JPS6151124B2 - - Google Patents

Info

Publication number
JPS6151124B2
JPS6151124B2 JP2893582A JP2893582A JPS6151124B2 JP S6151124 B2 JPS6151124 B2 JP S6151124B2 JP 2893582 A JP2893582 A JP 2893582A JP 2893582 A JP2893582 A JP 2893582A JP S6151124 B2 JPS6151124 B2 JP S6151124B2
Authority
JP
Japan
Prior art keywords
wing
gas turbine
cooling
cooling component
turbine cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2893582A
Other languages
Japanese (ja)
Other versions
JPS58148201A (en
Inventor
Kazumi Shimotori
Masako Nakabashi
Hiromitsu Takeda
Masami Myauchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP2893582A priority Critical patent/JPS58148201A/en
Publication of JPS58148201A publication Critical patent/JPS58148201A/en
Publication of JPS6151124B2 publication Critical patent/JPS6151124B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/147Construction, i.e. structural features, e.g. of weight-saving hollow blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/23Manufacture essentially without removing material by permanently joining parts together

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はガスタービン冷却部品に関し、更に詳
しくは、高温特性が改善されかつ大型化が可能な
新規構造のガスタービン冷却部品に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a gas turbine cooling component, and more particularly to a gas turbine cooling component with a novel structure that has improved high temperature characteristics and can be made larger.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

各種の発電技術プラントにおいては、ガスター
ビン発電システムが広く採用されている。ここ
で、従来のガスタービン冷却部品の代表例である
静翼を第1図、第2図に示す。第1図は平面図で
あり、第2図は第1図のA―A′線に沿う断面図
である。図において、1,1′はそれぞれ植込み
部であつて、2は、前縁2′、後縁2″を有する翼
部であり、その内部は複数個の隔壁3を設けるこ
とにより複数個の空洞の冷却通路部4が形成され
ている。翼部2の両側端はそれぞれ植込み部1,
1′に連絡されて全体が一体化構造となる。冷却
通路部4には、該静翼の作動時、例えば空気を植
込み部から流入し翼部2の冷却が行なわれる。こ
のような静翼において、ガス流はある入口温度で
図の矢印P方向から前縁2′に流入し、翼部2は
高温域となり、植込み部1,1′には相対的に低
温域が形成される。
Gas turbine power generation systems are widely adopted in various power generation technology plants. Here, FIGS. 1 and 2 show stationary blades that are representative examples of conventional gas turbine cooling components. 1 is a plan view, and FIG. 2 is a sectional view taken along line AA' in FIG. 1. In the figure, 1 and 1' are implanted parts, and 2 is a wing part having a leading edge 2' and a trailing edge 2''. A cooling passage portion 4 is formed at both ends of the wing portion 2.
1' and the whole becomes an integrated structure. When the stationary vane is in operation, air is introduced into the cooling passage section 4 from the implanted section to cool the vane section 2 . In such a stationary blade, a gas flow flows from the direction of arrow P in the figure to the leading edge 2' at a certain inlet temperature, the blade part 2 becomes a high temperature region, and the implanted parts 1 and 1' have a relatively low temperature region. It is formed.

一般に、ガスタービン入口温度を高めるとガス
タービンの熱効率は向上する。しかしながら、通
常、材料は高温になればなるほど、その機械的強
度が低下する。したがつて、ガス流の入口温度
は、静翼に用いた材料の耐熱性との関係で決定さ
れざるを得ず無制約に高くすることはできない。
Generally, increasing the gas turbine inlet temperature improves the thermal efficiency of the gas turbine. However, typically, the higher the temperature of a material, the lower its mechanical strength. Therefore, the inlet temperature of the gas flow must be determined in relation to the heat resistance of the material used for the stationary blades, and cannot be increased unrestrictedly.

それゆえ、上記したような複雑な形状に加工で
きしかも耐熱性にも優れる材料で静翼を構成する
ことができれば、ガスタービン入口温度を高める
ことができてその熱効率を向上し得るのでそれを
工業的に極めて有用である。
Therefore, if the stationary blades could be made of a material that can be processed into the above-mentioned complex shape and has excellent heat resistance, it would be possible to increase the gas turbine inlet temperature and improve its thermal efficiency, making it possible to use it industrially. It is extremely useful.

現在、上記した構造の静翼は、通常、セラミツ
クスをコアとするγ′析出強化型ニツケル基超合
金(例えば、IN―939)の精密鋳造法によつて一
体化構造体として製造されている。
Currently, stator vanes of the above-described structure are typically manufactured as an integral structure by precision casting of a gamma prime precipitation-strengthened nickel-based superalloy (eg, IN-939) with a ceramic core.

しかしながら、このγ′析出強化型Ni基超合金
は、空冷して使用してもその耐熱度は850〜900℃
が限界であり、ガスタービン入口温度を更に高め
ることを制約している。
However, this γ′ precipitation-strengthened Ni-based superalloy has a heat resistance of 850 to 900°C even when used after air cooling.
is the limit, which restricts further increases in the gas turbine inlet temperature.

そのため、近時、この翼部2の構成材料として
一方向凝固の柱状晶、単結晶、一方向凝固の共晶
から成る材料を用いて、高温におけるその機械的
強度の維持・向上に関する研究が進められてい
る。
Therefore, research has recently progressed on maintaining and improving the mechanical strength at high temperatures by using materials consisting of unidirectionally solidified columnar crystals, single crystals, and unidirectionally solidified eutectics as the constituent materials of the wing portion 2. It is being

しかしながら、この技術を大型の静翼製造に適
用することは、上記したような結晶の均一成長が
困難であること、大規模な設備・装置を必要とす
ること、などの理由により極めて問題である。
However, applying this technology to the production of large stator blades is extremely problematic due to the difficulty of uniformly growing crystals as mentioned above, and the need for large-scale equipment and equipment. .

一方、融点直下の温度まではその機械的強度が
低下しない分散強化型耐熱合金(ODS合金:
Oxide dispersion Strengthning alloy)が知ら
れている。このODS合金は、Ni,Fe,Co系合金
をマトリツクスとし、この中にY2O3,A2O3
ThO2などの金属酸化物の微粉末を所定量分散体
として含有する一種の複合材料である。その組成
によつて耐熱度は変化するが、概ね1100℃以上程
度である。したがつて、このODS合金で翼部2
が構成されれば、ガスタービン入口温度をODS
合金の耐熱度直下にまで上昇させることができる
ので全体の熱効率を向上させることが可能とな
る。しかも、そのとき、翼部の機械的強度の低下
は起らない。
On the other hand, dispersion-strengthened heat-resistant alloys (ODS alloys:
Oxide dispersion strengthening alloy) is known. This ODS alloy has a matrix of Ni, Fe, and Co-based alloys, and contains Y 2 O 3 , A 2 O 3 ,
It is a type of composite material that contains a predetermined amount of fine powder of metal oxide such as ThO 2 as a dispersion. The heat resistance varies depending on its composition, but is generally around 1100°C or higher. Therefore, with this ODS alloy, the wing part 2
is configured, the gas turbine inlet temperature is set to ODS
Since the heat resistance can be raised to just below the heat resistance of the alloy, it is possible to improve the overall thermal efficiency. Moreover, at that time, the mechanical strength of the wing section does not decrease.

しかしながら、このODS合金は上記した精密
鋳造法では製造することができず、通常は鍜造法
でつくられ、その形状のブロツクか又は薄板であ
る。このようなことから、このODS合金につい
ては、冷却部のない中実動翼や薄板形状のろう付
け構造による静翼への適用は試みられているが、
上記したような中空冷却部を有する複雑形状の、
しかも堅牢な構造の大形静翼など、発電用ガスタ
ービン大形冷却部品への適用は現在行なわれてい
ない。
However, this ODS alloy cannot be manufactured by the precision casting method described above, and is usually manufactured by the forging method, and is either a block or a thin plate in that shape. For this reason, attempts have been made to apply this ODS alloy to solid rotor blades without a cooling section or stator blades with a thin plate-shaped brazed structure.
A complex shape with a hollow cooling part as described above.
Moreover, it is currently not being applied to large cooling parts of gas turbines for power generation, such as large stationary blades with a robust structure.

〔発明の目的〕[Purpose of the invention]

本発明は、高温特性が優れしたがつて高い熱効
率を可能とし、しかも形状の大型化が可能な工業
用ガスタービンなどの冷却部品の提供を目的とす
る。
An object of the present invention is to provide a cooling component for an industrial gas turbine or the like that has excellent high-temperature characteristics and thus enables high thermal efficiency, and can be made larger in size.

〔発明の概要〕[Summary of the invention]

本発明は、ガスタービン冷却部品において、高
温度(第1図、第2図の翼部2)はODS合金で
構成し、しかも該ODS合金の特性を生かすため
に該高温域を各要素の機械的合金による分割構造
とすること、また、低温域(第1図、第2図で示
した植込み部1,1′とその接合部分)において
は、その接合を、ODS合金の特性活用は犠性に
なるがその熱応力に対しては大きな耐性を可能に
する冶金的結合、とりわけ液相拡散接合法を適用
して行なうこと、によつて上記した目的を達成す
るものである。
In the present invention, in a gas turbine cooling component, the high temperature (blade portion 2 in Figs. 1 and 2) is made of an ODS alloy, and in order to take advantage of the characteristics of the ODS alloy, the high temperature region is In addition, in the low temperature range (implanted parts 1 and 1' and their joints shown in Figures 1 and 2), it is necessary to create a split structure using a special alloy. The above-mentioned object is achieved by a metallurgical bond, in particular by applying a liquid phase diffusion bonding method, which allows a high resistance to thermal stress.

すなわち、本発明のガスタービン冷却部品は、
高温ガス流中で冷却しながら作動させ全体が各要
素を接合した分割構造のガスタービン冷却部品で
あつて、高温域の接合部分は機械的結合で構成さ
れ、低温域の接合部分は冶金的結合で構成され、
かつ、高温域の接合部分に用いる要素が分散強化
型耐熱合金から成ることを特徴とする。
That is, the gas turbine cooling component of the present invention is
It is a gas turbine cooling component that operates while being cooled in a high-temperature gas flow and has a split structure in which each element is joined together as a whole, with the joints in the high-temperature region made up of mechanical joints, and the joints in the low-temperature region using metallurgical joints. It consists of
The present invention is also characterized in that the elements used in the joints in the high temperature range are made of a dispersion-strengthened heat-resistant alloy.

本発明ガスタービン冷却部品の1例を、前述し
た静翼につき、その製造方法も含めて第3〜7図
に基づいてより詳細に説明する。
An example of the gas turbine cooling component of the present invention will be described in more detail with reference to FIGS. 3 to 7, including the method of manufacturing the stationary blade described above.

第3図は、本発明にかかる翼部の構造を説明す
るための図であつて、第1図のA―A′線に沿う
縦断面図である。図において、1は植込み部、2
は上面翼2aと下面翼2bの各要素から成る2分
割構造の翼部である。3は隔壁を構成する要素、
3′は冷却吹出し孔、4は冷却通路部である。5
は、上面翼2a、下面翼2b及び隔壁3を機械的
に結合するための嵌合部材の要素である。これ
ら、各要素、すなわち、上面翼2a、隔壁3、下
面翼2b、嵌合部材5の斜視図をそれぞれ第4〜
7図として示した。
FIG. 3 is a diagram for explaining the structure of the wing portion according to the present invention, and is a longitudinal sectional view taken along line AA' in FIG. 1. In the figure, 1 is the implanted part, 2
is a two-part wing section consisting of an upper wing 2a and a lower wing 2b. 3 is an element constituting the partition wall;
3' is a cooling blow-off hole, and 4 is a cooling passage. 5
is an element of a fitting member for mechanically coupling the upper wing 2a, the lower wing 2b, and the partition wall 3. The perspective views of each of these elements, that is, the upper surface wing 2a, the partition wall 3, the lower surface wing 2b, and the fitting member 5 are shown in the fourth to fourth sections, respectively.
It is shown as Figure 7.

さて、本発明にあつては、翼部2は上面翼2
a、下面翼2b、隔壁3、嵌合部材5の各要素か
ら成る分割構造である。この部分が高温域とな
る。これらの要素はいずれもODS合金で構成さ
れる。用いるODS合金としては、金属酸化物と
してY2O3,ThO2の0.5μm以下の粉末を0.3〜15
重量%含み望ましくは0.5μm以下のY2O3粉末を
0.6〜2重量%含み、マトリツクスがNiをバラン
ス成分としCr,A,Tiを含むものが好まし
い。このとき、金属酸化物の微粉末の粒径は、
ODS合金の高温における機械的強度に影響を与
える。該粒径が0.5μmを超えると充分な高温強
度が得られないので該粒径を0.5μm以下に制御
したODS合金を用いることが好ましい。
Now, in the present invention, the wing section 2 is the upper surface wing 2.
It is a divided structure consisting of the following elements: a, lower wing 2b, partition wall 3, and fitting member 5. This part becomes a high temperature area. Both of these elements are composed of ODS alloys. The ODS alloy used is 0.3 to 15% of Y 2 O 3 and ThO 2 powder of 0.5 μm or less as metal oxides.
Y 2 O 3 powder containing % by weight and preferably 0.5 μm or less
It is preferable that the matrix contains 0.6 to 2% by weight, and the matrix contains Ni as a balance component and Cr, A, and Ti. At this time, the particle size of the fine metal oxide powder is
Affects the mechanical strength of ODS alloys at high temperatures. If the grain size exceeds 0.5 μm, sufficient high-temperature strength cannot be obtained, so it is preferable to use an ODS alloy whose grain size is controlled to 0.5 μm or less.

本発明の翼部2は、設計仕様に基づいて予め成
形、機械加工した第4〜6図の各要素を機械的に
結合して構成される。すなわち、例えば上面翼2
a、下面翼2bの内面の所定の位置に図に示した
ような断面楔型で翼長方向に伸びる溝を加工し、
これらを同様の溝を長手方向に加工してなる隔壁
3を介在させて対置させる。かくして第3図のよ
うに冷却通路部4を形成して翼部が形づくられ
る。つぎに、要素の間にある楔型の溝の空間部分
(図では断面蝶型)に、第7図に示した嵌合部材
5を翼長方向に打ち込んで全体を組立てて一体化
する。最後に冷却吹出し孔3′を加工して穿設す
る。
The wing section 2 of the present invention is constructed by mechanically coupling the elements shown in FIGS. 4 to 6 that have been previously formed and machined based on design specifications. That is, for example, the upper wing 2
a. Machining a groove extending in the blade span direction with a wedge-shaped cross section as shown in the figure at a predetermined position on the inner surface of the lower blade 2b,
These are placed opposite to each other with a partition wall 3 formed by forming similar grooves in the longitudinal direction interposed therebetween. Thus, as shown in FIG. 3, the cooling passage section 4 is formed to form the wing section. Next, the fitting member 5 shown in FIG. 7 is driven into the space of the wedge-shaped groove between the elements (butterfly-shaped cross section in the figure) in the wing length direction to assemble and integrate the whole. Finally, cooling blow-off holes 3' are processed and bored.

このような機械的結合は、例示した嵌合に限定
されることなく、他に螺合、ネジ止めなどの手段
によつて行なうこともできる。
Such mechanical coupling is not limited to the exemplified fitting, but may also be achieved by other means such as screwing or screwing.

なお、上記した接合部分の気密性を充分に保持
するためには、嵌合部材の表面に、常用の薄膜形
成法(例えば真空蒸着法)によつて、Aなどの
低融点金属の薄膜を形成しておき、この部材を上
記空間部分に打ち込んだのち、熱処理を施せばA
フイラーの擬液相拡散接合法となり、各要素
(ODS合金)の特性を損うことなく、良好な気密
性のみならず高い接合強度を得ることができる。
In addition, in order to maintain the airtightness of the above-mentioned joint portion sufficiently, a thin film of a low melting point metal such as A is formed on the surface of the fitting member by a commonly used thin film forming method (e.g. vacuum evaporation method). Then, if this member is driven into the space above and heat treated, A
This is a quasi-liquid phase diffusion bonding method for fillers, and it is possible to obtain not only good airtightness but also high bonding strength without impairing the properties of each element (ODS alloy).

以上のようにして製造した翼部2の両側端を、
IN―939のような材質から成り予め所定の形状に
加工されている植込み部1,1′に接合して本発
明の冷却部品が得られる。
Both ends of the wing section 2 manufactured as described above are
The cooling component of the present invention is obtained by joining the implanted portions 1, 1' made of a material such as IN-939 and previously machined into a predetermined shape.

後者の接合部分は静翼において低温域を構成し
ている。そこで、翼部2、植込み部1,1′の各
要素は冶金的に結合されて静翼を構成する。
The latter joint constitutes a low temperature region in the stator vane. Therefore, each element of the wing section 2 and the implanted sections 1 and 1' are metallurgically combined to form a stator vane.

すなわち、組立てた翼部2を、精密鋳造法で製
造したIN939から成る植込み部1,1′の所定位
置に液相拡散接合法で接合する。このとき、翼部
2の両端部は逆テーパで接合される。接合部分
は、使用時には翼部2ほど高温にはならないが、
その熱応力は大きくなるので延性が重要となる。
また、この部分は質量的にも大きくなるので、
ODS合金を用いる必要はなく、むしろ、IN939で
あることの方が好ましい。
That is, the assembled wing section 2 is joined by liquid phase diffusion bonding to a predetermined position of the implanted sections 1, 1' made of IN939 manufactured by precision casting. At this time, both ends of the wing portion 2 are joined with a reverse taper. The joint part does not reach as high a temperature as the wing part 2 during use, but
Since the thermal stress increases, ductility becomes important.
Also, since this part becomes large in terms of mass,
It is not necessary to use ODS alloy; in fact, IN939 is preferred.

液相拡散接合法の適用においては、用いるフイ
ラー(溶材)は、通常、基材合金に近似する組成
でしかもB,Siなどを含有する非晶質フイラーで
あることが好ましい。接合時には、接合部分にあ
る翼部2のODS合金が金属溶融体と反応するた
めその分散強化特性は局部的には非常に損なわれ
ることとなる。しかし、このことは、接合部分で
は上記したようにむしろ延性特性の向上が望まれ
ることからして不都合な問題とはなりえない。
In applying the liquid phase diffusion bonding method, the filler (solvent material) used is usually preferably an amorphous filler having a composition similar to that of the base alloy and containing B, Si, etc. At the time of joining, the ODS alloy of the wing portion 2 in the joint portion reacts with the molten metal, so that its dispersion strengthening properties are locally significantly impaired. However, this is not an inconvenient problem because, as mentioned above, it is desired to improve the ductility of the joint portion.

なお、この場合の液相拡散接合法の拡散処理に
あつては、従来、B,Siなどを均一に拡散させて
接合強度を高めるために行なわれる長時間の加熱
処理は不要となり、むしろ、その処理条件はホツ
トコロージヨン、延性確保の点から決定される。
In addition, in the diffusion treatment of the liquid-phase diffusion bonding method in this case, the long-term heat treatment that was conventionally performed to uniformly diffuse B, Si, etc. and increase the bonding strength is no longer necessary; Processing conditions are determined from the viewpoint of ensuring hot corrosion and ductility.

本発明にあつては、翼部と植込み部との接合は
広い面積に亘つて行なわれるので、全体の部品と
しては充分に良好な剛性を確保することができ
る。
In the present invention, since the wing portion and the implanted portion are joined over a wide area, sufficiently good rigidity can be ensured for the entire component.

なお、この接合部分には、翼部2の組立てに適
用した例えば嵌合方式を採用することもできる。
このとき、その機械的結合部分はなるべく内部の
冷却側に位置することが好ましい。また、接合部
分にあつては、その気密を保持するために、傾斜
していてもよく、段付き構造であつてもよい。
Note that, for example, the fitting method applied to the assembly of the wing portion 2 can also be adopted for this joint portion.
At this time, it is preferable that the mechanically connected portion be located on the cooling side of the interior. Furthermore, the joint portion may be inclined or may have a stepped structure in order to maintain its airtightness.

以上の説明は静翼に関して行なつたものである
が、本発明の構造は動翼、燃焼器にも適用するこ
とができる。すなわち、動翼の場合には、1がク
リスマスツリーのような植込み部となり、1′に
相当する部分をチツプ接合翼のような形式に変更
すればよい。このチツプ部分には作用する遠心力
が小さいので、しかも熱疲労に対する耐性を備え
ればよいので、接合には上記した液相拡散接合法
を適用すればよい。
Although the above description has been made regarding stator blades, the structure of the present invention can also be applied to moving blades and combustors. That is, in the case of a rotor blade, 1 is an implanted part like a Christmas tree, and the part corresponding to 1' can be changed to a type like a tip-jointed blade. Since the centrifugal force acting on this chip portion is small and it is sufficient to provide resistance to thermal fatigue, the above-mentioned liquid phase diffusion bonding method may be applied to bonding.

また、燃焼器の場合も、冷却通路側に面した部
分は液相拡散接合法を適用して接合し、火炎と接
触する内部には機械的結合法を適用すればよいこ
とは本発明の場合と同様である。
In addition, in the case of a combustor, the present invention allows the parts facing the cooling passage to be joined using the liquid phase diffusion bonding method, and the internal parts that come into contact with the flame to be joined using the mechanical bonding method. It is similar to

本発明にあつては、植込み部1,1′、要素2
a,2b,3の材料例をそれぞれ示したが、これ
らは1,1′についてはCo合金、2a,2b,3
ついては例えばFe系フエライトマトリツクスと
Ni系オーステナイトマトリツクスの組合せによ
る熱膨張差等を利用したものも適用することがで
きる。
In the present invention, the implanted parts 1, 1', the element 2
Examples of materials for a, 2b, and 3 are shown, but these are Co alloy for 1 and 1', and material examples for 2a, 2b, and 3.
For example, Fe-based ferrite matrix
It is also possible to use a method that utilizes the difference in thermal expansion caused by a combination of Ni-based austenite matrices.

〔発明の実施例〕[Embodiments of the invention]

ODS合金としてMA754(A0.3wt%,
Ti0.5wt%,Y2O30.6wt%、Cr20wt%,BaNi;
INCO社製)を用意した。このODS合金から、上
面翼、下面翼、隔壁、嵌合部材を設計通りに作製
した。接合部分の溝の加工は電解加工、ワイヤカ
ツトなどの放電加工法を適用した。これらを組合
せて、接合部分の溝空間部分には、表面がイオン
プレーテイング法により約20μmのA層で被さ
れた嵌合部材を翼長方向に打ち込んで楔どめして
翼部を製造した。この際A層はより一層しつか
りしたハメアイを可能とした。
MA754 (A0.3wt%,
Ti0.5wt%, Y 2 O 3 0.6wt%, Cr20wt%, BaNi;
(manufactured by INCO) was prepared. The upper wing, lower wing, bulkhead, and fitting members were fabricated from this ODS alloy as designed. Electrical discharge machining methods such as electrolytic machining and wire cutting were applied to create the grooves in the joints. By combining these, a fitting member whose surface was covered with an A layer of approximately 20 μm by ion plating was driven into the groove space of the joint portion in the blade length direction and wedged to manufacture a wing portion. At this time, layer A enabled an even firmer fit.

つぎに、植込み部としてIN―939(22.5Cr―
19.0Co―2.0W―1.0Nb―1.4Ta―3.7Ti―1.9A―
0.1Zr―0.01B―0.15C―BaNi,INCO社製)の
精密鋳造品を用意した。
Next, use IN-939 (22.5Cr-
19.0Co―2.0W―1.0Nb―1.4Ta―3.7Ti―1.9A―
A precision cast product of 0.1Zr―0.01B―0.15C―BaNi (manufactured by INCO) was prepared.

翼部の両側端と植込み部とを所定位置で16%
Cr―4%B―Niの組成で厚み38μmの非晶質フ
イラー片を介在させて固定し、そのまま全体を真
空中で1100℃,30分間加熱した後空冷した。つい
で、1150℃で4時間加熱して空冷、1000℃で6時
間加熱して空冷、900℃で4時間加熱して空冷、
700℃で16時間加熱して空冷という熱処理を順次
行なつた。一体化構造の静翼が得られた。
16% in place between both ends of the wing and the implant.
A piece of amorphous filler having a composition of Cr-4%B-Ni and a thickness of 38 μm was interposed and fixed, and the whole was heated in a vacuum at 1100° C. for 30 minutes, and then cooled in air. Next, heat at 1150°C for 4 hours and air cool, heat at 1000°C for 6 hours and air cool, heat at 900°C for 4 hours and air cool,
Heat treatment was performed sequentially by heating at 700°C for 16 hours and cooling in air. A stator blade with an integrated structure was obtained.

ついでこれをプラスト処理し、その翼面に
Y0.4wt%,A6wt%,Cr16wt%,BaNiから
なる組成の合金をプラズマ溶射した後、1050℃,
1時間のAパツク浸透処理を施して耐食コーテ
イングとした。最後に、冷却孔を後縁に放電加工
法で穿設した。
This is then treated with plastic and applied to the wing surface.
After plasma spraying an alloy with a composition of Y0.4wt%, A6wt%, Cr16wt%, and BaNi,
A corrosion-resistant coating was obtained by applying A-Pack infiltration treatment for 1 hour. Finally, cooling holes were drilled at the trailing edge using electrical discharge machining.

得られた静翼において、翼部における温度は従
来の精密鋳造法によるNi基超合金の翼部の場合
よりも70℃の上昇が可能であつた。また、本発明
の静翼は、内部に冷却構造をもたない中実の
ODS合金の翼部の場合に比べて、翼部温度を170
℃低下できることが判明した。すなわち、ガス流
の入口温度を170℃高めることができた。
In the obtained stationary blade, the temperature in the blade part could be increased by 70°C compared to the case of a Ni-based superalloy blade part made by conventional precision casting. Furthermore, the stator vane of the present invention is a solid vane with no internal cooling structure.
Compared to the case of ODS alloy wings, the wing temperature can be reduced by 170°C.
It was found that the temperature could be lowered by ℃. In other words, the inlet temperature of the gas stream could be increased by 170°C.

〔発明の効果〕〔Effect of the invention〕

本発明のガスタービン冷却部品は、複雑な冷
却通路部を備えた構造なのでその冷却効率が高
く、しかも高温度がODS合金で構成されている
ため、ガスタービン入口温度を高めることができ
熱効率の向上がもたらされる、高温域が機械的
結合による分割構造なので、ODS合金の特性が
そのまま生かされる、素材となるODS合金は
大形ブロツク材又は広い薄板である必要はないの
で、全体のコストが低減できる、高温域は各要
素の組立て体なので全体を大型形状に組立てるこ
とができる。内部検査をすることが可能である
ことから冷却性能が安定し、かつタービンレンス
プロモータなどの高度な技術を適用できる、、
使用後の損傷翼の再生、修理が容易である、など
の利点を有し、工業用ガスタービン冷却部品で強
靭、耐久性、大型化が要請される分野に適用する
ことができその工業的価値は大である。
The gas turbine cooling component of the present invention has a structure with a complicated cooling passage, so its cooling efficiency is high, and since the high temperature is made of ODS alloy, the gas turbine inlet temperature can be raised, improving thermal efficiency. Since the high-temperature region is a divided structure with mechanical connection, the characteristics of ODS alloy can be utilized as they are.The ODS alloy used as the material does not need to be a large block material or a wide thin plate, so the overall cost can be reduced. Since the high temperature area is an assembly of each element, the whole can be assembled into a large size. Since it is possible to conduct internal inspections, cooling performance is stable, and advanced technologies such as turbine lens promoters can be applied.
It has advantages such as easy regeneration and repair of damaged blades after use, and its industrial value can be applied to industrial gas turbine cooling parts that require toughness, durability, and large size. is large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は静翼の平面図、第2図は第1図のA―
A′線に沿う縦断面図である。第3図は、本発明
構造の静翼の1例を示す縦断面図、第4図、第5
図、第6図、第7図はそれぞれ第3図における上
面翼、隔壁、下面翼、嵌合部材の斜視図である。 1,1′…植込み部、2…翼部、2′…前縁、
2″…後縁、2a…上面翼、2b…下面翼、3…
隔壁、3′…冷却吹出し孔、4…冷却通路部、5
…嵌合部材、P…ガス流の流入方向。
Figure 1 is a plan view of the stator vane, Figure 2 is A- in Figure 1.
FIG. 3 is a vertical cross-sectional view taken along line A'. FIG. 3 is a longitudinal cross-sectional view showing an example of a stationary blade having the structure of the present invention, FIG. 4, and FIG.
6 and 7 are perspective views of the upper wing, partition wall, lower wing, and fitting member in FIG. 3, respectively. 1, 1'... Implanted part, 2... Wing part, 2'... Leading edge,
2″... trailing edge, 2a... upper surface wing, 2b... lower surface wing, 3...
Partition wall, 3'...Cooling outlet, 4...Cooling passage section, 5
...Fitting member, P...Inflow direction of gas flow.

Claims (1)

【特許請求の範囲】 1 高温ガス流中で冷却しながら作動させ、全体
が各要素を接合した分割構造のガスタービン冷却
部品であつて、高温域の接合部分は機械的結合で
構成され、低温域の接合部分は冶金的結合で構成
され、かつ高温域の接合部分に用いる要素が分散
強化型耐熱合金から成ることを特徴とするガスタ
ービン冷却部品。 2 該分散強化型耐熱合金が粒径0.5μm以下の
金属酸化物を0.3〜15重量%分散して成る特許請
求の範囲第1項記載のガスタービン冷却部品。 3 該機械的結合が嵌合、螺合、ネジ止めのいず
れかの方法によるものであり、該冶金的結合が液
相拡散接合法によるものである特許請求の範囲第
1項記載のガスタービン冷却部品。
[Claims] 1. A gas turbine cooling component that is operated while being cooled in a high-temperature gas flow and has a split structure in which each element is joined as a whole, with the joint portion in the high-temperature region being constituted by mechanical connection, and the cooling component in the low-temperature region A gas turbine cooling component characterized in that the joint parts in the high temperature range are formed by metallurgical bonding, and the elements used in the joint parts in the high temperature range are made of a dispersion-strengthened heat-resistant alloy. 2. The gas turbine cooling component according to claim 1, wherein the dispersion-strengthened heat-resistant alloy contains 0.3 to 15% by weight of a metal oxide having a particle size of 0.5 μm or less dispersed therein. 3. The gas turbine cooling according to claim 1, wherein the mechanical connection is made by fitting, screwing, or screwing, and the metallurgical connection is made by liquid phase diffusion bonding. parts.
JP2893582A 1982-02-26 1982-02-26 Cooled part of gas turbine Granted JPS58148201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2893582A JPS58148201A (en) 1982-02-26 1982-02-26 Cooled part of gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2893582A JPS58148201A (en) 1982-02-26 1982-02-26 Cooled part of gas turbine

Publications (2)

Publication Number Publication Date
JPS58148201A JPS58148201A (en) 1983-09-03
JPS6151124B2 true JPS6151124B2 (en) 1986-11-07

Family

ID=12262253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2893582A Granted JPS58148201A (en) 1982-02-26 1982-02-26 Cooled part of gas turbine

Country Status (1)

Country Link
JP (1) JPS58148201A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01277602A (en) * 1988-04-30 1989-11-08 Showa Alum Corp Manufacture of impeller for turbocharger
JPH0710401U (en) * 1993-07-22 1995-02-14 三菱重工業株式会社 Gas turbine stationary blade
WO2003048528A1 (en) * 2001-11-30 2003-06-12 Hitachi, Ltd. Method of repairing rotor blades for power generation gas turbines and repaired turbine rotor blade
US6994525B2 (en) * 2004-01-26 2006-02-07 United Technologies Corporation Hollow fan blade for gas turbine engine
US7458780B2 (en) 2005-08-15 2008-12-02 United Technologies Corporation Hollow fan blade for gas turbine engine
US7993105B2 (en) 2005-12-06 2011-08-09 United Technologies Corporation Hollow fan blade for gas turbine engine
US7648336B2 (en) * 2006-01-03 2010-01-19 General Electric Company Apparatus and method for assembling a gas turbine stator

Also Published As

Publication number Publication date
JPS58148201A (en) 1983-09-03

Similar Documents

Publication Publication Date Title
US6638639B1 (en) Turbine components comprising thin skins bonded to superalloy substrates
US5732468A (en) Method for bonding a turbine engine vane segment
US5318406A (en) Multipart gas turbine blade
ES2400863T3 (en) Component part for a gas turbine and process for manufacturing the component part
EP2679333B1 (en) Method of manufacturing impeller
US4247259A (en) Composite ceramic/metallic turbine blade and method of making same
CA1076334A (en) Turbine rotor fabrication
EP1978208B1 (en) A method of manufacturing multi alloy integrally bladed turbine rotors
US6969238B2 (en) Tri-property rotor assembly of a turbine engine, and method for its preparation
JPH0425404B2 (en)
JP2002295202A5 (en)
JP2729531B2 (en) Gas turbine blade, method of manufacturing the same, and gas turbine
US3394918A (en) Bimetallic airfoils
WO2015058043A1 (en) Multiple piece engine component
US8382439B1 (en) Process of forming a high temperature turbine rotor blade
JPS6148602B2 (en)
JPS62104696A (en) Metallic ceramics junction body and metallic ceramics coupling body formed by using said body
JPS6151124B2 (en)
US9156086B2 (en) Multi-component assembly casting
US9963977B2 (en) Advanced gamma TiAl components
JPH11114662A (en) Joining method for casting material and manufacture of turbine blade
EP4105449A1 (en) Hybrid bonded configuration for blade outer airseal (boas)
JPH023674B2 (en)
GB833261A (en) Improvements relating to the manufacture of blades for turbines or compressors
JPH10102175A (en) Co-base heat resistant alloy, member for gas turbine, and gas turbine