JPS6151333B2 - - Google Patents

Info

Publication number
JPS6151333B2
JPS6151333B2 JP54045266A JP4526679A JPS6151333B2 JP S6151333 B2 JPS6151333 B2 JP S6151333B2 JP 54045266 A JP54045266 A JP 54045266A JP 4526679 A JP4526679 A JP 4526679A JP S6151333 B2 JPS6151333 B2 JP S6151333B2
Authority
JP
Japan
Prior art keywords
bimorph
magnetic head
plate
electrostrictive
plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54045266A
Other languages
Japanese (ja)
Other versions
JPS55139629A (en
Inventor
Hitoshi Sakamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP4526679A priority Critical patent/JPS55139629A/en
Publication of JPS55139629A publication Critical patent/JPS55139629A/en
Publication of JPS6151333B2 publication Critical patent/JPS6151333B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/58Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B5/584Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following on tapes
    • G11B5/588Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following on tapes by controlling the position of the rotating heads
    • G11B5/592Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following on tapes by controlling the position of the rotating heads using bimorph elements supporting the heads

Landscapes

  • Adjustment Of The Magnetic Head Position Track Following On Tapes (AREA)

Description

【発明の詳細な説明】 本発明は、ビデオテープレコーダ等に用いられ
る回転磁気ヘツド装置の磁気ヘツドを支持する構
造に適用して有用な磁気ヘツドの支持構造に関
し、特に磁気テープ上に記録されるビデオ信号等
の記録トラツク上を磁気ヘツドが正確に走査し得
ることを可能にするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic head support structure that is useful when applied to a magnetic head support structure of a rotating magnetic head device used in a video tape recorder, etc. This enables a magnetic head to accurately scan a recording track such as a video signal.

この種の回転磁気ヘツド装置は、例えば第1図
に示すように磁気テープ1を案内する上・下の案
内ドラム2,3と、磁気ヘツド装置を取付けた上
記上ドラム2を矢印A方向に回転駆動させるモー
タ4を有している。上記磁気ヘツド装置は、磁気
記録再生を行うための電磁変換手段である磁気ヘ
ツド5の先端が上記上・下ドラム2,3の外周側
面から稍々突出する如くして上ドラム2の外周近
傍の所定位置に取付けられている。また、磁気テ
ープ1は、上記上・下ドラム2,3等の周囲にΩ
形に巻き付けられ、矢印B方向に走行駆動され
る。さらに、この磁気テープ1の回転ヘツド装置
に対する位置を一定に保つために、ガイドポール
6,7等が設けられている。そして、上記磁気ヘ
ツド5と磁気テープ1とを摺動接触せしめること
により、ビデオ信号の記録・再生が行なわれる。
このような回転磁気ヘツド装置により所望のビデ
オ信号を磁気テープ1上に記録していくと、第2
図に示すような記録トラツクTが順次斜めに形成
されていく。これらの記録トラツクTは、磁気テ
ープ1が定常速度u0で矢印B方向に走行駆動され
るときのものであり、通常の再生(ノーマル再
生)時には、磁気ヘツド5が直線上を移動す
るから、正常なビデオ信号の再生が行なえる。と
ころが、静止画像の再生(スチル再生)やスロー
モーシヨン再生等のように、磁気テープ1の矢印
B方向の走行速度が上記定常速度u0と異なる場合
には、磁気ヘツド5の軌跡は、たとえば第2図に
直線のように、1本の記録トラツクTから外
れてしまう。また、クイツクモーシヨン再生の場
合には、上述の場合とは逆に磁気ヘツド5の軌跡
は、第2図の直線のように1本の記録トラツ
クから外れてしまう。
This type of rotating magnetic head device, for example, as shown in FIG. It has a motor 4 for driving. In the magnetic head device, the tip of the magnetic head 5, which is an electromagnetic transducer for performing magnetic recording and reproduction, slightly protrudes from the outer peripheral side of the upper and lower drums 2 and 3, so that the magnetic head 5 is located near the outer periphery of the upper drum 2. Installed in place. Moreover, the magnetic tape 1 is placed around the upper and lower drums 2, 3, etc.
It is wound into a shape and driven to run in the direction of arrow B. Further, guide poles 6, 7, etc. are provided in order to keep the position of the magnetic tape 1 constant with respect to the rotary head device. By bringing the magnetic head 5 and the magnetic tape 1 into sliding contact, video signals are recorded and reproduced.
When a desired video signal is recorded onto the magnetic tape 1 using such a rotating magnetic head device, a second video signal is recorded on the magnetic tape 1.
Recording tracks T as shown in the figure are sequentially formed obliquely. These recording tracks T are for when the magnetic tape 1 is driven to run at a steady speed u0 in the direction of arrow B, and during normal playback, the magnetic head 5 moves on a straight line 0 . , normal video signal playback can be performed. However, when the running speed of the magnetic tape 1 in the direction of the arrow B is different from the steady speed u0 , such as during playback of still images (still playback) or slow motion playback, the trajectory of the magnetic head 5 is, for example, As shown by straight line 1 in Fig. 2, the recording track T deviates from the recording track T. Further, in the case of quick motion reproduction, contrary to the above case, the trajectory of the magnetic head 5 deviates from one recording track, as shown by the straight line 2 in FIG.

このようなスチル再生、スローモーシヨン再生
若しくはクイツクモーシヨン再生等を行う場合に
は磁気ヘツド5の記録トラツクTからのずれを補
償するため、いわゆるバイモルフ等の電歪素子を
用いた電歪駆動機構等の手段が用いられている。
すなわち第3図に示すように電気歪素子としての
バイモルフ板12の先端12aに磁気ヘツド5を
取付けるとともに、このバイモルフ板12の基端
12bをヘツド基台13により支持する。そして
上記バイモルフ板12を所定の変位入力信号で第
3図中の矢印X方向へ変位させることにより、上
記磁気ヘツド5の位置を変位させ該ヘツド5を第
2図矢印C方向である記録トラツクTを横断する
方向へ変位させる。そして、スローモーシヨン若
しくはクイツクモーシヨン等の異速度再生の場合
であつても、磁気ヘツド5の軌跡が第2図中の直
となるような補正であるトラツキング補正
が行なわれる。
When performing still playback, slow motion playback, quick motion playback, etc., an electrostrictive drive mechanism using an electrostrictive element such as a so-called bimorph is used to compensate for the deviation of the magnetic head 5 from the recording track T. The following methods are used.
That is, as shown in FIG. 3, a magnetic head 5 is attached to a tip 12a of a bimorph plate 12 serving as an electrostrictive element, and a base end 12b of this bimorph plate 12 is supported by a head base 13. By displacing the bimorph plate 12 in the direction of the arrow X in FIG. 3 using a predetermined displacement input signal, the position of the magnetic head 5 is displaced and the head 5 is moved along the recording track T in the direction of the arrow C in FIG. Displace it in the transverse direction. Even in the case of different speed playback such as slow motion or quick motion, tracking correction is performed so that the locus of the magnetic head 5 becomes straight line 0 in FIG.

ところで、1個の回転磁気ヘツドでビデオ信号
の記録・再生を行なう1ヘツドヘリカルスキヤン
型のビデオテープレコーダにおいて、n倍速のク
イツクモーシヨン再生若しくは1/2速のスロー
モーシヨン再生を行なう場合、磁気ヘツドは記録
トラツクTの1フイールド若しくは1フイールド
の整数倍の周期でトラツクジヤンプを行なう必要
がある。例えば、1/2倍速のスローモーシヨン
再生を行なう場合、一の記録トラツクTを繰り返
えし再生するため、磁気ヘツドを記録トラツクT
の2フイールド毎に一度再生したもとの記録トラ
ツクTにもどすいわゆるトラツクジヤンプが必要
となる。このような磁気ヘツド5のトラツクジヤ
ンプ動作は再生画像のノイズ発生を防止するため
にも再生信号中の帰線消去区間内の期間で行なう
必要がある。そして、ある種のテレビジヨン信号
記録再生標準方式(規格)では、磁気ヘツドのド
ロツプアウト期間は約10H(水平走査期間)
(0.6msec)となつているので、この間に上述し
たような磁気ヘツドのトラツクジヤンプを完全に
終了することが安定した再生画像を得るため望ま
しい。そのためには、磁気ヘツドを変位せしめる
電歪駆動機構の応答は周波数応答換算で少なくと
も1KHz以上必要となる。このような高い周波数
応答特性が得られる駆動機構を構成するため従来
から種々のものが提案されているが、未だ十分な
ジヤンプ速度が得られず、トラツクジヤンプ後に
おける記録トラツクの始端付近において磁気ヘツ
ドが該記録トラツクの中心位置を追従できず記録
トラツクの走査に大きな誤差を生じてしまつてい
る。また、他の例にあつては、1KHz若しくはそ
れに近い周波数応答特性を有する電歪駆動機構も
提案されているが、著しく高い共振峰を示し電歪
駆動機構自身の自由振動より磁気ヘツドの高速追
従性を得ることができない。そのため磁気ヘツド
が記録トラツクの中心位置を追従し得るトラツク
キングの補償ができず、再生画像が不安定となつ
てしまつている。
By the way, in a one-head helical scan type video tape recorder that records and plays video signals with one rotating magnetic head, when performing n-times speed quick motion playback or 1/2 speed slow motion playback, the magnetic It is necessary for the head to perform a track jump at a period of one field of the recording track T or an integer multiple of one field. For example, when performing slow motion reproduction at 1/2 speed, one recording track T is repeatedly reproduced, so the magnetic head is moved from one recording track T to another.
A so-called track jump is required to return to the original recording track T that was reproduced once every two fields. Such a track jump operation of the magnetic head 5 must be performed within the blanking interval of the reproduced signal in order to prevent noise from occurring in the reproduced image. According to certain television signal recording and reproducing standards, the dropout period of the magnetic head is approximately 10 hours (horizontal scanning period).
(0.6 msec), it is desirable to completely complete the track jump of the magnetic head as described above during this time in order to obtain a stable reproduced image. For this purpose, the response of the electrostrictive drive mechanism that displaces the magnetic head must be at least 1 KHz in terms of frequency response. Various drive mechanisms have been proposed in the past to provide such high frequency response characteristics, but it has not yet been possible to obtain a sufficient jump speed, and the magnetic head cannot be moved near the beginning of the recording track after track jump. cannot follow the center position of the recording track, resulting in a large error in scanning the recording track. In addition, in other examples, electrostrictive drive mechanisms with frequency response characteristics of 1KHz or close to it have been proposed; I can't get sex. Therefore, it is not possible to compensate for tracking, which allows the magnetic head to follow the center position of the recording track, and the reproduced image becomes unstable.

上述したような問題点を解決するため電歪駆動
機構の応答をより速いものにすればよい。すなわ
ち、第3図に示す電歪駆動機構を挙げて述べる
と、磁気ヘツド5を支持するバイモルフ板12の
基端12bから先端12aに亘るはり長さLを十
分に短くすれば速い応答がよい。しかしこのはり
長さLを短かくするとその先端12aに取付けら
れる磁気ヘツド5の変位量が十分に得られなくな
つてしまう。そこで、バイモルフ板12のより速
い応答とより大きな変位量を同時に少しでも満足
するために、上記バイモルフ板12の平面形状を
第4図に示すように磁気ヘツド5の取付けられる
先端12a側を細く、またヘツド基台13に支持
される基端12b側を幅広ろにした略台形形状に
構成し、あるいは第5図に示すように先端12a
から基端12bに亘つて両側辺12c及び12d
を対数曲線又はそれに近似した円弧をもつて先細
り状になる平面形状にすればより速い応答と大き
な変位を得ることの両者を多少でも改善できる。
さらに、バイモルフ板12の断面形状を第6図に
示すように基端12b側を厚くそして先端12a
側を薄くすれば高速応答に対するバイモルフ板1
2自体の剛性をも満足できる。しかし、先端12
aの変位の発生に大きく寄与する基端部12bを
厚くすると、所定入力による電歪駆動によつて得
られるバイモルフ板12の歪による曲率が小さく
なり、上記先端12aにおける変位を十分に大き
なものとすることができない。
In order to solve the above-mentioned problems, the response of the electrostrictive drive mechanism should be made faster. That is, to describe the electrostrictive drive mechanism shown in FIG. 3, if the beam length L extending from the base end 12b to the tip 12a of the bimorph plate 12 supporting the magnetic head 5 is made sufficiently short, a fast response can be achieved. However, if the beam length L is shortened, a sufficient amount of displacement of the magnetic head 5 attached to the tip 12a of the beam cannot be obtained. Therefore, in order to simultaneously satisfy a faster response and a larger amount of displacement of the bimorph plate 12, the planar shape of the bimorph plate 12 is made thinner on the tip 12a side where the magnetic head 5 is attached, as shown in FIG. Further, the proximal end 12b supported by the head base 13 is formed into a substantially trapezoidal shape, or the distal end 12a is widened as shown in FIG.
From the base end 12b to both sides 12c and 12d
By making the plane shape tapered with a logarithmic curve or an arc similar to the logarithmic curve, both faster response and larger displacement can be improved to some extent.
Furthermore, the cross-sectional shape of the bimorph plate 12 is such that the proximal end 12b side is thick and the distal end 12a is thick.
Bimorph plate 1 for faster response if the sides are thinner
The rigidity of 2 itself can also be satisfied. However, the tip 12
When the base end 12b, which greatly contributes to the generation of the displacement a, is made thicker, the curvature due to the strain of the bimorph plate 12 obtained by electrostrictive driving with a predetermined input becomes smaller, and the displacement at the tip 12a can be made sufficiently large. Can not do it.

しかし、バイモルフ板12の平面若しくは断面
形状の改良だけでは未だ十分な高速応答及び十分
に満足し得る変位を同時に満足することができな
い。
However, it is still not possible to simultaneously achieve a sufficiently high-speed response and a sufficiently satisfactory displacement by merely improving the plane or cross-sectional shape of the bimorph plate 12.

そこで、本発明は磁気ヘツドを支持しかつ変位
せしめる磁気ヘツド支持体の共振周波数を十分に
高いものとし、極めて短かい磁気ヘツドのドロツ
プアウト期間内に磁気ヘツドの記録トラツク変更
若しくはトラツクジヤンプを行ない得る高速応答
を可能とし、かつ上記磁気ヘツドの変位を十分に
満足できる大きなものを可能とする磁気ヘツドの
支持構造を提供することを目的として提案された
ものである。
Therefore, the present invention makes the resonant frequency of the magnetic head support that supports and displaces the magnetic head sufficiently high, and enables high-speed recording track change or track jump of the magnetic head within an extremely short dropout period of the magnetic head. This was proposed for the purpose of providing a support structure for a magnetic head that enables response and sufficiently large displacement of the magnetic head.

本発明の具体的実施例を図面を参照して説明す
る。
Specific embodiments of the present invention will be described with reference to the drawings.

本発明を構成する磁気ヘツド支持体21は、所
定の変位入力に応じて伸縮する機械変換歪素子で
ある、例えば電歪素子を板状に形成したものを複
数枚積層して構成される。この板状の電歪素子と
しては、いわゆるバイモルフ板Pが用いられる。
このバイモルフ板Pは、第8図に示すようにチタ
ン、横銅、青銅、ステンレススチール等をもつて
構成された中間電極となる中央金属板22の両側
面にチタン酸ジルコン酸鉛系の圧電材料をもつて
形成された板状の歪素子23,24を接着剤等を
もつて貼り合せるとともに、上記各歪素子23,
24の両側面に、例えば銀入りガラスフリツト等
を塗布焼付けして電歪駆動用電極25,26を形
成することによつて構成されている。そして、各
厚さは同一であるが外形形状は第9図に示すよう
に底辺部27の幅Wを共通にするが該底辺部27
から先端部28に至る長さLをそれぞれ異にす
るバイモルフ板P1〜P6を複数枚、本例では6枚を
用意する。また、これらバイモルフ板P1〜P6は磁
気ヘツド支持体21として構成した際における電
歪駆動に対する応答及び先端の変位を考慮してそ
の平面形状を底辺部27から先端部28に亘つて
先細り状となるような台形状に形成されている
が、このような台形状に限らず先端先細状の三角
形状若しくは底辺部27から先端部28に亘つて
同幅の四角形状でもよい。
The magnetic head support 21 constituting the present invention is constructed by laminating a plurality of plate-shaped electrostrictive elements, which are mechanical transducer strain elements that expand and contract in response to a predetermined displacement input. As this plate-shaped electrostrictive element, a so-called bimorph plate P is used.
As shown in FIG. 8, this bimorph plate P has a piezoelectric material based on lead zirconate titanate on both sides of a central metal plate 22 which serves as an intermediate electrode and is made of titanium, horizontal copper, bronze, stainless steel, etc. The plate-shaped strain elements 23 and 24 formed with
Electrostrictive drive electrodes 25 and 26 are formed by coating and baking, for example, silver-containing glass frit on both sides of the electrode 24. Although each thickness is the same, the outer shape has the same width W of the bottom side 27 as shown in FIG.
A plurality of bimorph plates P1 to P6, six in this example, each having a different length L from the top to the tip 28 are prepared. In addition, when these bimorph plates P 1 to P 6 are configured as the magnetic head support 21, their planar shape is tapered from the bottom portion 27 to the tip portion 28 in consideration of the response to electrostrictive drive and the displacement of the tip. Although it is formed in a trapezoidal shape, it is not limited to such a trapezoidal shape, but may be a triangular shape with a tapered tip or a rectangular shape with the same width from the base portion 27 to the tip portion 28.

上述のように形成された各バイモルフ板P1〜P6
を積層して構成される磁気ヘツド支持体21は、
先端に磁気ヘツド5が取付けられる主電歪素子と
なる最も長尺な第1のバイモルフ板P1を挾んで副
電歪素子となる他のバイモルフ板P2〜P6を積層し
て構成されるすなわち、最も長い長さLを有
する第1のバイモルフ板P1が中央に位置するよう
にしてその一側面に第2の長さLを有する第
2のバイモルフ板P2を重ね他側面には第3の長さ
を有る第3のバイモルフ板P3を重ね、第2
のバイモルフ板P2上には第4の長さLを有す
る第4のバイモルフ板P4を重ね、第3のバイモル
フ板P3上には第5の長さLを有する第5のバ
イモルフ板P5を重ね、さらに第5のバイモルフ板
P5上には第6の長さLを有する第6のバイモ
ルフ板P6を重ね、さらに各バイモルフ板P1〜P5
底辺部27が一致するようにして各先端部28の
位置が段階的に変わるように第7図に示すように
積層する。上述のようにバイモルフ板P1〜P6を積
層して構成される磁気ヘツド支持体21における
上記各バイモルフ板P1〜P6の積層境界面29は接
着剤等による固着を一切行なわずすべり可能面と
しておく。そして、磁気ヘツド5は磁気ヘツド支
持体21の先端中央位置に配設されるように、こ
の支持体21を構成する複数のバイモルフ板P1
P6のうち最も長い第1のバイモルフ板P1の図中下
面側の一側面の先端部28に少なくともギヤツプ
面が上記先端部28から突出するように取付け
る。また上記支持体21は、各バイモルフ板P1
P6の底辺部27を一致させた基端部30を、対を
なすように形成された固定支持部31に挾持され
るようにして該支持部31に固定される。なおこ
の固定支持部31に挾持される部分は接着剤等に
よつて固着されてもよい。
Each bimorph plate P 1 to P 6 formed as described above
The magnetic head support 21 is constructed by laminating
It is constructed by stacking the longest first bimorph plate P1 , which serves as a main electrostrictive element, with a magnetic head 5 attached to its tip, sandwiching other bimorph plates P2 to P6 , which serve as sub-electrostrictive elements. That is, the first bimorph plate P 1 having the longest length L 1 is positioned in the center, and the second bimorph plate P 2 having the second length L 2 is stacked on one side of the first bimorph plate P 1 and placed on the other side. overlaps the third bimorph plate P 3 with the third length L 3 , and
A fourth bimorph plate P4 having a fourth length L4 is stacked on the bimorph plate P2 , and a fifth bimorph plate P4 having a fifth length L5 is stacked on the third bimorph plate P3 . Stack plate P 5 and then add the fifth bimorph plate
A sixth bimorph plate P 6 having a sixth length L 6 is stacked on top of P 5 , and the positions of the tips 28 are adjusted so that the bottom sides 27 of each bimorph plate P 1 to P 5 coincide with each other. The layers are stacked in stages as shown in FIG. As described above, in the magnetic head support 21 constructed by laminating the bimorph plates P 1 to P 6 , the lamination boundary surface 29 of each of the bimorph plates P 1 to P 6 can slide without being fixed with any adhesive or the like. Leave it as a side. The magnetic head 5 is disposed at the center of the tip of the magnetic head support 21 by connecting a plurality of bimorph plates P 1 to P 1 to the magnetic head support 21 .
The first bimorph plate P 1 , which is the longest among the bimorph plates P 6 , is attached to the tip 28 on one side of the bottom side in the figure so that at least the gap surface protrudes from the tip 28 . Further, the support body 21 includes each bimorph plate P 1 to
The proximal end portion 30 of P 6 with its base portion 27 aligned with the base end portion 30 is fixed to the supporting portions 31 so as to be sandwiched between the fixed supporting portions 31 formed in a pair. Note that the portion held by the fixed support portion 31 may be fixed with an adhesive or the like.

上述のように複数のバイモルフ板P1〜P6を積層
して構成した磁気ヘツド支持体21の断面形状は
第7図に示すように基端部30側を厚く先端32
側を薄くした全体をもつて先細り状の形状に構成
され、磁気ヘツド5は先細りとなつた先端32に
取付けられる。
As shown in FIG. 7, the cross-sectional shape of the magnetic head support 21, which is constructed by laminating a plurality of bimorph plates P 1 to P 6 as described above, is thicker on the proximal end 30 side and thicker on the distal end 32 side.
The magnetic head 5 is formed into a tapered shape with thinner sides, and the magnetic head 5 is attached to the tapered tip 32.

ところで、磁気ヘツド支持体21を構成する各
バイモルフ板P1〜P6は、例えば第7図中矢印で示
すように分極されている。すなわち第1のバイモ
ルフ板P1の一方の歪素子23は図中下方である下
向きの分極がなされ他方の歪素子24は図中下方
である上向きの分極がなされ、上記第1のバイモ
ルフ板P1の一側面に積層される第2のバイモルフ
板P2の一方の歪素子23は第1のバイモルフ板P1
のものとは逆に上向きの分極がなされ他の歪素子
24も同様に逆の下向きの分極がなされている。
上記第1のバイモルフ板P1の他側面に積層される
第3のバイモルフ板P3の各歪素子23,24は第
2のバイモルフ板P2と同様の分極がなされ、第4
及び第5のバイモルフ板P4,P5の各歪素子23,
24は第1のバイモルフ板P1と同様の分極がなさ
れ、第6のバイモルフ板P6の各歪素子23,24
は第2及び第3のバイモルフ板P2,P4と同様の分
極がなされている。すなわち各バイモルフ板P1
P6の各歪素子23,24はそれぞれ互いに逆向き
の分極がなされている。上述のように積層される
各バイモルフ板P1〜P6を分極することにより、第
7図に示すような簡単な結線が行なえる。すなわ
ち、一方の入力端子33は第1及び第2のバイモ
ルフ板P1〜P2の積層境界面29に位置する上記各
バイモルフ板P1,P2の電歪駆動用電極25,26
の接点、第3及び第5のバイモルフ板P3,P5の積
層境界面29に位置する上記各バイモルフ板P3
P5の電歪駆動用極25,26の接点及び第4、第
6のバイモルフ板P4,P6の積層境界面29に位置
する上記各バイモルフ板P4,P6の電歪駆動用電極
25,26の接点に接続され、他方の入力端子3
4は第1及び第3のバイモルフ板P1,P3の積層境
界面29に位置する上記各バイモルフ板P1,P3
電歪駆動用電極25,26の接点、第2及び第4
のバイモルフ板P2,P4の積層境界面29に位置す
る上記バイモルフ板P2,P4の電歪駆動用電極2
5,26の接点、第5のバイモルフ板P5の一方の
電歪駆動用電極25及び第6のバイモルフ板P6
他方の電歪駆動用電極P6の他方の電歪駆動用電極
26の各接点に接続されている。このように結線
することによつて各バイモルフ板P1〜P6には同時
に同方向の駆動電圧が与えられる。そして上述の
ように結線されたヘツド支持体21に所定の変位
入力としての電圧を入力すると、各バイモルフ板
P1〜P6は同一方向に彎曲する。例えば第2の入力
端子34にプラスの電位を入力すると、各バイモ
ルフ板P1〜P6は分極のなされた方向から第10図
に示すように底辺部27から先端部28に亘つて
全て図中下方側へ彎曲する。このように同一方向
へ彎曲する各バイモルフ板P1〜P6に入力される電
圧は同レベルであり、各バイモルフ板P1〜P6の厚
さも同一であるので全て同一の歪曲率を示す。よ
つて、最も長さLを有する第1のバイモルフ
板P1の先端部28に取付けられた磁気ヘツド5は
上記バイモルフ板P1単体だけの場合と同一の変位
量を得ることができる。また全てのバイモルフ板
P1〜P6が彎曲した際、各バイモルフ板P1〜P6の積
層境界面29は、各バイモルフ板P1〜P6の共振に
よる減衰に大きく貢献する。すなわち上記境界面
29は接合固定されることなくすべり可能面とさ
れているので、電歪駆動時にすべり運動が上記境
界面29に発生し各バイモルフ板P1〜P6相互に生
ずる共振振動を吸収するためである。
By the way, each of the bimorph plates P 1 to P 6 constituting the magnetic head support 21 is polarized, for example, as shown by the arrows in FIG. That is, one strain element 23 of the first bimorph plate P 1 is polarized downward in the figure, and the other strain element 24 is polarized upward in the figure . One strain element 23 of the second bimorph plate P 2 laminated on one side of the first bimorph plate P 1
The other strain elements 24 are polarized in the opposite direction upward, and the other strain elements 24 are similarly polarized in the opposite direction.
Each strain element 23, 24 of the third bimorph plate P3 laminated on the other side of the first bimorph plate P1 is polarized in the same way as the second bimorph plate P2 , and the fourth
and each strain element 23 of the fifth bimorph plates P 4 and P 5 ,
24 is polarized in the same way as the first bimorph plate P1 , and each strain element 23, 24 of the sixth bimorph plate P6
is polarized in the same way as the second and third bimorph plates P 2 and P 4 . That is, each bimorph plate P 1 ~
The strain elements 23 and 24 of P6 are polarized in opposite directions. By polarizing each of the bimorph plates P 1 to P 6 stacked as described above, a simple connection as shown in FIG. 7 can be made. That is, one input terminal 33 is connected to the electrostrictive drive electrodes 25 and 26 of each of the bimorph plates P 1 and P 2 located at the lamination interface 29 of the first and second bimorph plates P 1 to P 2 .
The contact point of each bimorph plate P 3 , which is located at the lamination interface 29 of the third and fifth bimorph plates P 3 , P 5 ,
Electrostrictive drive electrodes of each of the bimorph plates P 4 and P 6 located at the contact point of the electrostrictive drive poles 25 and 26 of P 5 and the lamination interface 29 of the fourth and sixth bimorph plates P 4 and P 6 25 and 26, and the other input terminal 3
4 is a contact point of the electrostrictive drive electrodes 25, 26 of each of the bimorph plates P 1 , P 3 located at the lamination interface 29 of the first and third bimorph plates P 1 , P 3;
The electrostrictive drive electrode 2 of the bimorph plates P 2 and P 4 is located at the laminated boundary surface 29 of the bimorph plates P 2 and P 4 .
5 and 26, one electrostrictive driving electrode 25 of the fifth bimorph plate P5 and the other electrostrictive driving electrode 26 of the other electrostrictive driving electrode P6 of the sixth bimorph plate P6. connected to each contact. By connecting in this manner, drive voltages in the same direction are simultaneously applied to each of the bimorph plates P1 to P6 . Then, when a voltage is input as a predetermined displacement input to the head support 21 connected as described above, each bimorph plate
P 1 to P 6 curve in the same direction. For example, when a positive potential is input to the second input terminal 34, each of the bimorph plates P 1 to P 6 is polarized from the bottom portion 27 to the tip portion 28 as shown in FIG. Curve downward. The voltages input to the bimorph plates P 1 to P 6 that curve in the same direction are at the same level, and the thicknesses of the bimorph plates P 1 to P 6 are also the same, so they all exhibit the same distortion rate. Therefore, the magnetic head 5 attached to the tip 28 of the first bimorph plate P1 having the longest length L1 can obtain the same amount of displacement as in the case of only the bimorph plate P1 alone. Also all bimorph boards
When P 1 to P 6 are curved, the stacked boundary surface 29 of each bimorph plate P 1 to P 6 greatly contributes to the damping due to resonance of each bimorph plate P 1 to P 6 . In other words, since the boundary surface 29 is not bonded and fixed but is a sliding surface, sliding motion occurs on the boundary surface 29 during electrostrictive driving, and absorbs the resonance vibration generated between each bimorph plate P1 to P6 . This is to do so.

また、磁気ヘツド支持体21と全体としての先
端32における変位量は最長の第1のバイモルフ
板P1単体の場合と同一のものが得られるが、電歪
駆動による共振周波数をみると少なくとも上記第
1のバイモルフ板P1単体の場合よりも高い値を示
す。この磁気ヘツド支持体21を構成する各バイ
モルフ板P1,P6は上述のように結線がなされてい
ることから、所定の変位入力を入力すれば全て同
時に電歪駆動がなされるが、電歪駆動に対する応
答ははり長さの短い、すなわち同一レベルの電圧
に対し共振周波数の高いバイモルフ板が瞬間的に
応答し、順次長いものへと応答が連続する。すな
わち長さLの短い第6のバイモルフ板P6から短
いものの順に応答が行なわれる。そして磁気ヘツ
ド5を取付けた長さLの長い第1のバイモル
フ板P1の第7図及び第10図中上方にある第3及
び第5のバイモルフ板P3,P5はそれぞれ自身の有
する高い共振周波数をもつてそれぞれ下位である
自己の長さより長い各バイモルフ板を押し付ける
ように作用し、また図中下方にある第2、第4及
び第6のバイモルフ板P2,P4,P5はそれぞれ自身
の有する高い共振周波数でそれぞれ上位にある自
己の長さより長い各バイモルフ板を引付けるよう
に作用する。この引き付け作用はすべり面とされ
る積層境界面29に生ずる微少空間にある薄い空
気膜の粘性により発生するものである。従つて積
層境界面29の間隙が構造上大きくなつてしまう
ような場合、あるいはより強い粘性を得るため
に、上記境界面29の間隙にシリコングリス等の
粘性体若しくは高損失ゴム等をはさんでもよい。
上述のような動作が電歪駆動中連続することによ
り長さLの最も長い第1のバイモルフ板P1
対するそれよりも短い他のバイモルフ板P2〜P6
押し付け及び引き付け作用によつて上記第1のバ
イモルフ板P1の共振周波数はそれ自身が有するも
のより高められる。すなわち、複数のバイモルフ
板P1〜P6をもつて構成された磁気ヘツド支持体2
1は、全体が一体となつて電歪駆動する如くなり
共振周波数は各バイモルフ板P1〜P6の有するもの
の平均に近づいたものになるからである。
Furthermore, the amount of displacement in the magnetic head support 21 and the tip 32 as a whole is the same as in the case of the longest first bimorph plate P1 alone, but when looking at the resonance frequency due to electrostrictive drive, at least the above-mentioned displacement amount is obtained. This value is higher than that of the bimorph plate P1 alone. Since the bimorph plates P 1 and P 6 constituting the magnetic head support 21 are wired as described above, if a predetermined displacement input is input, they will all be electrostrictively driven at the same time. In response to driving, bimorph plates with short beam lengths, that is, bimorph plates with a high resonance frequency respond instantaneously to voltages at the same level, and the response continues in the case of longer beams. That is, responses are made in order from the sixth bimorph plate P6 having the shortest length L to the shortest bimorph plate P6 . The third and fifth bimorph plates P 3 and P 5 located above the long first bimorph plate P 1 of length L 1 to which the magnetic head 5 is attached in FIGS. 7 and 10 each have their own The second, fourth and sixth bimorph plates P 2 , P 4 , P 5 at the bottom of the figure act to press each bimorph plate having a high resonance frequency and having a length longer than its own which is lower . act to attract each bimorph plate longer than its own above it with its own high resonant frequency. This attractive action is caused by the viscosity of a thin air film in a minute space created at the laminated interface 29, which is a sliding surface. Therefore, if the gap between the laminated interfaces 29 is structurally large, or in order to obtain stronger viscosity, a viscous material such as silicone grease or high-loss rubber may be inserted into the gap between the interfaces 29. good.
As the above-mentioned operation continues during electrostrictive driving, the other shorter bimorph plates P 2 to P 6 press and attract the longest first bimorph plate P 1 with length L 1 . The resonant frequency of the first bimorph plate P 1 is increased above that of itself. That is, the magnetic head support 2 is configured with a plurality of bimorph plates P1 to P6 .
1 is because the whole is electrostrictively driven as a whole, and the resonance frequency becomes close to the average of those of each of the bimorph plates P1 to P6 .

上述の説明では第2の入力端子34にプラスの
電位を入力したが第1の入力端子33にプラスの
電位を入力すれば上述の場合と同様の逆の動作を
もつて逆の変位方向が得られるのはもちろんであ
る。
In the above explanation, a positive potential is input to the second input terminal 34, but if a positive potential is input to the first input terminal 33, the opposite displacement direction can be obtained with the same reverse operation as in the above case. Of course, it can be done.

第7図及び第10図に示した例は6枚のバイモ
ルフ板P1〜P6を用いた例を挙げたが、第11図に
示すように4枚のバイモルフ板P1〜P4をもつて磁
気ヘツド支持体21を構成したものでも同様の効
果が得られる。この場合も第9図中矢印で示すよ
うに各バイモルフ板P1〜P4の各歪素子23,24
は前述の場合と同様に分極を行う。このように構
成すると、第1及び第2のバイモルフ板P1,P2
積層境界面29に位置する上記各バイモルフ板
P1,P2の電歪駆動用電極25,26の接点、第3
及び第4のバイモルフ板P3,P4の一方及び他方、
すなわち磁気ヘツド支持体21としての最外方向
に位置する電歪駆動用電極25,26を接地電位
し、所定変位信号の入力端子35は第2及び第4
のバイモルフ板P2,P4の積層境界面29及び第1
及び第3のバイモルフ板P1,P3の積層境界面29
それぞれに位置する電歪駆動用電極25,26及
び25,26の接点に接続すればよい。このよう
に結線を行なえば、単一の駆動電源で駆動できる
ほかに磁気ヘツド支持体21としてビデオテープ
レコーダの回転体に取付ける際等に絶縁を施すこ
となく取付けることができる。
The examples shown in FIGS. 7 and 10 use six bimorph plates P 1 to P 6 , but as shown in FIG. 11, four bimorph plates P 1 to P 4 are used. A similar effect can be obtained even if the magnetic head support 21 is constructed using the same structure. In this case as well, each strain element 23, 24 of each bimorph plate P1 to P4 is
performs polarization in the same way as in the previous case. With this configuration, each of the above-mentioned bimorph plates located at the lamination interface 29 of the first and second bimorph plates P 1 and P 2
The contact point of the electrostrictive drive electrodes 25 and 26 of P 1 and P 2 , the third
and one and the other of the fourth bimorph plates P 3 and P 4 ,
That is, the electrostrictive drive electrodes 25 and 26 located at the outermost side of the magnetic head support 21 are grounded, and the input terminal 35 for the predetermined displacement signal is connected to the second and fourth electrodes.
The laminated boundary surface 29 of the bimorph plates P 2 and P 4 and the first
and the lamination interface 29 of the third bimorph plates P 1 and P 3
What is necessary is just to connect to the contact points of the electrostrictive drive electrodes 25, 26 and 25, 26 located respectively. If the wires are connected in this way, it can be driven with a single drive power source, and it can also be installed as the magnetic head support 21 on a rotating body of a video tape recorder without insulation.

また、上述したようなバイモルフ板Pを複合し
て得られる効果は、第12図に示すように互いに
大きさの異なる2枚の第1及び第2のバイモルフ
板P1,P2を積層して得られる磁気ヘツド支持体2
1でも得られる。この場合にも、第13図中矢印
で示すように第1及び第2のバイモルフ板P1,P2
を構成する各歪素子23,24の分極の方向が互
いに逆向きとなるようにし、第1及び第2のバイ
モルフ板P1,P2の互いに向きあう一方及び他の歪
素子23,24の分極方向が同一となるように積
層する。そして所定の変位入力が入力される入力
端子36に対し第13図の如く結線を行なえばよ
い。すなわち、4個の定電圧ダイオードZD1
ZD4と4個のダイオードD1〜D4を用いそれぞれ定
電圧ダイオードZDとダイオードDは互いに逆向
きに一組となつてこれら4組が逆直列回路を構成
している。この逆直列回路の両端は接地され、2
組ずつの中間位置に駆動電圧の入力端子36が接
続され、該中間位置の接続点は第1及び第2のバ
イモルフ板P1,P2の積層境界面29に位置する上
記各バイモルフ板P1,P2の電歪駆動用電極25,
26の接点に接続され、入力端子36とそれぞれ
接地間の中間位置に第1及び第2のバイモルフ板
P1,P2の中央金属板22、すなわち中間電極にそ
れぞれ接続されている。このように結線及び分極
を行なえば、各バイモルフ板P1,P2間の絶縁を必
要とせず、磁気ヘツド支持部31を接地すること
ができ、また磁気ヘツド支持体21としての最外
方の電歪駆動電極25,26を接地電位とするこ
とができ、ビデオテープレコーダの回転体等への
取付けが容易となる。
Further, the effect obtained by combining the bimorph plates P as described above can be obtained by laminating two first and second bimorph plates P 1 and P 2 of different sizes, as shown in FIG. Obtained magnetic head support 2
You can get even 1. Also in this case, the first and second bimorph plates P 1 and P 2 are connected as shown by arrows in FIG.
The directions of polarization of the strain elements 23 and 24 constituting the plate are set to be opposite to each other, and the polarization of one strain element 23 and 24 of the first and second bimorph plates P 1 and P 2 facing each other and the other strain element 23 and 24 are Stack them so that they are in the same direction. Then, the input terminal 36 to which a predetermined displacement input is inputted may be connected as shown in FIG. 13. That is, four constant voltage diodes ZD 1 ~
Using ZD 4 and four diodes D 1 to D 4 , the constant voltage diode ZD and the diode D are set in opposite directions to each other, and these four sets constitute an anti-series circuit. Both ends of this anti-series circuit are grounded, and 2
A drive voltage input terminal 36 is connected to the intermediate position of each pair, and the connection point at the intermediate position is located at the lamination boundary surface 29 of the first and second bimorph plates P 1 and P 2 . , P 2 electrostrictive drive electrode 25,
first and second bimorph plates connected to the contacts of the input terminal 36 and at intermediate positions between the input terminal 36 and ground, respectively;
They are connected to the central metal plates 22 of P 1 and P 2 , that is, the intermediate electrodes, respectively. If the wiring and polarization are performed in this way, the magnetic head support 31 can be grounded without requiring insulation between the bimorph plates P 1 and P 2 , and the outermost bimorph plate 21 can be grounded. The electrostrictive drive electrodes 25 and 26 can be at ground potential, making it easy to attach the video tape recorder to a rotating body or the like.

そして第12図に示す例において、磁気ヘツド
5の取付けられる磁気ヘツド支持体21としての
共振周波数をみるに例えば第1及び第2のバイモ
ルフ板P1,P2の底辺部27を26mmとして厚さをと
もに0.5mmとして、上記第1のバイモルフ板P1
はり長さLを20mm、その先端部28の幅を3
mmとし、第2のバイモルフ板P2のはり長さL
を8mm、先端部28の幅を16mmとした場合、第1
のバイモルフ板P1固有の共振周波数は1050Hzで、
第2のバイモルフ板P2固有の共振周波数は3500Hz
であつたものが、上述のような積層により上記支
持体21の共振周波数は1280Hzとすることができ
たという実験結果を得た。なお上記支持体21の
先端32の変位は第1のバイモルフ板P1個有のも
のと変化はなかつた。
In the example shown in FIG. 12, looking at the resonance frequency of the magnetic head support 21 to which the magnetic head 5 is attached, for example, assuming that the bottom portions 27 of the first and second bimorph plates P 1 and P 2 are 26 mm thick, are both 0.5 mm, the beam length L 1 of the first bimorph plate P 1 is 20 mm, and the width of its tip 28 is 3 mm.
mm, and the beam length L 2 of the second bimorph plate P 2
When the width of the tip 28 is 8 mm and the width of the tip 28 is 16 mm, the first
The inherent resonant frequency of the bimorph plate P1 is 1050Hz,
The unique resonance frequency of the second bimorph plate P2 is 3500Hz
However, an experimental result was obtained in which the resonant frequency of the support body 21 could be set to 1280 Hz by laminating the layers as described above. Note that the displacement of the tip 32 of the support body 21 was the same as in the case with one first bimorph plate P.

上述したように本発明は、板状の電気機械変換
素子を複数枚積層して構成され、入力信号に応じ
て歪曲する一端に磁気ヘツドが取付けられた他端
にて固定された主電歪素子と、この主電歪素子よ
り短い長さを有し、上記主電歪素子の歪曲方向の
面上にはわせられ、上記主電歪素子の他端にて固
定された少なくとも一枚以上の副電歪素子とを有
し、上記主及び副電歪素子は同一方向に歪曲する
ように入力信号が供給され、上記磁気ヘツドが上
記主及び副電歪素子の他端に対して変位可能とし
たものであるので、磁気ヘツド支持体としての共
振周波数を高めつつ該支持体の先端、すなわちこ
の先端に取付けられる磁気ヘツドの変位量を減少
させることのない大きな変位をもつ磁気ヘツドの
支持構造の提供ができる。そして、所定の変位入
力に対する早い応答が可能となり、本発明をビデ
オテープレコーダの回転磁気ヘツド装置に適用す
れば、異速度再生等の場合におけるトラツクジヤ
ンプを迅速にかつ正確に行なうことができ、磁気
ヘツドの記録トラツク上の走査が安定し再生むら
のない画像を得ることができる。
As described above, the present invention is constructed by stacking a plurality of plate-shaped electromechanical transducers, and the main electrostrictive element has a magnetic head attached to one end that distorts according to an input signal and is fixed at the other end. and at least one sub-sheet having a length shorter than the main electrostrictive element, placed on the surface of the main electrostrictive element in the distortion direction, and fixed at the other end of the main electrostrictive element. an electrostrictive element, an input signal is supplied so that the main and sub electrostrictive elements are distorted in the same direction, and the magnetic head is displaceable with respect to the other ends of the main and sub electrostrictive elements. Therefore, it is an object of the present invention to provide a support structure for a magnetic head having a large displacement without reducing the displacement of the tip of the support, that is, the magnetic head attached to the tip, while increasing the resonance frequency as a magnetic head support. I can do it. Then, a quick response to a predetermined displacement input is possible, and if the present invention is applied to a rotating magnetic head device of a video tape recorder, track jumps can be performed quickly and accurately in cases such as playback at different speeds, and magnetic The scanning of the recording track by the head is stable, and an image without uneven reproduction can be obtained.

なお、上述においては、機械変換歪素子として
電気―機械変換素子としてのバイモルフ板を用い
たが、所定の変位入力に応じて伸縮し得る他の歪
変換素子、例えば磁歪、熱歪等による変換素子を
用いて構成されるものであつてもよい。
In the above description, a bimorph plate as an electro-mechanical transducer is used as the mechanical transducer, but other strain transducers that can expand and contract in response to a predetermined displacement input, such as magnetostrictive, thermostrictive, etc. transducers, may also be used. It may be configured using

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はビデオテープレコーダに用いられる回
転磁気ヘツド装置を示す概略斜視図、第2図は磁
気テープ上記録トラツクを示す平面図、第3図は
従来の磁気ヘツドの支持構造を示す断面図であ
る。第4図及び第5図はそれぞれ従来の磁気ヘツ
ドの支持体の例を示す平面図であり、第6図はそ
の断面図である。第7図は本発明の一実施例を示
す断面図であり、第8図は本発明に用いられるバ
イモルフ板を示す断面図であり、第9図は本発明
を構成する磁気ヘツド支持体を構成する各バイモ
ルフ板の平面図であり、第10図は上記実施例の
作動状態を示す断面図である。第11図は本発明
の他の実施例を示す断面図であり、第12図は本
発明のさらに実施例を示す断面図である。 P1〜P6……バイモルフ板、21……磁気ヘツド
支持体、23,24……歪素子、25,26……
電歪駆動用電極、27……バイモルフ板の底辺
部、28……バイモルフ板の先端部、29……積
層境界面、31……固定支持部。
FIG. 1 is a schematic perspective view showing a rotating magnetic head device used in a video tape recorder, FIG. 2 is a plan view showing a recording track on a magnetic tape, and FIG. 3 is a sectional view showing a conventional magnetic head support structure. be. 4 and 5 are plan views showing examples of conventional magnetic head supports, respectively, and FIG. 6 is a sectional view thereof. FIG. 7 is a sectional view showing an embodiment of the present invention, FIG. 8 is a sectional view showing a bimorph plate used in the present invention, and FIG. 9 is a sectional view showing a magnetic head support constituting the present invention. 10 is a plan view of each bimorph plate, and FIG. 10 is a sectional view showing the operating state of the above embodiment. FIG. 11 is a sectional view showing another embodiment of the invention, and FIG. 12 is a sectional view showing a further embodiment of the invention. P 1 to P 6 ... Bimorph plate, 21 ... Magnetic head support, 23, 24 ... Strain element, 25, 26 ...
Electrostrictive drive electrode, 27...bottom part of bimorph plate, 28...tip part of bimorph plate, 29...laminated boundary surface, 31...fixed support part.

Claims (1)

【特許請求の範囲】 1 板状の電気機械変換素子を複数枚積層して構
成され、入力信号に応じて歪曲する一端に磁気ヘ
ツドが取付けられ他端にて固定された主電歪素子
と、 この主電歪素子より短い長さを有し、上記主電
歪素子の歪曲方向の面上にはわせられ、上記主電
歪素子の他端にて固定された少なくとも一枚以上
の副電歪素子とを有し、 上記主及び副電歪素子は同一方向に歪曲するよ
うに入力信号が供給され、上記磁気ヘツドが上記
主及び副電歪素子の他端に対して変位可能とした
ことを特徴とする磁気ヘツドの支持構造。
[Scope of Claims] 1. A main electrostrictive element, which is constructed by laminating a plurality of plate-shaped electromechanical transducers, and has a magnetic head attached to one end and fixed at the other end, which distorts according to an input signal; At least one or more sub-electrostrictive sheets having a length shorter than the main electrostrictive element, placed on the plane in the distortion direction of the main electrostrictive element, and fixed at the other end of the main electrostrictive element. an input signal is supplied so that the main and sub electrostrictive elements are distorted in the same direction, and the magnetic head is displaceable relative to the other ends of the main and sub electrostrictive elements. Features a magnetic head support structure.
JP4526679A 1979-04-16 1979-04-16 Supporting structure of magnetic head Granted JPS55139629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4526679A JPS55139629A (en) 1979-04-16 1979-04-16 Supporting structure of magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4526679A JPS55139629A (en) 1979-04-16 1979-04-16 Supporting structure of magnetic head

Publications (2)

Publication Number Publication Date
JPS55139629A JPS55139629A (en) 1980-10-31
JPS6151333B2 true JPS6151333B2 (en) 1986-11-08

Family

ID=12714487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4526679A Granted JPS55139629A (en) 1979-04-16 1979-04-16 Supporting structure of magnetic head

Country Status (1)

Country Link
JP (1) JPS55139629A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5932182A (en) * 1982-08-16 1984-02-21 Sumitomo Special Metals Co Ltd Bimorph piezoelectric element
JPH0739252Y2 (en) * 1986-12-10 1995-09-06 株式会社トーキン Piezoelectric actuator

Also Published As

Publication number Publication date
JPS55139629A (en) 1980-10-31

Similar Documents

Publication Publication Date Title
US4165521A (en) Video signal reproducing system with moveable head for slow or stop tracking control
JPS6346487B2 (en)
JP2003228929A (en) Head gimbal assembly equipped with actuator for fine positioning of head element and disk device equipped with head gimbal assembly
US4326228A (en) Magnetic transducer supporting apparatus
JPS6245609B2 (en)
JP3340206B2 (en) Piezo actuator and head actuator
JPS6151333B2 (en)
US5036419A (en) Electro-mechanical transducing element and a moving device using the same
JP2001211668A (en) Fine positioning actuator, thin film magnetic head device positioning actuator and head suspension assembly having the same
US4288824A (en) Deflectable transducer mounting with damper for video signal reproducing apparatus
JPS5946432B2 (en) bimorph piezoelectric element
JPS6151334B2 (en)
JPS627601B2 (en)
JPS6331215Y2 (en)
JPS626578Y2 (en)
JPH0143363B2 (en)
JPH0132172Y2 (en)
JPS6215931B2 (en)
JPS6131379Y2 (en)
JPS59211819A (en) Piezo-electric type displacing apparatus
JPS58139329A (en) Magnetic head driving element
JPS6323789Y2 (en)
JP2876905B2 (en) Head actuator
JPS6226092B2 (en)
JPS60187920A (en) Head support of recording and reproducing device