JPH0415922Y2 - - Google Patents

Info

Publication number
JPH0415922Y2
JPH0415922Y2 JP10966484U JP10966484U JPH0415922Y2 JP H0415922 Y2 JPH0415922 Y2 JP H0415922Y2 JP 10966484 U JP10966484 U JP 10966484U JP 10966484 U JP10966484 U JP 10966484U JP H0415922 Y2 JPH0415922 Y2 JP H0415922Y2
Authority
JP
Japan
Prior art keywords
rotor blade
shank member
gas turbine
blade
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10966484U
Other languages
Japanese (ja)
Other versions
JPS6125505U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10966484U priority Critical patent/JPS6125505U/en
Publication of JPS6125505U publication Critical patent/JPS6125505U/en
Application granted granted Critical
Publication of JPH0415922Y2 publication Critical patent/JPH0415922Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 [産業上の利用分野] 本考案はセラミツク製動翼を有するガスタービ
ンに係り、特に動翼と翼車との結合方式を改良し
たセラミツク製動翼を有するガスタービンに関す
る。
[Detailed description of the invention] [Field of industrial application] The present invention relates to a gas turbine having ceramic rotor blades, and particularly relates to a gas turbine having ceramic rotor blades with an improved coupling method between the rotor blades and the impeller. .

[従来の技術] 高温における強度、耐食性に優れたセラミツク
製動翼を用いたガスタービンが近年大いに研究さ
れている。
[Prior Art] Gas turbines using ceramic rotor blades, which have excellent strength and corrosion resistance at high temperatures, have been extensively researched in recent years.

このセラミツク製動翼を金属製の翼車に取付け
る方法として、翼車の周面に凹部を形成すると共
に、この凹部に嵌合する形状の翼根部を有する動
翼を嵌め合わせたものが公知である。(例えばガ
スタービン学会誌7−28、第54頁、1980年) [考案が解決しようとする問題点] 周知の如く、セラミツクは脆性材料であるとこ
ろから、上記のように、動翼の翼根部を翼車の凹
部に嵌合させるようにした場合には、動翼に衝撃
荷重が加えられたときに翼根部に局部的に大きな
応力がかかり、翼根部に割れ等が生じる恐れがあ
る。
As a method of attaching this ceramic rotor blade to a metal impeller, a method is known in which a recess is formed in the circumferential surface of the impeller and a rotor blade having a blade root shaped to fit into the recess is fitted. be. (For example, Journal of the Gas Turbine Society 7-28, p. 54, 1980) [Problems to be solved by the invention] As is well known, ceramic is a brittle material, so as mentioned above, ceramic is a brittle material. If the blade is fitted into the recess of the blade wheel, when an impact load is applied to the rotor blade, a large stress is locally applied to the root of the blade, which may cause cracks or the like to occur in the root of the blade.

[問題点を解決するための手段] 本考案のガスタービンは、第1図、第3図に示
す如く、翼車1の周面に、動翼4保持用シヤンク
部材3を、翼車1の円周方向に所定間隔毎に多数
固設する。そしてこのシヤンク部材3にセラミツ
ク製動翼4をボルト8で取り付けると共に、ガス
タービン運転中の動翼部材の取付部分の温度にて
超塑性を示す金属材(以下、「超塑性合金」とい
うことがある。)5をシヤンク部材3との接触面
に介在させるようにしたものである。
[Means for Solving the Problems] As shown in FIGS. 1 and 3, the gas turbine of the present invention has a shank member 3 for holding rotor blades 4 on the circumferential surface of the blade wheel 1. A large number of them are fixed at predetermined intervals in the circumferential direction. Then, a ceramic rotor blade 4 is attached to this shank member 3 with bolts 8, and a metal material (hereinafter referred to as "superplastic alloy") that exhibits superplasticity at the temperature of the attachment part of the rotor blade member during gas turbine operation. ) 5 is interposed on the contact surface with the shank member 3.

一般に、ガスタービンを運転すると、燃焼ガス
により動翼や翼車が加熱され、動翼取付部分も高
い温度となる。本考案のガスタービンは、セラミ
ツク製の動翼を用いることにより、従来の金属製
動翼を採用したガスタービンにおけるよりも高い
温度の燃焼ガスを作動流体として用い得るように
したものであり、従つて、ガスタービン運転中の
動翼取付部分の温度は、従来のガスタービンより
も広い範囲のものとなる。本考案においては、通
常、ガスタービン運転中の動翼取付部分の温度は
500〜1200℃の範囲になる。
Generally, when a gas turbine is operated, the rotor blades and the impeller are heated by the combustion gas, and the temperature of the rotor blade attachment area is also high. By using ceramic rotor blades, the gas turbine of the present invention can use combustion gas at a higher temperature as a working fluid than in conventional gas turbines that use metal rotor blades. Therefore, the temperature of the rotor blade attachment portion during gas turbine operation has a wider range of temperatures than in conventional gas turbines. In this invention, the temperature of the rotor blade attachment part during gas turbine operation is normally
The temperature ranges from 500 to 1200℃.

このようなガスタービン運転中における動翼取
付部分の温度において超塑性を示す金属材の一例
を次に示す。
An example of a metal material that exhibits superplasticity at the temperature of the rotor blade attachment portion during gas turbine operation is shown below.

合金名 超塑性温度(℃) ニツケル39/10Fe/1.75Ti/1Al 900 ニツケル39/8Fe/2Ti/1Al 980 銅/10−20Mg 700 銅/10−12Al 540 銅/10Al/4Fe 830 インコネル744X 980 IMI318チタン/6Al/4V 900〜980 IMI318チタン/5Al/2.5Sn 1000 IMI679チタン/11Sn/2.25Al/10Mo/5Zr/
0.12Si 800 IMI700チタン/6Al/5Zr/4Mo/1Cu/0.25Si
800 このような超塑性合金は、次のような方法によ
り動翼接触面に介在させることができる。
Alloy name Superplastic temperature (℃) Nickel 39/10Fe/1.75Ti/1Al 900 Nickel 39/8Fe/2Ti/1Al 980 Copper/10−20Mg 700 Copper/10−12Al 540 Copper/10Al/4Fe 830 Inconel 744X 980 IMI318 Titanium /6Al/4V 900~980 IMI318 Titanium/5Al/2.5Sn 1000 IMI679 Titanium/11Sn/2.25Al/10Mo/5Zr/
0.12Si 800 IMI700 Titanium/6Al/5Zr/4Mo/1Cu/0.25Si
800 Such a superplastic alloy can be interposed on the rotor blade contact surface by the following method.

湿式メツキ、溶射、溶融メツキ、ブラスト圧
着等の方法により、動翼4、シヤンク部材3あ
るいは翼車1の表面に超塑性合金を被覆した
後、動翼4をシヤンク部材3と翼車1とで囲ま
れる部分に嵌合する。
After coating the surfaces of the moving blade 4, shank member 3, or impeller 1 with a superplastic alloy by a method such as wet plating, thermal spraying, melt plating, or blast bonding, the moving blade 4 is bonded to the shank member 3 and the impeller 1. Fits into the enclosed part.

なお湿式メツキ法とは、水溶液を用いて電気
的にメツキする方法である。
Note that the wet plating method is a method of electrically plating using an aqueous solution.

溶射法とは、高温の炎又は電気的なアーク等
を利用して金属を溶かし、これを圧縮空気で微
粒化し相手方部材に吹き付け接着させる方法で
ある。
Thermal spraying is a method in which metal is melted using a high-temperature flame or electric arc, atomized by compressed air, and then sprayed onto a mating member for adhesion.

溶融メツキ法とは、金属溶湯を接触させるこ
とにより金属の薄膜を部材表面に被着させる方
法である。
The hot-melt plating method is a method of depositing a thin metal film on the surface of a member by bringing molten metal into contact with the material.

ブラスト圧着法とは、超塑性材料粉末をブラ
スト加工し、その際の超塑性流動を利用し粉末
を迅速に圧着被覆して行なうものである。
The blast bonding method is a method in which a superplastic material powder is subjected to blast processing, and the superplastic flow at that time is utilized to quickly cover the powder with pressure bonding.

動翼4をシヤンク部材3と翼車1とで囲まれ
る部分に嵌め込む際に、動翼4とシヤンク部材
3との間にシート状又は粉末状の超塑性合金を
挟み込ませるようにする。
When the rotor blade 4 is fitted into the part surrounded by the shank member 3 and the impeller 1, a sheet-like or powder-like superplastic alloy is sandwiched between the rotor blade 4 and the shank member 3.

なお、本考案において、セラミツクスとして
は、窒化珪素、炭化珪素、サイアロン等が好適
である。
In the present invention, silicon nitride, silicon carbide, sialon, etc. are suitable as the ceramic.

また、シヤンク部材3は、Fe基、Co基、Ni
基等の高温強度、耐腐食性等を備えた合金製と
される。
In addition, the shank member 3 is made of Fe-based, Co-based, Ni
It is made of an alloy with high temperature strength, corrosion resistance, etc.

[作用] 動翼4とシヤンク部材3との接触面に超塑性合
金5が介在されているので、この超塑性合金5が
振動減衰効果を発揮すると共に、動翼4とシヤン
ク部材3、翼車1との当りが均一でかつ柔らかな
ものとなる。またそのため動翼4に衝撃荷重が加
えられても動翼4の根元部分4bに局部的な応力
集中が生じない。
[Function] Since the superplastic alloy 5 is interposed on the contact surface between the rotor blade 4 and the shank member 3, this superplastic alloy 5 exhibits a vibration damping effect and also The contact with 1 is uniform and soft. Furthermore, even if an impact load is applied to the rotor blade 4, local stress concentration does not occur at the root portion 4b of the rotor blade 4.

さらに、セラミツク製動翼4と金属製シヤンク
部材3とが直には接してないので、動翼4とシヤ
ンク部材3との膨脹差に起因する応力が緩和され
る。
Furthermore, since the ceramic rotor blade 4 and the metal shank member 3 are not in direct contact with each other, stress caused by the difference in expansion between the rotor blade 4 and the shank member 3 is alleviated.

[実施例] 以下図面を参照しながら実施例について説明す
る。
[Examples] Examples will be described below with reference to the drawings.

第1図、第3図は本考案の実施例を示すもので
あり、第1図は翼車1の軸を含む方向の断面を示
す図、第3図は斜視図である。
1 and 3 show an embodiment of the present invention, with FIG. 1 being a cross-sectional view in a direction including the axis of the impeller 1, and FIG. 3 being a perspective view.

第3図に示す如く、翼車1の周面には、翼車の
軸方向に延在する溝状の凹部2が所定間隔毎に設
けられている。この凹部2は、本実施例において
は、翼車周面の開口部及び溝深さ方向途中3ケ所
の部分が括れたクリスマスツリー形状である。
As shown in FIG. 3, groove-shaped recesses 2 extending in the axial direction of the impeller 1 are provided on the circumferential surface of the impeller 1 at predetermined intervals. In this embodiment, the recess 2 has a Christmas tree shape in which the opening of the circumferential surface of the impeller and three portions in the groove depth direction are constricted.

そしてこの凹部2に嵌り合うクリスマスツリー
形状の根元部31を有するシヤンク部材3が、そ
の根元部31を凹部2に嵌合することにより、固
設されている。
A shank member 3 having a Christmas tree-shaped root portion 31 that fits into the recess 2 is fixed by fitting the root portion 31 into the recess 2.

このシヤンク部材3の頂面3bセラミツクス製
の動翼4が取り付けられている。
A moving blade 4 made of ceramics is attached to the top surface 3b of this shank member 3.

次に、シヤンク部材3の構成及び動翼4の取付
部について、第1図を参照して説明する。
Next, the configuration of the shank member 3 and the mounting portion of the rotor blade 4 will be explained with reference to FIG. 1.

シヤンク部材3は、略々直方体形状であり、そ
の底部には、前述のように、クリスマスツリー形
状の根元部31が形成されている。また前後面即
ち翼車軸方向の側面には、燃焼ガスが翼車側に流
れ込むのを防ぐためのシールフイン33〜36が
設けられている。なおこのシヤンク部材3の表面
にはセラミツクコーテイングが施されている。
The shank member 3 has a substantially rectangular parallelepiped shape, and a Christmas tree-shaped root portion 31 is formed at the bottom thereof, as described above. Seal fins 33 to 36 are provided on the front and rear surfaces, that is, on the side surfaces in the blade axle direction, for preventing combustion gas from flowing into the blade wheel. Note that the surface of this shank member 3 is coated with ceramic.

シヤンク部材3頂面32には、動翼4が嵌合す
る形状の凹部37が形成されており、また底面に
は、冷却空気流通孔38が穿設されている。さら
にボルト挿通孔39が図中上下方向、即ち翼車の
放射方向に設けられている。
A recess 37 having a shape into which the rotor blade 4 fits is formed in the top surface 32 of the shank member 3, and a cooling air circulation hole 38 is bored in the bottom surface. Furthermore, bolt insertion holes 39 are provided in the vertical direction in the figure, that is, in the radial direction of the impeller.

動翼4は、第1図−線に沿う断面図であ
る。第2図に示す如く、湾曲した翼形断面をして
おり、かつ深い空洞部41が設けられている。こ
の空洞部41の底部には、前記シヤンク部材のボ
ルト挿通孔39と同軸となるようにボルト挿通孔
49が設けられている。この動翼4は、シヤンク
部材3の凹部37に、板状の超塑性合金5を介し
て嵌合されている。
The rotor blade 4 is a sectional view taken along the line in FIG. 1. As shown in FIG. 2, it has a curved airfoil cross section and is provided with a deep cavity 41. A bolt insertion hole 49 is provided at the bottom of the cavity 41 so as to be coaxial with the bolt insertion hole 39 of the shank member. The rotor blade 4 is fitted into the recess 37 of the shank member 3 with a plate-shaped superplastic alloy 5 interposed therebetween.

また、動翼空洞部41の底面には、板状の超塑
性合金6及び座金7が挿入され、ボルト8がこれ
ら座金7、超塑性合金6及びボルト挿通孔49,
39に挿通されている。ボルト8の先端(図中下
端)には、ナツト9が嵌合され、このボルト8及
びナツト9により動翼4がシヤンク部材3に固定
されている。図中10はナツト9の当り面に介在
された座金である。これらの超塑性合金5,6に
より、前述の如く、振動減衰効果や応力の分散、
緩和等の効果が奏される。
Further, a plate-shaped superplastic alloy 6 and a washer 7 are inserted into the bottom surface of the rotor blade cavity 41, and the bolt 8 is inserted into the washer 7, the superplastic alloy 6, and the bolt insertion hole 49,
39 is inserted. A nut 9 is fitted to the tip of the bolt 8 (lower end in the figure), and the rotor blade 4 is fixed to the shank member 3 by the bolt 8 and nut 9. In the figure, 10 is a washer interposed on the contact surface of the nut 9. These superplastic alloys 5 and 6 provide vibration damping effects, stress dispersion, and
Effects such as relaxation are produced.

特に本実施例では座金7と動翼4との間にも超
塑性合金6が介在されているので、一層効果的で
ある。
In particular, in this embodiment, since the superplastic alloy 6 is also interposed between the washer 7 and the rotor blade 4, it is even more effective.

なお本実施例では、シヤンク部材3の表面がセ
ラミツクコーテングされており、シヤンク部材3
の耐熱製、耐食性等が高い。
In this embodiment, the surface of the shank member 3 is coated with ceramic, and the surface of the shank member 3 is coated with ceramic.
Made of heat-resistant material and has high corrosion resistance.

本実施例では、ボルト8が動翼4からシヤンク
部材3に向けて挿通されているが、逆にシヤンク
部材3から動翼4に向けて挿通しても良い。
In this embodiment, the bolt 8 is inserted from the rotor blade 4 toward the shank member 3, but it may be inserted from the shank member 3 toward the rotor blade 4 conversely.

[効果] 以上の等り本考案のガスタービンにおいては、
動翼とシヤンク部材との接触面に超塑性合金が介
在されているので、振動減衰効果が奏されると共
に、動翼のシヤンク部材の当りが均一かつ柔らか
なものとなる。そのため、動翼に衝撃荷重が加え
られても動翼取付部に応力集中が生じることがな
い。そのため動翼の耐久性が著しく高められる。
また、 動翼形状が簡易なもので良く、従つて製作コ
ストが低い。
[Effects] As described above, in the gas turbine of the present invention,
Since the superplastic alloy is interposed at the contact surface between the rotor blade and the shank member, a vibration damping effect is exhibited, and the contact of the rotor blade with the shank member becomes uniform and soft. Therefore, even if an impact load is applied to the rotor blade, stress concentration does not occur at the rotor blade attachment portion. Therefore, the durability of the rotor blade is significantly increased.
In addition, the shape of the rotor blades can be simple, and therefore the manufacturing cost is low.

動翼とシヤンク部材との熱膨脹差に起因する
応力が緩和される。
Stress caused by the difference in thermal expansion between the rotor blade and the shank member is alleviated.

シヤンク部材の翼車への取付は、金属部材同
志の嵌合方式であるので、十分な強度を有す
る。
Since the shank member is attached to the impeller by fitting the metal members together, the shank member has sufficient strength.

耐熱製の高いセラミツク製動翼であるから冷
却空気が少なくて足りる。
The rotor blades are made of highly heat-resistant ceramic, so less cooling air is needed.

等の優れた技術的特徴を有する。It has excellent technical features such as

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第3図は本考案の実施例に係るガスタ
ービンの動翼とシヤンク部材を示す図であり、第
1図は翼車の軸とを含む方向の断面図、第3図は
斜視図である。また第2図は動翼の断面図であ
る。 1……翼車、3……シヤンク部材、4……動
翼、5,6……超塑性合金、8……ボルト、9…
…ナツト。
1 and 3 are diagrams showing the rotor blade and shank member of a gas turbine according to an embodiment of the present invention, FIG. 1 is a sectional view in a direction including the axis of the impeller, and FIG. 3 is a perspective view. It is a diagram. Moreover, FIG. 2 is a sectional view of the rotor blade. DESCRIPTION OF SYMBOLS 1... Impeller, 3... Shank member, 4... Moving blade, 5, 6... Superplastic alloy, 8... Bolt, 9...
...Natsuto.

Claims (1)

【実用新案登録請求の範囲】 (1) 翼車の周囲に、金属製シヤンク部材を取り付
け、このシヤンク部材の頂面にセラミツクス製
動翼をボルトにより取り付けたガスタービンで
あつて、ガスタービン運動中の動翼取付部分の
温度にて超塑性を示す金属材が、前記動翼とシ
ヤンク部材との接触面に介在されてなることを
特徴とするセラミツク製動翼を有するガスター
ビン。 (2) 前記ボルトは、座金を介して動翼と接してお
り、この座金と動翼との接触面に、動翼取付部
分の温度にて超塑性を示す金属材が介在されて
なることを特徴とする実用新案登録請求の範囲
第1項に記載のセラミツクス製動翼を有するガ
スタービン。
[Scope of Claim for Utility Model Registration] (1) A gas turbine in which a metal shank member is attached around a blade wheel, and a ceramic rotor blade is attached to the top surface of the shank member with bolts, during gas turbine operation. A gas turbine having a ceramic rotor blade, characterized in that a metal material exhibiting superplasticity at the temperature of the rotor blade attachment portion is interposed at the contact surface between the rotor blade and the shank member. (2) The bolt is in contact with the rotor blade through a washer, and the contact surface between the washer and the rotor blade is interposed with a metal material that exhibits superplasticity at the temperature of the rotor blade attachment part. A gas turbine having ceramic rotor blades as claimed in claim 1.
JP10966484U 1984-07-20 1984-07-20 Gas turbine with ceramic rotor blades Granted JPS6125505U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10966484U JPS6125505U (en) 1984-07-20 1984-07-20 Gas turbine with ceramic rotor blades

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10966484U JPS6125505U (en) 1984-07-20 1984-07-20 Gas turbine with ceramic rotor blades

Publications (2)

Publication Number Publication Date
JPS6125505U JPS6125505U (en) 1986-02-15
JPH0415922Y2 true JPH0415922Y2 (en) 1992-04-09

Family

ID=30668804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10966484U Granted JPS6125505U (en) 1984-07-20 1984-07-20 Gas turbine with ceramic rotor blades

Country Status (1)

Country Link
JP (1) JPS6125505U (en)

Also Published As

Publication number Publication date
JPS6125505U (en) 1986-02-15

Similar Documents

Publication Publication Date Title
EP1065345B1 (en) Turbine engine component having enhanced heat transfer characteristics and method for forming same
CA2561474C (en) Bi-layer tip cap
EP0837221A3 (en) Tial turbine rotor and method of manufacturing
US5732468A (en) Method for bonding a turbine engine vane segment
JPH0425404B2 (en)
JP2002295202A5 (en)
GB2117799A (en) Composite ceramic metal components
US3394918A (en) Bimetallic airfoils
US7189459B2 (en) Turbine blade for extreme temperature conditions
CA2507192C (en) Method for coating gas turbine engine components
EP1260300A3 (en) A method of manufacturing an article
US20100055339A1 (en) Method of forming molybdenum based wear resistant coating on a workpiece
JPH07504257A (en) Method for manufacturing a turbine impeller with inserted blades and impeller obtained by carrying out the method
JPH0415922Y2 (en)
US20040222595A1 (en) Method of making labyrinth seal lips for the moving parts of turbomachines
JPH0329031B2 (en)
US6527165B1 (en) Method of making an environmental resistant brazed assembly including a wear resistant surface portion
US5083884A (en) Metal ceramic composite body
JPH0415923Y2 (en)
JP2000192801A5 (en)
JPH0426566A (en) Coupling member and coupling method
US3068556A (en) Method of making jet turbine buckets
US3032316A (en) Jet turbine buckets and method of making the same
JPS6151124B2 (en)
JPH0352962Y2 (en)