JPS6226092B2 - - Google Patents

Info

Publication number
JPS6226092B2
JPS6226092B2 JP53125332A JP12533278A JPS6226092B2 JP S6226092 B2 JPS6226092 B2 JP S6226092B2 JP 53125332 A JP53125332 A JP 53125332A JP 12533278 A JP12533278 A JP 12533278A JP S6226092 B2 JPS6226092 B2 JP S6226092B2
Authority
JP
Japan
Prior art keywords
head
bimorph
voltage
magnetic
heads
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53125332A
Other languages
Japanese (ja)
Other versions
JPS5552529A (en
Inventor
Kanji Kubo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12533278A priority Critical patent/JPS5552529A/en
Publication of JPS5552529A publication Critical patent/JPS5552529A/en
Publication of JPS6226092B2 publication Critical patent/JPS6226092B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/58Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B5/584Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following on tapes
    • G11B5/588Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following on tapes by controlling the position of the rotating heads
    • G11B5/592Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following on tapes by controlling the position of the rotating heads using bimorph elements supporting the heads

Description

【発明の詳細な説明】 本発明は圧電素子で構成されたバイモルフを用
いて回転磁気ヘツドの機械的高さ位置を変化させ
るようにした磁気記録再生装置(VTR)に関す
るものであり、特に回転2ヘツド形VTRにおい
て、回転シリンダを組み立てる際に生じる両ヘツ
ド間の高さ調整の困難さを解消すると共に、前記
バイモルフのもつヒステリシス特性による両ヘツ
ド間の高さずれの問題をも解決する方法を提供す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic recording/reproducing device (VTR) that uses a bimorph composed of a piezoelectric element to change the mechanical height position of a rotating magnetic head. To provide a method for solving the difficulty of height adjustment between both heads that occurs when assembling a rotating cylinder in a head type VTR, and also solving the problem of height deviation between both heads due to the hysteresis characteristic of the bimorph. It is something to do.

ヘリカルスキヤン回転2ヘツド形VTRでは、
A、B両ヘツドの機械的高さ位置を同一にする必
要がある。例えば互いに逆方向のアジマス角を有
するA、B両ヘツドで記録される磁化軌跡が互い
に隣接して記録されるようにテープ速度や磁気ヘ
ツドのギヤツプ幅等を選んだ時、前記両ヘツドの
機械的高さ位置が同一であれば記録磁化軌跡は第
1図aで示すようになる。図中1は磁気テープT
AはAヘツドで記録した磁化軌跡、TBはBヘツド
で記録した磁化軌跡である。もし何らかの理由で
A、B両ヘツドの機械的高さ位置が異なつた場合
記録磁化軌跡は第1図bで示すように、例えばA
ヘツドで記録した磁化軌跡上の一部をBヘツドが
重畳して記録再生するため磁化軌跡TAの一部が
消去されるペアリング現象が生じる。そのため再
生時にはAヘツドから得られる出力信号は減少
し、且つAヘツドが磁化軌跡TB上を同時に再生
走査するためクロストーク信号により再生出力信
号のS/Nが劣化する。
In a helical scan rotating two-head VTR,
The mechanical height positions of both heads A and B must be the same. For example, when the tape speed and gap width of the magnetic heads are selected so that the magnetization trajectories recorded by heads A and B, which have opposite azimuth angles, are recorded adjacent to each other, the mechanical If the height positions are the same, the recorded magnetization trajectory will be as shown in FIG. 1a. 1 in the figure is a magnetic tape T
A is the magnetization trajectory recorded by the A head, and T B is the magnetization trajectory recorded by the B head. If for some reason the mechanical height positions of both heads A and B are different, the recorded magnetization trajectory will be as shown in Figure 1b, for example, A.
Since the B head records and reproduces a portion of the magnetization trajectory recorded by the head, a pairing phenomenon occurs in which a portion of the magnetization trajectory T A is erased. Therefore, during reproduction, the output signal obtained from the A head decreases, and since the A head simultaneously scans the magnetization locus T B for reproduction, the S/N of the reproduced output signal deteriorates due to the crosstalk signal.

上記ペアリング現象が生じる主な原因は、1つ
にはシリンダ組み立ての際に生じるA、B両ヘツ
ド間の高さ調整誤差であり、他の一つは圧電素子
のもつヒステリシス特性による。
One of the main causes of the pairing phenomenon is the height adjustment error between the heads A and B that occurs during cylinder assembly, and the other is the hysteresis characteristic of the piezoelectric element.

シリンダ組み立ての際に生じるA、B両ヘツド
間の高さ誤差は、記録磁化軌跡幅にもよるが、通
常3(μm)程に押えられている。機械的に高さ
調整を行なう場合には2〜3(μm)程度が限界
であり、逆に高さ誤差が10(μm)程に許容され
るならば量産効果が大である。本発明では後述す
るように電気的に両ヘツド間の高さ調整を行なう
ためシリンダ組み立ての際の両ヘツド間の高さ調
整に精密さを要しない利点を有する。
The height error between heads A and B that occurs when assembling the cylinder is usually kept to about 3 (μm), although it depends on the recording magnetization trajectory width. In the case of mechanical height adjustment, the limit is about 2 to 3 (μm), and conversely, if the height error is allowed to be about 10 (μm), the mass production effect will be great. The present invention has the advantage that precision is not required for the height adjustment between the two heads when assembling the cylinder because the height between the two heads is electrically adjusted as will be described later.

ペアリングを生じる他の要因の一つは圧電素子
で構成されたバイモルフのヒステリシス特性によ
る。回転ヘツド形VTRにおいて、回転磁気ヘツ
ドの機械的高さ位置を圧電素子で構成されたバイ
モルフを用いて回転軸方向に変位させる方法は既
に公知であり、記録トラツクの曲りに追随する方
法及び、スチル、スロー、倍速再生時の特殊再生
時に記録トラツク上を再生ヘツドが忠実にオント
ラツクして追随する方法等に適用される。
One of the other factors that causes pairing is due to the hysteresis characteristic of the bimorph made of piezoelectric elements. In a rotating head type VTR, a method of displacing the mechanical height position of a rotating magnetic head in the direction of the rotation axis using a bimorph composed of a piezoelectric element is already known. This method is applied to a method in which a playback head faithfully on-tracks and follows a recording track during special playback during slow, slow, or double-speed playback.

圧電素子で構成されたバイモルフ2は第2図に
示すように矢印Pで示す方向の分極をもつた2枚
の圧電素子3及び4を共通電極5を有するように
貼り合わせ、さらに両側電極6,7が蒸着等の方
法により形成されてなる。バイモルフ2を変位さ
せる場合には共通電極5より引出した端子8と、
両側電極6,7を電気的に接続したリード線より
引出した端子9との間に電圧を印加すればよい。
例えば端子8に+を、端子9に−電圧を印加した
場合、圧電素子3はその長手方向に伸び、圧電素
子4は縮み、その結果バイモルフ2は曲がり変位
を生じる。該曲がり方向は端子8,9間に印加す
る電圧の極性及び圧電素子3及び4の分極方向に
左右されることは周知のことである。
As shown in FIG. 2, the bimorph 2 composed of piezoelectric elements has two piezoelectric elements 3 and 4 polarized in the direction shown by the arrow P bonded together so as to have a common electrode 5, and electrodes 6 on both sides, 7 is formed by a method such as vapor deposition. When displacing the bimorph 2, a terminal 8 drawn out from the common electrode 5,
A voltage may be applied between the electrodes 6 and 7 on both sides and a terminal 9 drawn out from a lead wire that electrically connects them.
For example, when + voltage is applied to terminal 8 and - voltage is applied to terminal 9, piezoelectric element 3 extends in its longitudinal direction, piezoelectric element 4 contracts, and as a result, bimorph 2 bends and is displaced. It is well known that the bending direction depends on the polarity of the voltage applied between the terminals 8 and 9 and the polarization direction of the piezoelectric elements 3 and 4.

かかる構成をもつバイモルフを用いた磁気ヘツ
ド可動装置を第3図に示す。第3図において10
は圧電素子11,12で構成されたバイモルフで
あり、一端には磁気ヘツド13が接着等の方法で
固着され、他端は接着剤14により取付け部材1
5上に固定されている。取付け部材15はビス止
め等の方法で回転デイスク上に固定される。従つ
て第3図に示す磁気ヘツド可動装置は回転デイス
クと共に回転する。
A magnetic head movable device using a bimorph having such a configuration is shown in FIG. 10 in Figure 3
is a bimorph composed of piezoelectric elements 11 and 12, and a magnetic head 13 is fixed to one end by a method such as adhesive, and the other end is attached to a mounting member 1 by an adhesive 14.
It is fixed on 5. The mounting member 15 is fixed onto the rotary disk by screws or the like. The magnetic head mover shown in FIG. 3 therefore rotates with the rotating disk.

圧電素子に電圧を印加しなければ、磁気ヘツド
13は従来の回転ヘツド形VTRに使用されてい
る磁気ヘツドと同様に回転軸に垂直な平面内で円
運動を行なうだけであるが、圧電素子の各電極に
接続された引出しリード線16に外部よりスリツ
プリング―ブラシ等を介して電圧を印加した場
合、磁気ヘツド13は前記円運動と共に矢印17
で示す方向(回転軸方向)に変位する。該変位を
利用して記録時とは異なるテープ速度で走行する
テープからすでに記録されてある映像信号を忠実
に再生する方法は、特開昭53―45509やその他の
多くの公開特許に記載されている。
If no voltage is applied to the piezoelectric element, the magnetic head 13 only performs circular motion in a plane perpendicular to the rotation axis, similar to the magnetic head used in conventional rotary head type VTRs. When a voltage is externally applied to the lead wire 16 connected to each electrode via a slip ring-brush or the like, the magnetic head 13 moves along the circular motion indicated by the arrow 17.
Displaced in the direction indicated by (rotation axis direction). A method of faithfully reproducing already recorded video signals from a tape running at a tape speed different from that at the time of recording by using this displacement is described in Japanese Patent Application Laid-Open No. 53-45509 and many other published patents. There is.

第3図に示す磁気ヘツド可動装置においてバイ
モルフに正の電圧を印加した時、磁気ヘツド13
の変位方向が紙面上にて上方向変位とし該変位方
向を正とした時、バイモルフへの印加電圧に対す
る磁気ヘツド13の変位量は第4図に示すごとく
変化する。図中横軸には印加電圧〔V〕、縦軸に
は変位量μmをとつてある。座標軸の交点を零と
し、紙面上において右側を印加電圧正とし、上側
を変位方向正としている。印加電圧零の時のバイ
モルフ自由端の位置を変位量零とし、印加電圧を
V1〔V〕まで加えた時、前記変位量は18〜1
9に示す曲線で増加する。印加電圧をV1〔V〕
から零〔V〕にすると変位量は19〜20に示す
曲線にそつて変化し、零〜−V1〜V1と電圧を印
加した時の変位量は20〜21〜22〜19なる
曲線に沿つて変化する。以下同様にV1〜−V1
電圧サイクルを繰り返えし印加した場合、変位量
は19〜20〜21〜22のサイクルを繰り返え
し起点18にはもどらない。起点18は変位以前
にいかなる電圧を印加したかという履歴に左右さ
れる。例えばV1〔V〕なる電圧を印加した後印
加電圧を零としたバイモルフを次の用途に用いる
時、該バイモルフの次の起点は残留ヒステリシス
量hをもつた点20となる。残留ヒステリシス量
hは第5図に示すように最大印加電圧によりその
値が異なる。
In the magnetic head moving device shown in FIG. 3, when a positive voltage is applied to the bimorph, the magnetic head 13
When the direction of displacement is upward on the paper and the direction of displacement is positive, the amount of displacement of the magnetic head 13 with respect to the voltage applied to the bimorph changes as shown in FIG. In the figure, the horizontal axis represents applied voltage [V], and the vertical axis represents displacement μm. The intersection of the coordinate axes is set to zero, the right side on the paper is set as the positive applied voltage, and the top side is set as the positive direction of displacement. The position of the free end of the bimorph when the applied voltage is zero is defined as zero displacement, and the applied voltage is
When applying up to V 1 [V], the displacement amount is 18 to 1
9 increases according to the curve shown in FIG. Apply voltage to V 1 [V]
When the voltage is changed from to zero [V], the displacement changes along the curves shown in 19-20, and when the voltage is applied from zero to -V 1 to V 1 , the displacement changes to the curve 20-21-22-19. change along. When the voltage cycle of V1 to -V1 is applied repeatedly in the same manner, the displacement amount repeats the cycle of 19 to 20 to 21 to 22 and does not return to the starting point 18. The starting point 18 depends on the history of what voltage was applied before the displacement. For example, when a bimorph with a voltage of V 1 [V] applied and the applied voltage made zero is used for the next purpose, the next starting point of the bimorph will be a point 20 with a residual hysteresis amount h. As shown in FIG. 5, the value of the residual hysteresis amount h varies depending on the maximum applied voltage.

バイモルフに所定の電圧を印加して特殊再生を
行なう場合、A、B各ヘツドを可動させるバイモ
ルフに印加する電圧が同じ値であるならば、特殊
再生モードを解除した後の残留ヒステリシス量の
影響はA、B両ヘツド共に等しく現われるためペ
アリングの問題にはならないが、実際には各ヘツ
ドを可動させるバイモルフには異なつた電圧を印
加しなければならない。例えばスチル再生時には
第6図に示すような電圧変化をバイモルフに印加
しなければならない。図中実線はAヘツドへの印
加電圧、破線はBヘツドへの印加電圧を示す。
A、B両ヘツドに共通な電圧波形、即ち23〜2
5〜26〜28なる電圧波形を印加しても正常な
スチル再生は得られるが、その場合25から26
への急激な変化により圧電素子個有の共振周波数
でヘツドが振動するため、再生画像の画質を劣化
させる。従つて実際にAヘツドに印加する電圧波
形は23〜24〜26〜27なる三角波を、Bヘ
ツドには24〜25〜27〜28なる三角波が用
いられる。従つて、任意の時間にスチル再生モー
ドを停止させた時、A、B各ヘツドを可動するバ
イモルフに印加された最終電圧が異なるため、各
バイモルフの残留ヒステリシス量も異なり、ペア
リングの問題が生じることになる。前記ペアリン
グの問題はスチル再生に限らず、詳細は省略する
も、スロー再生及び倍速再生等においても同様で
ある。この問題を解決するためには、バイモルフ
上に固着した磁気ヘツドの機械的高さ位置を検出
する補助装置を有し、該装置より得られる位置信
号で記録時にもバイモルフを駆動し、各磁気ヘツ
ドの機械的高さ位置が常に等しくなるように制御
するか、もしくは回転デイスク上にバイモルフを
介さずに固定した記録専用の磁気ヘツドを新たに
設置しなければならない。
When performing special playback by applying a predetermined voltage to the bimorph, if the voltages applied to the bimorph that move heads A and B are the same, the effect of the amount of residual hysteresis after the special playback mode is canceled is Since both the A and B heads appear equally, there is no pairing problem, but in reality, different voltages must be applied to the bimorphs that move each head. For example, during still playback, voltage changes as shown in FIG. 6 must be applied to the bimorph. In the figure, the solid line shows the voltage applied to the A head, and the broken line shows the voltage applied to the B head.
Voltage waveform common to both A and B heads, i.e. 23-2
Normal still playback can be obtained even if a voltage waveform of 5 to 26 to 28 is applied, but in that case, the voltage waveform of 25 to 26
This sudden change causes the head to vibrate at the resonance frequency unique to the piezoelectric element, degrading the quality of the reproduced image. Therefore, the voltage waveform actually applied to the A head is a triangular wave of 23-24-26-27, and the voltage waveform of 24-25-27-28 is used for the B head. Therefore, when the still playback mode is stopped at an arbitrary time, the final voltage applied to the bimorphs moving the A and B heads is different, so the amount of residual hysteresis of each bimorph is also different, causing a pairing problem. It turns out. The above pairing problem is not limited to still playback, but also applies to slow playback, double speed playback, etc., although the details are omitted. In order to solve this problem, we have an auxiliary device that detects the mechanical height position of the magnetic head fixed on the bimorph, and the position signal obtained from this device drives the bimorph even during recording. Either the mechanical height positions of the recording heads must be controlled so that they are always the same, or a new recording-only magnetic head fixed on the rotating disk without the use of a bimorph must be installed.

本発明は記録時のペアリングの問題を解決する
ための新規な方法を提供するものであり、余分な
記録専用のヘツドを用いることなく、またバイモ
ルフ上に固着された磁気ヘツドの機械的高さ位置
を検出するための補助装置を用いることもなく、
前記ペアリングの問題を解決する方法を提供する
ものである。
The present invention provides a novel method for solving the pairing problem during recording, without the use of an extra dedicated recording head, and without the mechanical height of the magnetic head fixed on the bimorph. Without using any auxiliary equipment to detect the position,
The present invention provides a method for solving the pairing problem.

以下、本発明の詳細を説明する。 The details of the present invention will be explained below.

本発明は記録時のペアリングを防止するため片
方のヘツド、例えばAヘツドを基準とし、Bヘツ
ドの機械的高さ位置が常にAヘツドに等しくなる
ように制御するものであり、A、B両ヘツド間の
機械的高さ位置ずれの検出はAヘツドで記録した
磁化軌跡上をBヘツドが再生走査することによつ
て検知する。
In order to prevent pairing during recording, the present invention uses one head, for example, the A head, as a reference, and controls the mechanical height of the B head so that it is always equal to the A head. Mechanical height positional deviation between the heads is detected by reproducing and scanning the B head on the magnetization locus recorded by the A head.

第7図及び第8図を用いて本発明の原理を説明
する。第7図には磁気テープ29上における記録
磁化軌跡の中心線をTA1,TB1,TA2……で示し
てある。テープ29は矢印30で示す方向に移送
され、回転磁気ヘツドはスチル軌跡31上を矢印
32の方向に走査する。従つて、A、B両ヘツド
間の機械的高さ位置が同じであり、且つバイモル
フに何ら電圧を印加しなければ、記録時には正規
のトラツクピツチTPの間隔をもつてTA1,TB
,TA2……を中心とする磁化軌跡を描く。記録
磁化軌跡幅は磁気ヘツドの幅で決定され、アジマ
ス記録を行なう時には前記第1図aで示したよう
に各トラツクが互いに隣接して記録されるよう磁
化軌跡幅とトラツクピツチTPとは等しくしてあ
る。アジマス記録を用いない場合には、隣接のト
ラツクからのストローク信号をひろわないように
各トラツク間にはガードバンドが設けられている
ため、記録磁化軌跡幅はトラツクピツチTPより
も狭くなるように選ばれている。今、Aヘツドで
記録した磁化軌跡上をBヘツドで再生した時の出
力を考えてみるに、アジマス記録では高域の輝度
信号はアジマス損失のために出力されないが、低
域変換されたカラー信号はアジマス損失が少ない
ためにBヘツドにても出力信号は得られる。一
方、磁気ヘツドにアジマス角をもたせないガード
バンド記録方式では、Bヘツドにて輝度信号及び
カラー信号が出力される。即ち上記いずれの方式
においてもAヘツドで記録した磁化軌跡上をBヘ
ツドが再生走査した場合、Bヘツドのオントラツ
ク量に応じた再生出力信号を得ることができる。
The principle of the present invention will be explained using FIGS. 7 and 8. In FIG. 7, the center lines of the recorded magnetization locus on the magnetic tape 29 are indicated by T A1 , T B1 , T A2 . . . . The tape 29 is transported in the direction shown by arrow 30, and the rotating magnetic head scans a still trajectory 31 in the direction of arrow 32. Therefore, if the mechanical height positions between both heads A and B are the same, and no voltage is applied to the bimorph, T A1 , T B are spaced at the regular track pitch T P during recording.
1 , T A2 . . . Draw a magnetization trajectory centered on . The recording magnetization trajectory width is determined by the width of the magnetic head, and when performing azimuth recording, the magnetization trajectory width and track pitch T P are made equal so that each track is recorded adjacent to each other as shown in FIG. 1a. There is. When azimuth recording is not used, a guard band is provided between each track to prevent stroke signals from adjacent tracks, so the recording magnetization trajectory width is selected to be narrower than the track pitch TP . It is. Now, if we consider the output when the magnetization trajectory recorded by the A head is reproduced by the B head, in azimuth recording, high frequency luminance signals are not output due to azimuth loss, but low frequency converted color signals are output. Since the azimuth loss is small, an output signal can be obtained even at the B head. On the other hand, in the guard band recording method in which the magnetic head does not have an azimuth angle, a brightness signal and a color signal are output from the B head. That is, in any of the above methods, when the B head performs reproduction scanning on the magnetization locus recorded by the A head, a reproduction output signal corresponding to the on-track amount of the B head can be obtained.

今、記録モードが第7図に示す点33から開始
されたと考えた時、Aヘツドは33―38で示す
1フイールド分の磁化軌跡を描く。通常であれば
次にBヘツドが34―39で示す磁化軌跡を描く
わけであるが、この時Bヘツドを再生モードと
し、且つスチル軌跡が34―36になるようにB
ヘツドの機械的高さ位置を変化させる。これはB
ヘツド駆動用のバイモルフに第8図41で示すよ
うな電圧変化を印加すればよい。従つて、Bヘツ
ドのテープ上への実際の走査軌跡は、テープ速度
を考慮すると34―37で示す軌跡40となる。
この時BヘツドはAヘツドで記録した磁化軌跡上
をまたがつて再生することになり、そのエンベロ
ープ検波出力は第8図に示す波形42となる。
A、B両ヘツドの機械的高さ位置が同じであるな
らば、Bヘツドより得られる再生出力の最大点4
3は1フイールド期間の中間に位置し、該最大点
でのバイモルフへの印加電圧は44で示す値とな
るが、両ヘツドの機械的高さ位置が異なつている
場合にはBヘツドより得られる出力信号は45も
しくは46となり、その時の最大点47もしくは
48時点でのバイモルフへの印加電圧は49もし
くは50となる。
Now, assuming that the recording mode is started from point 33 shown in FIG. 7, the A head draws a magnetization locus for one field shown at 33-38. Normally, the B head would then draw the magnetization trajectory shown by 34-39, but at this time, the B head should be set to playback mode and the B head should be set so that the still trajectory becomes 34-36.
Change the mechanical height position of the head. This is B
It is sufficient to apply a voltage change as shown in FIG. 841 to the bimorph for driving the head. Therefore, the actual scanning trajectory of the B head on the tape is a trajectory 40 shown at 34-37, taking into account the tape speed.
At this time, the B head reproduces data across the magnetization locus recorded by the A head, and its envelope detection output becomes a waveform 42 shown in FIG.
If the mechanical height positions of both heads A and B are the same, the maximum playback output obtained from head B is 4.
3 is located in the middle of one field period, and the voltage applied to the bimorph at the maximum point is the value shown by 44, but if the mechanical height positions of both heads are different, it will be obtained from head B. The output signal becomes 45 or 46, and the voltage applied to the bimorph at the maximum point 47 or 48 becomes 49 or 50.

バイモルフの変位量、即ち磁気ヘツドの機械的
高さ位置の変位量はバイモルフへの印加電圧にほ
ぼ比例する。従つて、Aヘツドで記録した磁化軌
跡上をBヘツドが傾斜して再生することにより、
Bヘツドの再生出力が最大の時のBヘツド駆動用
バイモルフへの印加電圧がわかれば、A、B両ヘ
ツド間の相対的な機械的高さずれを検出するるこ
とができる。なお両ヘツド間の相対的な機械的高
さずれの検出はバイモルフへの印加電圧を知るこ
とが本質ではなく、所定の時点から前述のBヘツ
ドの再生走査を行なつた時に得られる出力信号最
大の点まで時間を知ることによつて可能なことは
言うまでもないことである。
The amount of displacement of the bimorph, ie, the amount of displacement of the mechanical height position of the magnetic head, is approximately proportional to the voltage applied to the bimorph. Therefore, by reproducing the magnetization trajectory recorded by the A head while tilting the B head,
If the voltage applied to the bimorph for driving the B head when the reproduction output of the B head is at its maximum is known, the relative mechanical height difference between the A and B heads can be detected. Note that the detection of the relative mechanical height deviation between both heads is not essential to knowing the voltage applied to the bimorph, but rather to detect the maximum output signal obtained when performing the above-mentioned reproduction scan of the B head from a predetermined point in time. It goes without saying that this is possible by knowing the time up to the point.

上記の原理を用いた具体的な一実施例を第9図
に示す。第9図は回転2ヘツド形VTRを例にと
つた場合の具体的回路例であり、第10図は第9
図の各部の波形を示す。図中51はAヘツド、5
2はBヘツドであり、図示していないが各ヘツド
はバイモルフ上に固着され、機械的高さ位置はそ
れぞれ独立して変位可能とされている。53,5
5は記録アンプ、54,56は再生アンプであ
り、必要に応じてスイツチSW1,SW2にて記録も
しくは再生モードに切換えられる。スイツチ
SW1,SW2は実際にはトランジスタで構成された
電子スイツチであり、連動して作動される。
VTRが記録動作モードにされ、回転シリンダ及
びキヤプスタンモータの制御が安定になつた時点
を第10図に示すt0とすれば、t0以降Aヘツドが
テープに当接している期間、即ち第10図aで示
すヘツドスイツチング信号が“1”の期間は、ス
イツチSW1,SW2共に記録側Rに接続される。な
おこの時Bヘツドはテープには当接していないこ
とは回転2ヘツド形VTRのテープ走行系より明
らかである。オーバーラツプ記録を無視した場
合、Bヘツドはt1の時点でテープに当接しはじめ
る。t1の時点でスイツチSW1,SW2は共に再生側
Pに接続される。そして同時にBヘツド駆動用バ
イモルフには、端子57より入力されるヘツドス
イツチング信号を整形した鋸歯状波電圧(第10
図bで示す電圧波形)が印加される。第9図にお
いて58は鋸歯状波整形回路であり、該出力はス
イツチSW3を介してBヘツド駆動用バイモルフの
駆動回路59に供給される。スイツチSW3はt1
時点でP端子側に接続される。鋸歯状波bは前記
第7図で説明したように、Aヘツドで記録した磁
化軌跡上を交差してBヘツドが走査するにたる電
圧値に設定されている。そしてこの時、Bヘツド
から得られる再生出力はエンベロープ検波回路6
0に入力され出力信号cを得る。該出力信号cは
ピークホールド回路61に入力され、出力信号d
及び前記cの値は比較器62に入力される。比較
器62の出力はcの信号がdの信号より小さくな
つた時に“1”の信号を出すように構成されてお
り、その出力波形をeで示す。サンプルパルス整
形回路63にて信号eの立上りでサンプルパルス
が整形され、鋸歯状波信号bをサンプルホールド
する。なお回路64はサンプルホールド回路であ
る。アナログ回路で構成されるサンプルホールド
回路は任意の一定電圧を長時間ホールドすること
が困難なため、一度デイジタルで構成されたメモ
リー回路65にスイツチSW4を介して入力され
る。この時スイツチSW4はP端子側に接続されて
いる。メモリー回路65は例えば第11図に示す
ように、端子66より入力されるホールド信号f
の電圧に応じて周波数が変化する可変発振器67
の出力をカウンター68にて一定期間カウントし
てメモリーし、DA変換器69にて再びアナログ
信号に変換して端子70より出力するごとく構成
されている。なお端子71はカウンター68を動
作させる指令信号の入力端子であり、例えばt2
t3の期間だけカウンターを動作させる。回路72
はDA変換器を動作させる読み出しパルス発生器
であり、DA変換器の出力が連続して取り出せる
ように構成している。第9図に示すメモリー回路
65の出力はt3の時点以降Bヘツド駆動用バイモ
ルの駆動回路59に入力される。なお、t3の時点
以降はスイツチSW1〜SW4は全てR端子に接続さ
れ、以後記録動作モード終了時点まで保持され
る。また、詳細は省略するも、メモリー回路65
の出力は第8図の44で示す電圧値であれば零の
電圧を、49及び50で示す電圧値であれば負及
び正の電圧を出すように構成することは可能であ
る。
A specific example using the above principle is shown in FIG. Figure 9 shows a specific circuit example using a rotating two-head VTR as an example, and Figure 10 shows a 9-head VTR.
The waveforms of each part of the figure are shown. In the figure, 51 is the A head, 5
Reference numeral 2 denotes a B head. Although not shown, each head is fixed on the bimorph, and its mechanical height position can be independently displaced. 53,5
5 is a recording amplifier, and 54 and 56 are reproduction amplifiers, which can be switched to recording or reproduction mode by switches SW 1 and SW 2 as necessary. switch
SW 1 and SW 2 are actually electronic switches composed of transistors, and are operated in conjunction with each other.
If the point in time when the VTR is put into recording operation mode and the control of the rotary cylinder and capstan motor becomes stable is t 0 shown in FIG. 10, then the period after t 0 when the A head is in contact with the tape, During the period when the head switching signal is "1" as shown in FIG. 10a, both switches SW 1 and SW 2 are connected to the recording side R. It is clear from the tape running system of a rotating two-head VTR that the B head is not in contact with the tape at this time. If overlap recording is ignored, the B head starts contacting the tape at time t1 . At time t1 , both switches SW1 and SW2 are connected to the playback side P. At the same time, the B head driving bimorph receives a sawtooth wave voltage (10th
A voltage waveform shown in Figure b) is applied. In FIG. 9, 58 is a sawtooth wave shaping circuit, the output of which is supplied to a bimorph drive circuit 59 for driving the B head via switch SW3 . The switch SW3 is connected to the P terminal side at time t1 . As explained with reference to FIG. 7, the sawtooth wave b is set to a voltage value that causes the B head to scan across the magnetization locus recorded by the A head. At this time, the playback output obtained from the B head is the envelope detection circuit 6.
0 and obtains an output signal c. The output signal c is input to the peak hold circuit 61, and the output signal d
and the value of c is input to the comparator 62. The output of the comparator 62 is configured to output a "1" signal when the signal at c becomes smaller than the signal at d, and its output waveform is indicated by e. A sample pulse shaping circuit 63 shapes the sample pulse at the rising edge of the signal e, and samples and holds the sawtooth wave signal b. Note that the circuit 64 is a sample and hold circuit. Since it is difficult for a sample and hold circuit composed of an analog circuit to hold an arbitrary constant voltage for a long period of time, the voltage is once input to the memory circuit 65 composed of a digital circuit via the switch SW4 . At this time, switch SW4 is connected to the P terminal side. For example, as shown in FIG. 11, the memory circuit 65 receives a hold signal f input from a terminal 66.
A variable oscillator 67 whose frequency changes depending on the voltage of
The counter 68 counts the output for a certain period of time and stores it in memory, and the DA converter 69 converts it back into an analog signal and outputs it from a terminal 70. Note that the terminal 71 is an input terminal for a command signal to operate the counter 68, for example, from t 2 to
Operate the counter only for a period of t 3 . circuit 72
is a read pulse generator that operates the DA converter, and is configured so that the output of the DA converter can be taken out continuously. The output of the memory circuit 65 shown in FIG. 9 is input to the drive circuit 59 of the B head drive bimol from time t3 onwards. Note that after time t3 , all switches SW1 to SW4 are connected to the R terminal, and this is maintained until the end of the recording operation mode. Also, although the details are omitted, the memory circuit 65
It is possible to output zero voltage if the output is the voltage value shown at 44 in FIG. 8, and to output negative and positive voltages if the output is the voltage value shown by 49 and 50.

以上の説明で明らかなように、VTRが記録動
作モードにされた後回転シリンダ及びキヤプスタ
ンモータの制御が安定になつた時点において、第
10図に示すt1〜t2の1フイールド期間のみスイ
ツチSW1〜SW4をP端子側に接続し、Bヘツドが
Aヘツドで記録した磁化軌跡上を交差して再生走
査し、その際Bヘツドより得られる再生出力の最
大点に到達するまでに要する時間を所定の電圧値
に変換した後、Bヘツド駆動用バイモルフに該電
圧を印加保持することによつて、AヘツドとBヘ
ツドとの相対的な機械的高さ位置を常に一定に保
つことが可能である。
As is clear from the above explanation, when the control of the rotary cylinder and capstan motor becomes stable after the VTR is put into the recording operation mode, only one field period from t 1 to t 2 shown in FIG. Switches SW 1 to SW 4 are connected to the P terminal side, and the B head crosses and scans the magnetization locus recorded by the A head, until the maximum point of the reproduction output obtained from the B head is reached. After converting the required time to a predetermined voltage value, the voltage is applied and held to the B-head driving bimorph to keep the relative mechanical height position of the A-head and B-head constant at all times. is possible.

次に、A、B両ヘツド間の機械的高さ位置の検
出可能な精度につき第12図を参考に説明する。
第12図は第8図の一部を書き抜いたものであ
り、73はBヘツド駆動用バイモルフに印加する
電圧波形、74はBヘツドで再生されるエンベロ
ープ出力である。エンベロープ出力74は第7図
に示す軌跡40に従つてBヘツドが走査した時、
Bヘツドから得られる理想的な再生出力を描いて
ある。第12図に示すt1〜t2の期間は1/60秒であ
り、この間のBヘツドの移動量は第7図より明ら
かなようにトラツクピツチTPの2倍である。例
えばトラツクピツチTPが30μmとした時、t1〜t2
の期間は60μmのBヘツド移動量に相当する。一
方、エンベロープ出力74は適当な増幅器を通す
ことにより、最大点75にて10Vの電圧値を得ら
れたとする。第9図に示す比較器62の感度が
100mVとすると、第12図に示すΔVが100mV
となり、簡単な比例計算より最大点75の位置の
検出誤差は±0.3μmとなる。言い換えればA、
B両ヘツド間の機械的高さ位置を±0.3μmの精
度で調整することができる。実際にはバイモルフ
の変位量が印加電圧に正確に比例しない等の理由
により多少上記の精度よりはおちるが、それでも
±1μm程度の調整は可能である。従つて本発明
に用いることによりバイモルフのもつ残留ヒステ
リシス特性による記録時のペアリング問題を解決
することができると得に、回転シリンダを組み立
てる際に精度を容するA、B両ヘツド間の機械的
高さ調整の精度を緩和することが可能となる。
Next, the accuracy with which the mechanical height position between the A and B heads can be detected will be explained with reference to FIG. 12.
FIG. 12 is a partial drawing of FIG. 8, where 73 is the voltage waveform applied to the B head driving bimorph, and 74 is the envelope output reproduced by the B head. The envelope output 74 is generated when the B head scans according to the trajectory 40 shown in FIG.
The ideal reproduction output obtained from the B head is depicted. The period from t 1 to t 2 shown in FIG. 12 is 1/60 second, and as is clear from FIG. 7, the amount of movement of the B head during this period is twice the track pitch T P . For example, when the track pitch T P is 30 μm, t 1 to t 2
The period corresponds to a B head movement of 60 μm. On the other hand, suppose that the envelope output 74 is passed through a suitable amplifier to obtain a voltage value of 10V at the maximum point 75. The sensitivity of the comparator 62 shown in FIG.
If it is 100mV, ΔV shown in Figure 12 is 100mV.
Therefore, by simple proportional calculation, the detection error for the position of the maximum point 75 is ±0.3 μm. In other words, A
B The mechanical height position between both heads can be adjusted with an accuracy of ±0.3 μm. In reality, the accuracy is somewhat lower than the above because the amount of displacement of the bimorph is not exactly proportional to the applied voltage, but it is still possible to adjust the accuracy to within ±1 μm. Therefore, by using the present invention, it is possible to solve the pairing problem during recording due to the residual hysteresis characteristic of the bimorph, and in particular, it is possible to solve the problem of pairing during recording due to the residual hysteresis characteristic of the bimorph. It becomes possible to reduce the accuracy of height adjustment.

なお本発明では回転2ヘツド形VTRを例にと
り説明したが、2個以上の磁気ヘツドを用いた
VTRにおいても、任意のヘツドで記録した磁化
軌跡上を他の複数個のヘツドが交差して再生走査
することによりそれぞれのヘツドの機械的高さ位
置を検出可能なことは明らかであろう。
Although the present invention has been explained using a rotating two-head type VTR as an example, it is also possible to use a rotating two-head type VTR as an example.
It is obvious that in a VTR as well, the mechanical height position of each head can be detected by reproducing and scanning a magnetization trajectory recorded by an arbitrary head so that the other heads intersect with each other.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,bはA、B両ヘツドの機械的高さ位
置の変化にる記録磁化軌跡の変化をそれぞれ示す
図、第2図は電圧素子で構成されたバイモルフの
一例を示す斜視図、第3図a,bはバイモルフを
用いた磁気ヘツド可動装置の一例を示す平面図お
よび側面図、第4図および第5図はバイモルフの
ヒステリシス特性を説明するための図、第6図は
スチル再生時のバイモルフへの印加電圧波形の一
例を示す図、第7図は本発明の原理を説明するた
めの磁化軌跡、第8図は本発明の原理を説明する
ためのエンベロープ検波出力およびバイモルフへ
の印加電圧を示す図、第9図は本発明の一実施例
を示す具体的回路図、第10図は第9図の各部の
波形図、第11図はメモリー回路の一構成例を示
すブロツク図、第12図は本発明を用いた場合の
両ヘツド間の高さ検出精度を説明するための図で
ある。 10……バイモルフ、13,51,52……磁
気ヘツド、56……再生アンプ、58……鋸歯状
波整形回路、60……エンベロープ検波回路、6
1……ピークホールド回路、62……比較器、6
3……サンプルパルス整形回路、64……サンプ
ルホールド回路、65……メモリー回路。
FIGS. 1a and 1b are diagrams showing changes in the recorded magnetization locus due to changes in the mechanical height positions of both heads A and B, respectively; FIG. 2 is a perspective view showing an example of a bimorph composed of voltage elements; Figures 3a and 3b are plan and side views showing an example of a magnetic head moving device using a bimorph, Figures 4 and 5 are diagrams for explaining the hysteresis characteristics of the bimorph, and Figure 6 is a still reproduction. Figure 7 is a diagram showing an example of the voltage waveform applied to the bimorph at a given time, Figure 7 is a magnetization locus for explaining the principle of the present invention, and Figure 8 is an envelope detection output and an example of the voltage applied to the bimorph to explain the principle of the present invention. A diagram showing applied voltages, FIG. 9 is a specific circuit diagram showing an embodiment of the present invention, FIG. 10 is a waveform diagram of each part of FIG. 9, and FIG. 11 is a block diagram showing an example of the configuration of a memory circuit. , and FIG. 12 are diagrams for explaining the height detection accuracy between both heads when the present invention is used. 10...Bimorph, 13,51,52...Magnetic head, 56...Reproduction amplifier, 58...Sawtooth wave shaping circuit, 60...Envelope detection circuit, 6
1...Peak hold circuit, 62...Comparator, 6
3...Sample pulse shaping circuit, 64...Sample hold circuit, 65...Memory circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 磁気記録媒体に対して相対的に移動する複数
個の磁気ヘツドを備え、前記磁気ヘツドが圧電素
子で構成されたバイモルフ上に固着され、前記圧
電素子に印加される電圧に応じて、前記磁気ヘツ
ドの機械的高さ位置が可変できるように構成され
た磁気記録再生装置において、テープを走行させ
た状態において、任意の磁気ヘツドで記録された
磁化軌跡をその幅方向の一方から他方へ1回他の
磁気ヘツドが交差して再生走査し、前記他の磁気
ヘツドにて得られる再生信号の最大点を検出する
ことにより、前記任意の磁気ヘツドと他の磁気ヘ
ツドとの相対的な機械的高さ位置のずれを検出す
ることを特徴とした磁気記録再生装置。
1 comprises a plurality of magnetic heads that move relative to a magnetic recording medium, the magnetic heads are fixed on a bimorph composed of a piezoelectric element, and the magnetic In a magnetic recording/reproducing device configured so that the mechanical height position of the head can be varied, when the tape is running, the magnetization locus recorded by any magnetic head is moved once from one side of the tape to the other in its width direction. The relative mechanical height between the arbitrary magnetic head and the other magnetic heads can be determined by scanning the other magnetic heads in an intersecting manner and detecting the maximum point of the reproduction signal obtained by the other magnetic heads. A magnetic recording/reproducing device characterized by detecting a positional shift.
JP12533278A 1978-10-11 1978-10-11 Magnetic recording and reproducing device Granted JPS5552529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12533278A JPS5552529A (en) 1978-10-11 1978-10-11 Magnetic recording and reproducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12533278A JPS5552529A (en) 1978-10-11 1978-10-11 Magnetic recording and reproducing device

Publications (2)

Publication Number Publication Date
JPS5552529A JPS5552529A (en) 1980-04-17
JPS6226092B2 true JPS6226092B2 (en) 1987-06-06

Family

ID=14907478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12533278A Granted JPS5552529A (en) 1978-10-11 1978-10-11 Magnetic recording and reproducing device

Country Status (1)

Country Link
JP (1) JPS5552529A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4447835A (en) * 1982-01-11 1984-05-08 Sony Corporation Method and apparatus for single frame recording on video tape
JPS58171715A (en) * 1982-04-02 1983-10-08 Sony Corp Reproducing device
US4868692A (en) * 1987-03-31 1989-09-19 Matsushita Electric Industrial Co., Ltd. Tracking error signal forming circuit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5483416A (en) * 1977-12-15 1979-07-03 Sony Corp Magnetic recorder
JPS5485017A (en) * 1977-12-20 1979-07-06 Sony Corp Magnetic recorder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5483416A (en) * 1977-12-15 1979-07-03 Sony Corp Magnetic recorder
JPS5485017A (en) * 1977-12-20 1979-07-06 Sony Corp Magnetic recorder

Also Published As

Publication number Publication date
JPS5552529A (en) 1980-04-17

Similar Documents

Publication Publication Date Title
US4410918A (en) Helical scan VTR with deflectable head
US4233637A (en) Rotating magnetic head piezo-electric assembly and drive circuitry for video tape recorder
US4165521A (en) Video signal reproducing system with moveable head for slow or stop tracking control
US4203140A (en) Helical scan VTR with deflectable head
JPS6321245B2 (en)
US4167762A (en) Open loop servo-system for accurate tracking in a video signal reproducing apparatus
KR930001151B1 (en) Magnetic recording/reproducing apparatus
KR970008642B1 (en) Magnetic recording and playback apparatus
JPS6226092B2 (en)
JPH0679400B2 (en) Magnetic recording / reproducing device
US4288824A (en) Deflectable transducer mounting with damper for video signal reproducing apparatus
JPS622475B2 (en)
JPS6335151B2 (en)
JPS6131379Y2 (en)
JPS6151330B2 (en)
JPS6155172B2 (en)
JPH0747016Y2 (en) Magnetic tape unit
JPS6142326B2 (en)
JPS6032259B2 (en) recording/playback machine
JPS6145288B2 (en)
KR0144217B1 (en) Video cassette recorder having semifixed haed
JPS6132728B2 (en)
JPS6321965B2 (en)
JPH0143363B2 (en)
JPS6112183A (en) Magnetic reproducing device