroke, while the punch of each punching station is Since the blanking die is pressed down to the blanking state every press stroke number equal to the number of punching stations, the rotation angle at which each blanking die is rotated for every press stroke can be reduced. This reduces the influence of the means of rotating the blanking die when increasing the press speed.
A product laminated iron core, which is made by inverting the laminated core pieces one by one by 180 degrees and laminating and fixing them, can be manufactured with almost the same production efficiency as conventional product laminated iron cores.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は積層鉄芯用広幅鉄板の断面図、第2図
は第1図に示す鉄板の一側部を使用して形成した
積層鉄芯の断面図、第3図は本発明に係る積層鉄
芯の製造方法に使用する金型装置の一実施例を示
す平面図で、下型部分を示したもの、第4図は第
1図のA―A断面図で、対応する上型部分もあわ
せて示したもの、第5図は上記実施例におけるイ
ンデツクス手段の部分を中心にしてこの考案が適
用されるプレス装置の外観を示した斜視図、第6
図はインデツクス手段において使用するローラカ
ムインデツクス装置がプレススライド1ストロー
クにおいて割出しのために作動する位相角範囲の
一例を示すグラフ、第7図は打抜き及びかしめを
行なうべきステーシヨンに到達したストリツプの
一例を示す平面図、第8図はポンチの圧下によつ
て外形抜き及びかしめが行なわれている状態を拡
大して示す断面図、第9図は本発明の製造方法に
よつて形成された積層鉄芯の断面図、第10図は
2列の順送り金型装置の実施例を示す平面図、で
ある。 1,1′,1A,1′A,1B,1′B…下型、
2,3…ベアリング、4,4A,4′A,4B,
4′B,8…スプロケツト、5,5′…リンクチエ
ーン、6a,6b…溝、7…インデツクス手段、
9…ローラカムインデツクス装置、10…減速装
置、11…プレスクランクシヤフトの端部、1
2,14,15,17…プーリ、13,16…ベ
ルト、18…ユニバーサルジヨイント、19…軸
受装置、20…下型装置、21…上型装置、22
…スライド、23…ポンチ、24,24′…カ
ム、25,25′…ソレノイド、26…切起し突
起、28…ストリツプ、30…積層鉄芯片、31
…受け台。
FIG. 1 is a sectional view of a wide steel plate for a laminated iron core, FIG. 2 is a sectional view of a laminated iron core formed using one side of the iron plate shown in FIG. 1, and FIG. 3 is a sectional view of a laminated iron core according to the present invention. FIG. 4 is a plan view showing an embodiment of a mold device used in the iron core manufacturing method, showing the lower mold part; FIG. 4 is a cross-sectional view taken along line A-A in FIG. FIG. 5 is a perspective view showing the external appearance of a press device to which this invention is applied, centering on the index means in the above embodiment, and FIG.
The figure is a graph showing an example of the phase angle range in which the roller cam indexing device used in the indexing means operates for indexing in one stroke of the press slide. A plan view showing an example, FIG. 8 is an enlarged cross-sectional view showing a state where outline cutting and caulking are being performed by pressing down with a punch, and FIG. 9 is a laminated layer formed by the manufacturing method of the present invention. FIG. 10 is a cross-sectional view of the iron core, and a plan view showing an embodiment of a two-row progressive mold device. 1, 1', 1A, 1'A, 1B, 1'B...lower mold,
2, 3...Bearing, 4, 4A, 4'A, 4B,
4'B, 8... Sprocket, 5, 5'... Link chain, 6a, 6b... Groove, 7... Index means,
9...Roller cam index device, 10...Reduction device, 11...End of press crankshaft, 1
2, 14, 15, 17... Pulley, 13, 16... Belt, 18... Universal joint, 19... Bearing device, 20... Lower die device, 21... Upper die device, 22
...Slide, 23...Punch, 24, 24'...Cam, 25, 25'...Solenoid, 26...Cut and raised projection, 28...Strip, 30...Laminated iron core piece, 31
...cradle.

Claims (1)

【特許請求の範囲】[Claims] 1 帯状鉄芯板から所定形状の積層鉄芯片を打抜
き、該積層鉄芯片を順次積層固着する積層鉄芯の
製造方法において、前記積層鉄芯片中心に対して
点対称位置に形成された少なくとも1対のかしめ
用切起し突起を有する積層鉄芯片を前記帯状鉄芯
板から打抜く打抜きステーシヨンを前記帯状鉄芯
板の送り方向に複数ケ所設け、各打抜きステーシ
ヨンに配設され各打抜きステーシヨンで打抜かれ
た積層鉄芯片をかしめる各ブランキングダイをイ
ンデツクス装置に係合してプレスストローグごと
に180゜/(打抜きステーシヨン数)づつ回転さ
せるとともに、各打抜きステーシヨンのポンチを
打抜きステーシヨン数と同数のプレスストローク
数ごとに打抜き状態に押し下げて複数の打抜きス
テーシヨンにおいて積層鉄芯片の打抜きかしめを
行なうことを特徴とする積層鉄芯の製造方法。
1. A method for manufacturing a laminated iron core in which laminated iron core pieces of a predetermined shape are punched out of a strip-shaped iron core plate, and the laminated iron core pieces are successively laminated and fixed, wherein at least one pair of laminated iron core pieces are formed at point-symmetrical positions with respect to the center of the laminated iron core pieces. A plurality of punching stations for punching laminated iron core pieces having cut and raised protrusions for caulking from the band-shaped iron core plate are provided at a plurality of locations in the feeding direction of the band-shaped iron core plate, and the punching stations are arranged at each punching station so that the laminated iron core pieces having cut and raised protrusions for caulking are punched out at each punching station. Each blanking die that caulks the laminated iron core pieces is engaged with the indexing device and rotated by 180°/(number of punching stations) for each press stroke, and the punches of each punching station are rotated by the same number of presses as the number of punching stations. A method for manufacturing a laminated iron core, characterized in that the laminated iron core pieces are punched and caulked at a plurality of punching stations by pressing down into a punched state at each stroke number.
JP4099681A 1981-03-20 1981-03-20 Manufacture of laminated iron core Granted JPS57156656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4099681A JPS57156656A (en) 1981-03-20 1981-03-20 Manufacture of laminated iron core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4099681A JPS57156656A (en) 1981-03-20 1981-03-20 Manufacture of laminated iron core

Publications (2)

Publication Number Publication Date
JPS57156656A JPS57156656A (en) 1982-09-28
JPS6151502B2 true JPS6151502B2 (en) 1986-11-08

Family

ID=12596030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4099681A Granted JPS57156656A (en) 1981-03-20 1981-03-20 Manufacture of laminated iron core

Country Status (1)

Country Link
JP (1) JPS57156656A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6072618A (en) * 1983-09-28 1985-04-24 Matsushita Electric Ind Co Ltd Production of laminated and stuck article
JPS61242725A (en) * 1985-04-19 1986-10-29 Mitsui Haitetsuku:Kk Production equipment for laminating iron core
JP3865734B2 (en) * 2003-07-29 2007-01-10 ファナック株式会社 Motor and motor manufacturing apparatus
JP6247925B2 (en) 2013-12-16 2017-12-13 東芝産業機器システム株式会社 Manufacturing equipment for rotating electrical iron cores

Also Published As

Publication number Publication date
JPS57156656A (en) 1982-09-28

Similar Documents

Publication Publication Date Title
US4597168A (en) Method and apparatus for producing laminated iron cores
US4615207A (en) Progressive metal mold apparatus for production of laminated iron cores
EP0508937A1 (en) Apparatus and method for aligning stacked laminations of a dynamoelectric machine
KR20060127177A (en) Continuous rotary hole punching method and apparatus
KR101921723B1 (en) Manufacturing method and manufacturing apparatus for layered iron core
JP5469759B1 (en) Rotor core and manufacturing method thereof
JPS6151502B2 (en)
EP1275192B1 (en) Rotor, rotor assembly, method and machine for manufacture of rotor elements
CN105471196A (en) Method and apparatus for manufacturing laminated cores
JPS626887B2 (en)
JP3964306B2 (en) Method for manufacturing stator laminated iron core of electric motor
JPH0787714A (en) Laminated core of rotary electric machine and manufacture thereof
JP2003019520A (en) Die device for manufacturing laminated core
JP3837039B2 (en) Method and apparatus for manufacturing laminated iron core
JPH0518655B2 (en)
JPH0236332B2 (en)
JPH0123623Y2 (en)
JP2560550Y2 (en) Skew laminated iron core for rotor and mold equipment for its manufacture.
WO2019058703A1 (en) Method for producing steel sheet stacked body, and moulded steel sheet stacked body
JP2000094055A (en) Manufacturing device of laminated iron core
EP0042047B1 (en) Method of, and apparatus for, constructing a laminated rotor
JPS63213433A (en) Rotary machine core
JPS58108948A (en) Manufacture of laminated core for electric machinery and device therefor
JP2000153319A (en) Press die for punching blank for iron core of motor and punching method
JPH03174927A (en) Manufacturing device for laminated iron core