JPS6150A - Production of n-acylaminoacid amide - Google Patents

Production of n-acylaminoacid amide

Info

Publication number
JPS6150A
JPS6150A JP2916084A JP2916084A JPS6150A JP S6150 A JPS6150 A JP S6150A JP 2916084 A JP2916084 A JP 2916084A JP 2916084 A JP2916084 A JP 2916084A JP S6150 A JPS6150 A JP S6150A
Authority
JP
Japan
Prior art keywords
reaction
water
acid
acylaminoacid
amine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2916084A
Other languages
Japanese (ja)
Other versions
JPH0353297B2 (en
Inventor
Toru Ikeda
徹 池田
Shinji Higuchi
樋口 信二
Katsutoshi Hashimoto
橋本 勝利
Masao Honma
本間 正男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP2916084A priority Critical patent/JPS6150A/en
Publication of JPS6150A publication Critical patent/JPS6150A/en
Publication of JPH0353297B2 publication Critical patent/JPH0353297B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:The reaction of N-acylaminoacid with a primary amine is conducted in the presence of a catalyst of a water-soluble acidic boron compound to enable high-yield production of the titled compound which is used as an oil-soluble nonionic surface active agent with reduced skin irritation and good biodegrability. CONSTITUTION:The reaction of an N-acylaminoacid with an amine of the RNH2 (R is H, 1-20C alkyl, alkylene, cycloalkyl, aryl) is carried out in the presence of a water-soluble, acidic boron compound such as boric acid, metaboric acid, boron oxide at a temperature over 100 deg.C, preferably 100-140 deg.C (at 110-125 deg.C, in order to suppress recemization, when an optically active N-acylaminoacid is desired) to give the objective compound. The use of a hydrocarbon boiling at 98- 125 deg.C for azeotropic distillation is suitable for a primary amine of 8 or less carbon atoms and ammonia. USE:Antioxidant, perfume additive, antistatic agent, antifungal, oil coagulant.

Description

【発明の詳細な説明】 本発明はN−アシルアミノ酸アミドの改良された製造方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved method for producing N-acylamino acid amides.

N−アシルアミノ酸アミドは低毒性で皮膚刺激性が少な
く生分解性の良好な油溶性非イオン界面活性剤として抗
酸化剤、香粧品添加剤、帯電防止、剤あるいは抗菌剤等
の用途に用いられ、また、油類に添加した際に油類を凝
固せしめる性質を有すゐことから(特公昭53−134
3.4号公報)、油凝固剤としてその工業的利用価値が
注目されている。
N-acylamino acid amide is an oil-soluble nonionic surfactant with low toxicity, low skin irritation, and good biodegradability, and is used for applications such as antioxidants, cosmetic additives, antistatic agents, antibacterial agents, etc. Also, because it has the property of coagulating oils when added to them (Japanese Patent Publication No. 53-134)
3.4 Publication), its industrial utility value as an oil coagulant is attracting attention.

従来、N−アシルアミノ酸アミドはアミノ酸アミド合成
の中間体として一種のペプチド合成手法により多く合成
されてきた。すなわち、アミノ酸のアミノ基をホルミル
基、アセチル基、あるいはベンジルオキシカルがニル基
管で保護し、次いでアミノ酸のカルがキシル基をアルキ
ルエステル、フェノールエステル、酸ハライドあるいは
酸無水物等の形で活性化したのち、アルキルアミン等を
反応させ、N−保護アミノ酸アルキルアミド等を合成す
る方法である。
Conventionally, many N-acyl amino acid amides have been synthesized as intermediates for amino acid amide synthesis by a type of peptide synthesis method. That is, the amino group of an amino acid is protected by a formyl group, an acetyl group, or a benzyloxycarp with a nyl group, and then the cal of the amino acid activates the xyl group in the form of an alkyl ester, phenol ester, acid halide, or acid anhydride. In this method, N-protected amino acid alkylamide and the like are synthesized by reacting with an alkylamine and the like.

また、炭素数1〜22のアシル基を有するN−アシルア
ミノ酸と炭素数8以上のアルキルアミン等とを直接加熱
反応せしめてN−アシルアミノ酸アミドを得る方法が知
られているが(特公昭52−18691号公報)、アル
キルアミンが炭素数7以下あるいはアンモニアである場
合には、当該方法の適用は困難である。す々わち、当該
公知方法はN−アシルアミノ酸と炭素数8以上のアミン
とを・混合したのち、160〜200℃に直接加熱も[
7〈はキシレン等の不活性溶媒の存在下で加熱還流脱水
を行なうことにより、目的とするN−アシルアミノ酸ア
ミドを得る方法であるが、炭素数7以下のアルキルアミ
ン等にこの方法を適用する場合、当該アミンの沸点が低
いため、160〜200℃の直接加熱もしくはキシレン
等の存在下における加熱の条件下で、当該アミンが逸散
t、、反応収率が低下する欠点を有している。また、N
−アシルアミノ酸のアミノ酸残基が酸性アミノ酸残基で
あって、複数個のカルボキシル基を有する場合には、一
方のカルボキシル基は容易に反応するものの、他方は反
応性が低くなる傾向が著しい。
Furthermore, a method is known in which an N-acylamino acid amide having an acyl group having 1 to 22 carbon atoms is directly heated and reacted with an alkylamine having 8 or more carbon atoms to obtain an N-acylamino acid amide (Japanese Patent Publication No. 52 18691), it is difficult to apply this method when the alkylamine has 7 or fewer carbon atoms or is ammonia. In other words, the known method involves mixing an N-acylamino acid and an amine having 8 or more carbon atoms, and then directly heating the mixture to 160 to 200°C.
7 is a method for obtaining the desired N-acylamino acid amide by heating under reflux dehydration in the presence of an inert solvent such as xylene, but this method is applied to alkylamines having 7 or less carbon atoms, etc. In this case, since the boiling point of the amine is low, the amine dissipates under conditions of direct heating at 160 to 200°C or heating in the presence of xylene, etc., and the reaction yield decreases. . Also, N
- When the amino acid residue of the acyl amino acid is an acidic amino acid residue and has a plurality of carboxyl groups, one carboxyl group reacts easily, but the other carboxyl group tends to have a markedly low reactivity.

このため、ビスあるいはトリスアミド置換体を得るため
には、高温かつ長時間という苛酷な反応条件が必須とな
る。このような反応条件下では目的とするカルボキシル
基とアミンの縮合反応の他に、アミンの酸化、N−アシ
ル基とアミンの交換縮合反応、あるいはニトリル化等の
副反応による副生成物の生成が起り、あるいは光学活性
N−アシルアミノ酸を原料として用いた場合にはラセミ
化が同時に進行するため、目的とする光学活性N−アシ
ルアミノ酸アミドが得られない等の問題が生じる。
Therefore, in order to obtain a bis- or trisamide substituted product, harsh reaction conditions such as high temperature and long time are essential. Under such reaction conditions, in addition to the desired condensation reaction between carboxyl groups and amines, by-products may be generated due to side reactions such as oxidation of amines, exchange condensation reactions between N-acyl groups and amines, or nitrification. When an optically active N-acylamino acid amide is used as a raw material, racemization proceeds at the same time, resulting in problems such as not being able to obtain the desired optically active N-acylamino acid amide.

本発明者はN−アシルアミノ酸アミドの工業的に有利な
製造方法について鋭意検討した結果、N−アシルアミノ
酸を何ら活性化することなく、アルキルアミン、アルキ
レンアミン、シクロアルキルアミン、アリールアミン等
の一級アミンもしくはアンモニアと加熱反応せしめる際
に、触媒として水溶性酸性ホウ素化合物を共存せしめる
ことによって目的とするN−アシルアミノ酸アミドが高
収率で得られることを見出し、本発明を完成した。
As a result of intensive studies on an industrially advantageous production method for N-acylamino acid amides, the present inventors have discovered that primary production methods such as alkylamines, alkylene amines, cycloalkylamines, arylamines, etc. can be produced without activating N-acylamino acids. The present invention was completed based on the discovery that the target N-acylamino acid amide can be obtained in high yield by allowing a water-soluble acidic boron compound to coexist as a catalyst during the heating reaction with an amine or ammonia.

本発明に係わる触媒の効果としては、比較的低温でかつ
速やかに反応が進行し高収率で目的物が得られること、
副反応生成物が少々く従って精製が極めて容易となるこ
とおよび低温で反応するため原料に光学活性N−アシル
アミノ酸を使用した場合でもラセミ化が抑えられること
等が挙げられる。更に捷た触媒は水溶性であり、反応液
を反応終了ののち水または稀アールカリ水溶液で洗滌す
ることにより容易に目的物と分離できるため、精製工程
に悪影響を及ぼさない特徴を有している。
The effects of the catalyst according to the present invention are that the reaction proceeds quickly at a relatively low temperature and the target product can be obtained in high yield;
It produces few side reaction products, making purification extremely easy, and because it reacts at low temperatures, racemization can be suppressed even when an optically active N-acylamino acid is used as a raw material. Furthermore, the dissolved catalyst is water-soluble and can be easily separated from the target product by washing the reaction solution with water or a dilute alkali aqueous solution after the reaction is completed, so it has the characteristic that it does not adversely affect the purification process.

本発明に於て原料として用いられるN−アシルアミノ酸
のアミノ酸成分としては特に限定されないが、グリシン
、アラニン、バリン、ロイシン等の中性アミノ酸、フェ
ニルアラニン等の有核アミノ酸、セリン、スレオニン等
の官能性置換基を有する中性アミノ酸、リジン、オルニ
チン等の塩基性アミノ酸およびグルタミン酸、アスノ4
ラギン酸等の酸性アミノ酸を例示することができる。ア
シル成分としては特に限定されないが、炭素数1〜22
の飽和1たけ不飽和脂肪酸より誘導されるアシル基、例
えばホルミル、アセチルプロぎオイル、カプロイル、カ
プリロイル、カブリノイル、ラウロイル、ミリストイル
、バルミトイル、ステアロイル、アラキノイル、ペヘノ
イル、オレオイル、カルオイル等の単一脂肪酸アシル基
、ヤシ油脂肪酸アシル、硬化牛脂脂肪酸アシル等の天然
系混合脂肪酸アシル基の他、安息香酸アシル、桂皮酸ア
シル等の芳香族カルぎン酸アシル等を例示することがで
きる。
The amino acid components of the N-acyl amino acids used as raw materials in the present invention are not particularly limited, but include neutral amino acids such as glycine, alanine, valine, and leucine, nucleated amino acids such as phenylalanine, and functional amino acids such as serine and threonine. Neutral amino acids with substituents, basic amino acids such as lysine and ornithine, glutamic acid, Asno-4
Examples include acidic amino acids such as lagic acid. The acyl component is not particularly limited, but has 1 to 22 carbon atoms.
Single fatty acid acyl groups derived from saturated monounsaturated fatty acids, such as formyl, acetylprogyoyl, caproyl, capryloyl, cabrinoyl, lauroyl, myristoyl, balmitoyl, stearoyl, arachinoyl, pehenoyl, oleoyl, caloyl, etc. In addition to natural mixed fatty acid acyl groups such as Coconut oil fatty acid acyl and hydrogenated beef tallow fatty acid acyl, aromatic carginic acid acyl such as benzoic acid acyl and cinnamic acid acyl can be exemplified.

N−アシルアミノ酸と共に加熱反応させるべき一級アミ
ンもしくはアンモニアを一般式で表示すれば次の通りで
ある。
The general formula of the primary amine or ammonia to be reacted with N-acylamino acid by heating is as follows.

NH2 (但し、Rは水素および炭素数1〜22のアルキル基、
アルキレン基、シクロアルキル基、凍たはアリール基を
示す) かかる−級アミンとしては、メチルアミン、エチルアミ
ン、ブチルアミン、ヘキシルアミン、オクチルアミン、
2−エチルヘキシルアミン、ラウリルアミン、セチルア
ミン、スデアリルアミン等の直鎖または分岐鎖脂肪族ア
ミン、シクロペンチルアミン、シクロヘキシルアミン、
4−イソプロピルシクロヘキシルアミン等の脂環式アミ
ン、およびアニリン、ベンジルアミン、ナフチルアミン
、4−インゾロ巧ア=リン等の芳香族アミン等全例示す
ることかできる。
NH2 (However, R is hydrogen and an alkyl group having 1 to 22 carbon atoms,
Examples of such -class amines include methylamine, ethylamine, butylamine, hexylamine, octylamine,
Straight chain or branched aliphatic amines such as 2-ethylhexylamine, laurylamine, cetylamine, sudearylamine, cyclopentylamine, cyclohexylamine,
All examples include alicyclic amines such as 4-isopropylcyclohexylamine, and aromatic amines such as aniline, benzylamine, naphthylamine, and 4-inzolotamine.

反応系に共存させる触媒として用いられる水溶性酸性ホ
ウ素化合物としては、ホウ酸、メタホウ酸、酸化ホウ素
、フェニルホウ酸、三フッ化ホウ素などが好適である。
As the water-soluble acidic boron compound used as a catalyst to coexist in the reaction system, boric acid, metaboric acid, boron oxide, phenylboric acid, boron trifluoride, etc. are suitable.

これらの水溶性酸性ホウ素化合物は反応を著しく促進す
る効果を有し、反応時間を短縮させるのみならず、当該
水溶性酸性ホウ素化合物を反応系に共存させた場合には
、熱に不安定なN−アシルアミノ酸および一般アミンが
分解等の副反応を起すことなく目的とする脱水反応が進
行する。原料としてN−アシル酸性アミノ酸を選んだ場
合、触媒として当該水溶性酸性ホウ素化合物を反応系に
共存させない場合にはモノアミド化合物が主生成物であ
るのに比し、当該水溶性酸性ホウ素化合物を反応系に共
存させた場合には、ビスアミド化合物が高収率で得られ
も。さらに、原料として光学活性N−アシルアミノ酸を
用いた場合、低い反応温度でも充分に実用的な反応速度
が得られるため、ラセミ化を起すことなく目的とする光
学活性N−アシルアミノ酸アミドを得ることか可能であ
る。
These water-soluble acidic boron compounds have the effect of significantly accelerating the reaction, not only shortening the reaction time, but also reducing thermally unstable N2 when these water-soluble acidic boron compounds are present in the reaction system. - The desired dehydration reaction of acylamino acids and general amines proceeds without causing side reactions such as decomposition. When an N-acyl acidic amino acid is selected as a raw material, a monoamide compound is the main product when the water-soluble acidic boron compound is not coexisting in the reaction system as a catalyst; When coexisting in the system, bisamide compounds can be obtained in high yield. Furthermore, when an optically active N-acylamino acid amide is used as a raw material, a sufficiently practical reaction rate can be obtained even at a low reaction temperature, making it possible to obtain the desired optically active N-acylamino acid amide without causing racemization. It is possible.

本発明を実施するにあたっては、N−アシルアミノ酸と
一般アミンまたはアンモニアを共存せしめ、さらに水溶
性酸性ホウ素化合物を少量加え、共沸脱水媒体の存在下
あるいは無媒体下に加熱するだけでよく、操作ははなは
だ簡易である。
To carry out the present invention, it is only necessary to coexist N-acylamino acids with general amines or ammonia, add a small amount of water-soluble acidic boron compound, and heat in the presence of an azeotropic dehydration medium or in the absence of a medium. It's really simple.

原料のN−アシルアミノ酸と一般アミンの比率はN−ア
シルアミノ酸のカルボキシル基1尚量あたゆ、−級アミ
ン1.0〜1.2当量が一般的に好ましい。すなわち、
反応に消費される一般アミンはカルボキシル基1尚量あ
たり1当量であ−るが、反応進行につれて遊離アミンの
濃度が低下し、反応るとよい。−級アミンがメチルアミ
ン、エチルアミンおよびアンモニアである場合には、原
料のN−アシルアミノ酸のカルブキシル基あたりのこれ
ら一般アミン当量比はより多くすることが好ましい。す
なわち、これらの−級アミンはいずれも沸点が極めて低
い物質であるために、加熱反応中に反応系から逸散しや
すい傾向を有し、反応進行中にこれらの一般アミンをガ
ス状にして少量ずつ補充して、反応系内の残存カルブキ
シル基に対するこれらの一般アミンの当量比が1.0以
上となるようにする方法がよい。
The ratio of the raw material N-acylamino acid to the general amine is generally preferably 1 equivalent of the carboxyl group of the N-acylamino acid and 1.0 to 1.2 equivalents of the -class amine. That is,
The amount of general amine consumed in the reaction is 1 equivalent per equivalent of carboxyl group, but as the reaction progresses, the concentration of free amine is preferably reduced. When the -class amine is methylamine, ethylamine, or ammonia, it is preferable to increase the equivalent ratio of these general amines per carboxyl group of the N-acylamino acid as a raw material. In other words, since these -class amines are substances with extremely low boiling points, they tend to escape from the reaction system during the heating reaction, and during the course of the reaction, these general amines are turned into gas and a small amount is released. It is preferable to replenish the general amines in stages so that the equivalent ratio of these general amines to the remaining carboxyl groups in the reaction system becomes 1.0 or more.

触媒と1−て用いる水溶性酸性ホウ素化合物の添加量は
特に限定されないが、N−アシルアミノ酸に対し1〜2
0重量%が好ましい。すなわち、1重量%未満の場合は
触媒としての反応促進効果が充分でなく、また20重9
%を超える場合は経済的に、また反応終了後の触媒除去
操作において、不利になりやすい次らである。
The amount of the water-soluble acidic boron compound used as a catalyst is not particularly limited, but it is 1-2% per N-acylamino acid.
0% by weight is preferred. That is, if the amount is less than 1% by weight, the reaction promoting effect as a catalyst will not be sufficient, and if the amount is less than 1% by weight,
If it exceeds %, it is likely to be disadvantageous economically and in the catalyst removal operation after the reaction is completed.

反応時の加熱温度は、無媒体の場合、反応によって生じ
た水を除くため100℃以上の温度が一般に好ましく、
加熱温度が高いほど反応が促進されるが、副反応を抑制
するために、110〜140・  ℃が最も好ましい。
The heating temperature during the reaction is generally preferably 100°C or higher in order to remove water generated by the reaction in the case of no medium.
The higher the heating temperature, the more the reaction is promoted, but in order to suppress side reactions, the heating temperature is most preferably 110 to 140°C.

特に光学活性N−アシルアミノ酸アミドを得る場合には
、ラセミ化を抑制するために110〜125℃が最も好
ましい。無媒体下での反応は、炭素数8以上の一般アミ
ンを用いる場合に好ましく、炭素数8未満の一般アミン
またはアンモニアを用いる場合には攪拌等の梅作性が悪
くなりやすいため、装置等の工夫が必要である。
In particular, when obtaining an optically active N-acylamino acid amide, the temperature is most preferably 110 to 125°C in order to suppress racemization. The reaction without a medium is preferable when using a general amine with a carbon number of 8 or more, and when using a general amine with a carbon number of less than 8 or ammonia, the ability to produce plums such as stirring tends to be poor, so please be careful of the equipment etc. Some effort is needed.

一方、共沸脱水媒体の共存下で加熱反応を行う場合には
、反応によって生じた水が共沸で容易に反応系外に除か
れるため、炭素数8未満の一般アミンまたはアンそニア
を原料として用いる場合にも適している。共沸脱水媒体
は、原料のN−アシルアミノ酸あるいは一般アミン、ア
ンモニアと反応しないものであれば特に制限はないが、
反応終了後に水、酸またはアルカリ水溶液で分層洗滌が
容易に行えることから炭化水素化合物が最も適している
。共沸媒体としては、沸点98〜140℃の炭化水素化
合物が最も好ましい。すなわち、沸点が98℃未満の場
合には反応系の温度が充分な反応速度を得るには低過ぎ
、沸点が140℃を超える場合には反応が速やかである
もののN−アシルアミノ酸の分解、アミンの酸化などの
好ましくない副反応が進行するからである。特にラセミ
化才1′ハリ を巷掛する必要のある場合には、沸点98〜15℃の炭
化水素化合物が最も好ましい共沸媒体であり、ヘプタン
、イソオクタン、メチルシクロヘキサン、シクロヘゾタ
ン、メチルシクロヘキセン、ジイソブチレン、トルエン
、オクタン、オクテンレン等の高沸点炭化水素化合物を
適宜混合して沸点を125℃以十に調整した混合物等が
好適な例として挙げられる。
On the other hand, when a heating reaction is carried out in the coexistence of an azeotropic dehydration medium, the water produced by the reaction is easily removed from the reaction system by azeotropy, so general amines or anthonia with less than 8 carbon atoms are used as raw materials. It is also suitable for use as a The azeotropic dehydration medium is not particularly limited as long as it does not react with the raw material N-acyl amino acid, general amine, or ammonia.
Hydrocarbon compounds are most suitable because they can be easily washed in separate layers with water, an acid, or an aqueous alkali solution after the reaction is completed. The most preferred azeotropic medium is a hydrocarbon compound having a boiling point of 98 to 140°C. That is, when the boiling point is less than 98°C, the temperature of the reaction system is too low to obtain a sufficient reaction rate, and when the boiling point is over 140°C, the reaction is rapid, but the decomposition of N-acyl amino acids and amine This is because undesirable side reactions such as oxidation of Hydrocarbon compounds with a boiling point of 98-15°C are the most preferred azeotropic media, especially when it is necessary to increase the racemization temperature, such as heptane, isooctane, methylcyclohexane, cyclohezotane, methylcyclohexene, diisobutylene. Preferred examples include mixtures in which high-boiling hydrocarbon compounds such as toluene, octane, and octenene are appropriately mixed to have a boiling point of 125° C. or higher.

反応に要する時間は反応に供する原料、加熱温度および
触媒の種類と添加量等によって異々るが、大略1〜35
時間で反応が完結する。
The time required for the reaction varies depending on the raw materials used for the reaction, the heating temperature, the type and amount of catalyst added, etc., but is approximately 1 to 35 minutes.
The reaction completes in time.

反応完結後に、目的とするN−アシルアミノ酸アミドを
単離する方法としては、無媒体下で反応した場合、反応
後酢酸エチル等の有機溶媒に加熱溶解し、触媒等の不溶
物質を濾過除去した後、冷却再結晶して目的とするN−
アシルアミノ酸アミドを得ることができる。N−アシル
アミノ酸アミドの種類によっては油類のみならず酢酸エ
チル等の有機溶媒をゲル化させる場合があり、このよう
な場合には冷却時に結晶化せず全体がrル花するので、
反応組成物を水、酸またはアルカリ水溶液等でスラリー
洗滌を繰返すことによって触媒、未反応原料あるいは副
反応生成物を除去して目的とするN−アシルアミノ酸ア
ミドを得ることができる。
After the reaction is completed, the desired N-acylamino acid amide can be isolated by heating and dissolving it in an organic solvent such as ethyl acetate after the reaction, and removing insoluble substances such as the catalyst when the reaction is carried out without a medium. After that, it is cooled and recrystallized to obtain the desired N-
Acyl amino acid amides can be obtained. Depending on the type of N-acylamino acid amide, it may gel not only oils but also organic solvents such as ethyl acetate, and in such cases, the entire product will not crystallize when cooled, so
The desired N-acylamino acid amide can be obtained by repeatedly slurry washing the reaction composition with water, acid or aqueous alkali solution, etc. to remove the catalyst, unreacted raw materials or side reaction products.

炭化水素化合物等を共沸脱水媒体として用いた場合、反
応終了後に共沸脱水媒体を蒸留除去してから上記のごと
く酢酸エチル等の有機溶媒から再結晶する方法も可能で
あるが、目的とするN−アシルアミノ酸アミドが水に難
溶である性質を利用して次のような方法を用いることが
できる。
When a hydrocarbon compound or the like is used as the azeotropic dehydration medium, it is also possible to remove the azeotropic dehydration medium by distillation after the reaction is completed, and then recrystallize it from an organic solvent such as ethyl acetate as described above. The following method can be used by utilizing the property that N-acylamino acid amide is sparingly soluble in water.

すなわち、反応混合物に水を加え充分攪拌したのち分層
し、水層に触媒を抽出除去させる。同様に鉱酸゛の稀水
溶液捷たはアルカリ稀水溶液を用いることにより、未反
応の一般アミン、N−アシルアミノ酸および副反応生成
物等を抽出除去させる。
That is, water is added to the reaction mixture, thoroughly stirred, and then separated into layers, and the catalyst is extracted and removed from the aqueous layer. Similarly, by using a dilute aqueous solution of mineral acid or a dilute alkali solution, unreacted general amines, N-acylamino acids, side reaction products, etc. are extracted and removed.

この操作を繰返すことによって目的とするN−アシルア
ミノ酸アミドを共沸脱水媒体との混合物として精製する
ことができる。この方法を実施する際、共沸脱水媒体と
して用いた炭化水素化合物の存在は分層分離を容易なら
しめ、操作が簡易となる特徴を有する。特に目的とする
N−アシルアミノ酸アミドが油類をゲル化させる性質を
有する場合、共沸脱水媒体として用いられた炭化水素化
合物をゲル化させるととが多く、分層分離に際し、炭化
水素化合物層は粒状のrル状組成物となって浮上するた
め、容易に水層を分離除去することができる。
By repeating this operation, the target N-acylamino acid amide can be purified as a mixture with the azeotropic dehydration medium. When carrying out this method, the presence of a hydrocarbon compound used as an azeotropic dehydration medium facilitates phase separation and facilitates operation. In particular, when the target N-acylamino acid amide has the property of gelling oils, it often gels the hydrocarbon compound used as the azeotropic dehydration medium, and during phase separation, the hydrocarbon compound layer Since it floats as a granular composition, the aqueous layer can be easily separated and removed.

精製が終了1−たのち、共沸脱水媒体とN−アシルアミ
ノ酸アミドの混合物に水を加え、攪拌しながら水蒸気蒸
留または水との共沸蒸留を行うことによって、共沸脱水
媒体を留出除去させると、目的とするN−アシルアミノ
酸アミドの水性スラリーが得られ、これを固−液分離、
乾燥して目的物が単離される。この方法によれば、固液
分離は最終工程の一回だけでよく、反応から精製までを
一つの反応装置の中で実施できるため、製造装置が簡便
になり、工程操作もはなはだ簡易となる。
After the purification is completed, water is added to the mixture of the azeotropic dehydration medium and the N-acylamino acid amide, and the azeotropic dehydration medium is distilled off by steam distillation or azeotropic distillation with water while stirring. As a result, an aqueous slurry of the desired N-acylamino acid amide is obtained, which is subjected to solid-liquid separation,
The target product is isolated by drying. According to this method, solid-liquid separation only needs to be performed once in the final step, and everything from reaction to purification can be carried out in one reaction apparatus, which simplifies the production apparatus and greatly simplifies process operations.

以下、実施例により具体的に説明するが、本発明はこれ
に限定されるものでないことは言うまでもない。
Hereinafter, the present invention will be explained in detail with reference to Examples, but it goes without saying that the present invention is not limited thereto.

実施例I N−ラウセイルーL−グルタミン酸329 g(1モル
)、n−ブチルアミン149.!li’(2,04モル
)およびホウ酸30gをトルエン11に加え、H字管を
取付は加熱還流を24時間行ったところ、水36プ(2
モル)を生じた。
Example I 329 g (1 mol) of N-lauceyl L-glutamic acid, 149 g of n-butylamine. ! Li' (2.04 mol) and 30 g of boric acid were added to 11 toluene, and an H-tube was attached and heated under reflux for 24 hours.
mol).

反応液を0.5規定硫酸水溶液21.0.5規定苛性ソ
ーダ水溶821.水21で順次抽出分層して洗滌したの
ち、水2ノを加え、攪拌下に加熱し、トルエン11を水
と共に留出させ、水性スラリーを得た。これを濾過乾燥
して目的とするN−ラウロイル−L−グルタミン酸酸ビ
スn−ブチルアミド430g(収率98%)を得た。m
p148〜15゛0 ℃ 元素分析値  C(%)   H(係)N(チ)計算値
  68.29 11.23 9.56実施値  68
.37 11.18 9.58また、このものの旋光度
は以下に示した通り標品と一致し、何らラセミ化は伴な
ゎ力かった。
The reaction solution was mixed with 0.5N sulfuric acid aqueous solution 21.0.5N caustic soda aqueous solution 821. After washing by successively extracting and separating layers with 21 parts of water, 2 parts of water was added and heated while stirring to distill toluene 11 together with water to obtain an aqueous slurry. This was filtered and dried to obtain 430 g (yield: 98%) of the target N-lauroyl-L-glutamic acid bis-n-butylamide. m
p148~15゛0℃ Elemental analysis value C (%) H (correspondence) N (chi) Calculated value 68.29 11.23 9.56 Actual value 68
.. 37 11.18 9.58 Also, the optical rotation of this product matched that of the standard product as shown below, and there was no racemization.

サンプル  旋光度(250nrn : 19&エタノ
ール溶液)実施例   −305゜ 対照    −308゜ 比較例 N−ラウロイル−L−グルタミン酸3291I(1モル
)およびn−ブチルアミン149g(2,04モル)を
キシレン11(比較例1とする。)またはトルエン17
(比較例2とする。)にそれぞれ加え、比較例1におい
ては8時間、比較例2においては45時間の加熱反応を
行った。実施例、1と同様に、反応液を硫酸水溶液、苛
性ソーダ水溶液および水で順次、抽出分層して洗滌した
のち、溶媒を共沸除去し、濾過乾燥してN−ラウロイル
グルタミン酸ビスn−ブチルアミドを得た。その結果を
表−1に示す。
Sample Optical rotation (250nrn: 19 & ethanol solution) Example -305° Control -308° Comparative example ) or toluene 17
(referred to as Comparative Example 2), and a heating reaction was performed for 8 hours in Comparative Example 1 and 45 hours in Comparative Example 2. In the same manner as in Example 1, the reaction solution was extracted and separated into layers with an aqueous sulfuric acid solution, an aqueous caustic soda solution, and water in order and washed. The solvent was azeotropically removed, and N-lauroylglutamic acid bis-n-butylamide was obtained by filtration and drying. Obtained. The results are shown in Table-1.

比較例1は表−1に示されたようにラセミ化が著しく進
行していることが明らかになった。比較例2は極めて低
収率であったが、これは苛性ソーダ水溶液による抽出分
層洗滌の際に1大半の生成物が抽出除去されたことに由
来する。。当該症出液に硫酸を加えpH2に中和して得
られる固形物318#Fi’N−ウラロイルグルタミン
酸モノn−ブチルアミドが主成分であることが、既知の
方法で得られる標品との比較により確認された。
As shown in Table 1, in Comparative Example 1, racemization was found to have progressed significantly. Comparative Example 2 had an extremely low yield, but this was due to the fact that most of the product was extracted and removed during extraction phase washing with an aqueous caustic soda solution. . A comparison with a standard product obtained by a known method shows that the main component of the solid substance 318#Fi'N-uraloylglutamic acid mono-n-butyramide is obtained by adding sulfuric acid to the symptomatic fluid and neutralizing it to pH 2. Confirmed by.

実施例2 表−2に示したように、各種N二アシルンルタミン酸0
.5そル、各種−級アミン1.1セルをそれぞれ共沸脱
水媒体500mに入れ、水溶性酸性ホウ素化合物をそれ
ぞれ10f加えたのち、H字管を取付け、所定温度でそ
れぞれ加熱還流を24時間行ったところ、水1モル(1
8m)がそれぞれ溜 H字管の底に中りた。
Example 2 As shown in Table 2, various N-diacylinutamic acids 0
.. 5.Put each of the various -grade amine 1.1 cells in 500 m of azeotropic dehydration medium, add 10 f of a water-soluble acidic boron compound to each, then attach an H-shaped tube and heat under reflux at the specified temperature for 24 hours. However, 1 mole of water (1
8 m) were placed in the bottom of each H-tube.

反応液を0.5規定硫酸水溶液IJ、0.5規定アンそ
ニア水溶液17および水17で順次抽出分層洗滌を行っ
た後、水17.を加え、加熱蒸気を吹込み、共沸脱水媒
体500−を水蒸気蒸留で除去して水性スラリーな得た
。これを濾過乾燥して、N−アシルグルタミン酸ビスア
ミドを得た。得られたビスアミドの畳量及び収率を一括
して同表に示した。
The reaction solution was extracted and washed sequentially with 0.5 N sulfuric acid aqueous solution IJ, 0.5 N aqueous anthonia solution 17 and water 17, and then water 17. was added, heated steam was blown in, and the azeotropic dehydration medium 500- was removed by steam distillation to obtain an aqueous slurry. This was filtered and dried to obtain N-acylglutamic acid bisamide. The amount and yield of the obtained bisamide are collectively shown in the same table.

実施例3 N−カゾロイルアスパラヤン酸217y−(1モル)と
2−エチルヘキシルアミン266 fF(2,06モル
)をトルエン1!に加え、メタホウ酸20f/を加えた
のち、H字管を取付は加熱還流を20時間行ったところ
、水が36d(2モル)生じた。
Example 3 N-casoloyl asparayanic acid 217y- (1 mol) and 2-ethylhexylamine 266 fF (2.06 mol) were mixed in 1 toluene! In addition, 20 f/metaboric acid was added, an H-tube was attached, and the mixture was heated under reflux for 20 hours, yielding 36 d (2 moles) of water.

反応液を0.5規定塩酸水溶液27,0.5規定苛性カ
リ水溶液2!、水2jで順次抽出分層を行ない洗滌した
のち、水2!を加え、攪拌しながら加熱してトルエンエ
!を水と共に留出させ、水性スラリーを得た。これを濾
過後乾燥し、目的とするN−カプロイルアルパラギン酸
ビス2−エチルへキシルアミド439p(収率97チ)
を得た。
The reaction solution was mixed with 0.5 N hydrochloric acid aqueous solution (27) and 0.5 N caustic potassium aqueous solution (2!). , After washing the extracted layers in sequence with 2j of water, 2j of water! Add and heat while stirring to make toluene! was distilled off with water to obtain an aqueous slurry. This was filtered and dried to produce the desired N-caproylalpartic acid bis-2-ethylhexylamide 439p (yield 97g).
I got it.

mp、 137〜140℃ 元素分析値 C(優)   H(%)   N(チ)計
算値  68.83  11.33  9.26実測値
  68.74  11.38  9.20実施例4 N−カプリロイルグルタミン酸273%(1モル)、ラ
ウリルアミン40OFF(2,16モル)およびメタホ
ウ酸201を攪拌機、窒素吹込容管および脱水器を取付
けた反応容器に入れ、120℃に加熱し、窒素、fスを
毎分1!の速さで通じながら攪拌し、6時間、反応を行
った。脱水器の底には水18m1が留出した。
mp, 137-140°C Elemental analysis value C (excellent) H (%) N (chi) Calculated value 68.83 11.33 9.26 Actual value 68.74 11.38 9.20 Example 4 N-Capryloyl Glutamic acid 273% (1 mol), laurylamine 40OFF (2.16 mol) and metaboric acid 201 were placed in a reaction vessel equipped with a stirrer, a nitrogen blowing tube and a dehydrator, heated to 120°C, and nitrogen and fs were added. 1 every minute! The reaction was carried out for 6 hours while stirring at a speed of . 18 ml of water distilled out at the bottom of the dehydrator.

冷却後、反応器内容物を酢酸エチル3!に加熱溶解した
。不溶性のメタホウ酸を沖過除去したのち、冷却してN
−カプリロイルグルタミン酸ビスラウリルアミドを析出
せしめ、白色結晶577FF(収率95チ)を得た。m
p、 12’8〜130℃元素分析値 C(チ)   
 f((チ)   N(チ)計算値  73.09  
12.10  6.91実測値  73.18  12
.I5  6.85実施例5 表−3に示したよりに、各mN−アシルアミノ酸0.5
モルと各m−9アミン0.6モルヲトルエン5001n
tに加え、メタホウ酸10Fをそれぞれ加えたのち、H
字管を取付け、加熱還流を24時間行ったところ、水9
td(0,5モル)がそれぞれHう督 字管底部に舒った。
After cooling, the contents of the reactor were diluted with ethyl acetate 3! The mixture was heated and dissolved. After removing insoluble metaboric acid by filtration, it is cooled and N
-Capryloylglutamic acid bislaurylamide was precipitated to obtain white crystals 577FF (yield: 95%). m
p, 12'8~130℃ elemental analysis value C (chi)
f((chi) N(chi) Calculated value 73.09
12.10 6.91 Actual value 73.18 12
.. I5 6.85 Example 5 As shown in Table 3, each mN-acylamino acid 0.5
mole and each m-9 amine 0.6 mole toluene 5001n
In addition to t and 10F of metaboric acid, H
After attaching a cross tube and heating and refluxing for 24 hours, water 9.
td (0.5 mol) was placed at the bottom of each H-shaped tube.

反応液を0.5規定塩酸、0.5規定水酸化カリウム水
溶液および水それぞれ500−で順次抽出分層洗滌を行
ったのち、水1!を加え、水蒸気蒸留によってトルエン
500−を留出除去して、水性スラリーを得た。これを
濾過乾燥してN−アシルアミノ酸アミドを得た。得られ
たN−アシルアミノ酸の畳量及び収率な同表に一括して
示した。
The reaction solution was sequentially extracted and washed with 0.5N hydrochloric acid, 0.5N aqueous potassium hydroxide solution and 500% water, and then 1% water. was added, and 500% of toluene was removed by steam distillation to obtain an aqueous slurry. This was filtered and dried to obtain N-acylamino acid amide. The amount and yield of the N-acyl amino acids obtained are shown in the same table.

実施例6 NN’−シカプリノイルリジン229z及びメ゛タホウ
酸20pをトルエン500dK加え、H字管を取付けた
後、攪拌下に加熱還流を行にい)がら、乾燥したアンそ
ニアガス15!を毎分500+7!ずつ反応容器底よシ
吹込んだ。さらに、毎分50dずつの速度で乾燥したア
ンモニアガスを反応容器底より吹込みつつ加熱還流を5
時間続けたところ、り唱r H字管底に水9−が瀞った。
Example 6 NN'-Cicaprinoyl lysine 229z and metaboric acid 20p were added to 500 dK of toluene, an H-tube was attached, and while heating and refluxing was carried out with stirring, 15% of dry anthonia gas was added. 500+7 per minute! The mixture was injected into the bottom of the reaction vessel. Furthermore, while blowing dry ammonia gas from the bottom of the reaction vessel at a rate of 50 d/min, heating and refluxing was carried out for 5 d/min.
After continuing for a while, 9-ounces of water was collected at the bottom of the H-shaped tube.

反応液を0.5規定塩酸、0.5規定水酸化ナトリウム
および水それぞれ500dで順次抽出分層洗滌を行った
のち、水500−を加え、水蒸気を吹込みつつトルエン
−500−を留出除去して、水性スラリー90C)−を
得た。これを濾過し、固型物を乾燥してNN’−シカプ
リノイルリジンアミド224 i(収率98チ)を得た
The reaction solution was extracted and washed with 500 d each of 0.5 N hydrochloric acid, 0.5 N sodium hydroxide, and water, and then 500 ml of water was added and toluene 500 ml was removed by distillation while blowing in steam. Thus, an aqueous slurry 90C)- was obtained. This was filtered and the solid material was dried to obtain NN'-Cicaprinoyl lysine amide 224i (yield: 98h).

Claims (2)

【特許請求の範囲】[Claims] (1)N−アシルアミノ酸と一級アミンもしくはアンモ
ニアとを加熱せしめてN−アシルアミノ酸アミドを製造
する際に、水溶性酸性ホウ素化合物を反応系に共存させ
ることを特徴とするN−アシルアミノ酸アミドの製造方
法。
(1) An N-acylamino acid amide characterized by allowing a water-soluble acidic boron compound to coexist in the reaction system when producing the N-acylamino acid amide by heating the N-acylamino acid and a primary amine or ammonia. Production method.
(2)共沸脱水媒体として、沸点98〜125℃の炭化
水素化合物または炭化水素混合物を用いる特許請求の範
囲(1)項記載のN−アシルアミノ酸アミドの製造方法
(2) The method for producing an N-acylamino acid amide according to claim (1), wherein a hydrocarbon compound or a hydrocarbon mixture having a boiling point of 98 to 125°C is used as the azeotropic dehydration medium.
JP2916084A 1984-02-17 1984-02-17 Production of n-acylaminoacid amide Granted JPS6150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2916084A JPS6150A (en) 1984-02-17 1984-02-17 Production of n-acylaminoacid amide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2916084A JPS6150A (en) 1984-02-17 1984-02-17 Production of n-acylaminoacid amide

Publications (2)

Publication Number Publication Date
JPS6150A true JPS6150A (en) 1986-01-06
JPH0353297B2 JPH0353297B2 (en) 1991-08-14

Family

ID=12268506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2916084A Granted JPS6150A (en) 1984-02-17 1984-02-17 Production of n-acylaminoacid amide

Country Status (1)

Country Link
JP (1) JPS6150A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0795540A1 (en) * 1996-03-15 1997-09-17 Hoechst Aktiengesellschaft Process for the preparation of N-Lauroyl-L-glutamic acid di-n-butylamide
EP1094059A1 (en) * 1999-10-20 2001-04-25 Ajinomoto Co., Inc. Process for production of N-acyl amino acid amide
JP2001131145A (en) * 1999-08-20 2001-05-15 Toray Ind Inc Method for producing optically active 3-aminopyrrolidine derivative
US6335468B1 (en) 1999-10-20 2002-01-01 Ajinomoto Co., Inc. Process for production N-acyl amino acid amide
US7745661B2 (en) 2005-04-07 2010-06-29 New Japan Chemical Co., Ltd. Process for producing tricarboxylic acid tris (alkyl-substituted cyclohexylamide)
WO2013122130A1 (en) * 2012-02-17 2013-08-22 国立大学法人名古屋大学 Production method for hydroxy-carboxylic acid amide compound, and novel arylboronic acid compound
CN107382972A (en) * 2016-05-16 2017-11-24 江苏同禾药业有限公司 A kind of synthetic method of Rupatadine fumarate intermediate

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0795540A1 (en) * 1996-03-15 1997-09-17 Hoechst Aktiengesellschaft Process for the preparation of N-Lauroyl-L-glutamic acid di-n-butylamide
JP2001131145A (en) * 1999-08-20 2001-05-15 Toray Ind Inc Method for producing optically active 3-aminopyrrolidine derivative
EP1094059A1 (en) * 1999-10-20 2001-04-25 Ajinomoto Co., Inc. Process for production of N-acyl amino acid amide
US6335468B1 (en) 1999-10-20 2002-01-01 Ajinomoto Co., Inc. Process for production N-acyl amino acid amide
US7745661B2 (en) 2005-04-07 2010-06-29 New Japan Chemical Co., Ltd. Process for producing tricarboxylic acid tris (alkyl-substituted cyclohexylamide)
JP4978466B2 (en) * 2005-04-07 2012-07-18 新日本理化株式会社 Process for producing tricarboxylic acid tris (alkyl-substituted cyclohexylamide)
WO2013122130A1 (en) * 2012-02-17 2013-08-22 国立大学法人名古屋大学 Production method for hydroxy-carboxylic acid amide compound, and novel arylboronic acid compound
US9162972B2 (en) 2012-02-17 2015-10-20 National University Corporation Nagoya University Method for production of hydroxycarboxylic acid amide compounds and novel arylboronic acid compound
CN107382972A (en) * 2016-05-16 2017-11-24 江苏同禾药业有限公司 A kind of synthetic method of Rupatadine fumarate intermediate

Also Published As

Publication number Publication date
JPH0353297B2 (en) 1991-08-14

Similar Documents

Publication Publication Date Title
US3652671A (en) Process for making a cationic methacrylamide
KR100345170B1 (en) PROCESS FOR THE PRODUCTION OF β-HYDROXYALKYLAMIDS
JPS6150A (en) Production of n-acylaminoacid amide
US5300665A (en) Process for preparing fatty acid esters and amides of sulfonic acid salts
US5455377A (en) Process to prepare alkansulphonamides
EP1094059B1 (en) Process for production of N-acyl amino acid amide
US6335468B1 (en) Process for production N-acyl amino acid amide
GB2220000A (en) Preparation of iodoalkynyl carbamates
JPH0278656A (en) Method for splitting (2s, 3s)-treo type optical antipode from racemic mixture of 2-hydroxy-3- (2-aminophenylthio)-3-(4-methoxyphenyl) propionic acid racemic mixture
US5792880A (en) Process for the preparation of N-lauroyl-L-glutamic acid di-n-butylamide
US2810754A (en) Synthesis of l-glutamine from l-glutamic acid
CN109970609A (en) A kind of composition and its application
JPH039898B2 (en)
US2898353A (en) Preparation of amides
CN112409237B (en) Preparation method of N-benzylphthalimide
US3105092A (en) Purification of beta-alanine
US3668232A (en) N-substituted 2-aminomethyl-2{40 -biphenylcarboxylic acid and derivatives
JPH06211752A (en) Production of 2,2-bis@(3754/24)3-nitro-4-hydroxyphenyl)-hexafluoropropane
JPS6317851A (en) Production of high-purity 3-nitrobenzaldehyde
SU178759A1 (en)
JP4892849B2 (en) Process for producing 1,3,5-benzenetricarboxylic acid amide
CN115636866A (en) Method for synthesizing bridged ring compound and intermediate thereof
JPS604808B2 (en) Method for producing pentafluoropropanoic acid derivatives
JPH0296559A (en) Production of amidoalkanesulfonic acid
JPS59130247A (en) Novel synthesis of 4-aminobutylamide hydrochloride

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees