JPH0353297B2 - - Google Patents

Info

Publication number
JPH0353297B2
JPH0353297B2 JP2916084A JP2916084A JPH0353297B2 JP H0353297 B2 JPH0353297 B2 JP H0353297B2 JP 2916084 A JP2916084 A JP 2916084A JP 2916084 A JP2916084 A JP 2916084A JP H0353297 B2 JPH0353297 B2 JP H0353297B2
Authority
JP
Japan
Prior art keywords
reaction
acid
water
acylamino
acid amide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2916084A
Other languages
Japanese (ja)
Other versions
JPS6150A (en
Inventor
Tooru Ikeda
Shinji Higuchi
Katsutoshi Hashimoto
Masao Pponma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP2916084A priority Critical patent/JPS6150A/en
Publication of JPS6150A publication Critical patent/JPS6150A/en
Publication of JPH0353297B2 publication Critical patent/JPH0353297B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はN−アシルアミノ酸アミドの改良され
た製造方法に関するものである。 N−アシルアミノ酸アミドは低毒性で皮膚刺激
性が少なく生分解性の良好な油溶性非イオン界面
活性剤として抗酸化剤、香粧品添加剤、帯電防止
剤あるいは抗菌剤等の用途に用いられ、また、油
類に添加した際に油類を凝固せしめる性質を有す
ることから(特公昭53−13434号公報)、油凝固剤
としてその工業的利用価値が注目されている。 従来、N−アシルアミノ酸アミドはアミノ酸ア
ミド合成の中間体として一種のペプチド合成手法
により多く合成されてきた。すなわち、アミノ酸
のアミノ基をホルミル基、アセチル基、あるいは
ベンジルオキシカルボニル基等で保護し、次いで
アミノ酸のカルボキシル基をアルキルエステル、
フエノールエステル、酸ハライドあるいは酸無水
物等の形で活性化したのぢ、アルキルアミン等を
反応させ、N−保護アミノ酸アルキルアミド等を
合成する方法である。 また、炭素数1〜22のアシル基を有するN−ア
シルアミノ酸と炭素数8以上のアルキルアミン等
とを直接加熱反応せしめてN−アシルアミノ酸ア
ミドを得る方法が知られているが(特公昭52−
18691号公報)、アルキルアミンが炭素数7以下あ
るいはアンモニアである場合には、当該方法の適
用は困難である。すなわち、当該公知方法はN−
アシルアミノ酸と炭素数8以上のアミンとを混合
したのち、160〜200℃に直接加熱もしくはキシレ
ン等の不活性溶媒の存在下で加熱還流脱水を行な
うことにより、目的とするN−アシルアミノ酸ア
ミドを得る方法であるが、炭素数7以上のアルキ
ルアミン等にこの方法を適用する場合、当該アミ
ンの沸点が低いため、160〜200℃の直接加熱もし
くはキシレン等の存在下における加熱の条件下
で、当該アミンが逸散し、反応収率が低下する欠
点を有している。また、N−アシルアミノ酸のア
ミノ酸残基が酸性アミノ酸残基であつて、複数個
のカルボキシル基を有する場合には、一方のカル
ボキシル基は容易に反応するものの、他方は反応
性が低くなる傾向が著しい。このため、ビスある
いはトリスアミド置換体を得るために、高温かつ
長時間という苛酷な反農条件が必須となる。この
ような反応条件下では目的とするカルボキシル基
とアミンの縮合反応の他に、アミンの酸化、N−
アシル基とアミンの交換縮合反応、あるいはニト
リル化等の副反応による副生成物の生成が起り、
あるいは光学活性N−アシルアミノ酸を原料とし
て用いた場合にはラセミ化が同時に進行するた
め、目的とする光学活性N−アシルアミノ酸アミ
ドが得られない等の問題が生じる。 本発明はN−アシルアミノ酸アミドの工業的に
有利な製造方法について鋭意検討した結果、N−
アシルアミノ酸を何ら活性化することなく、アル
キルアミン、アルキレンアミン、シクロアルキル
アミン、アリールアミン等の一級アミンもしくは
アンモニアと加熱反応せしめる際に、触媒として
水溶性酸性ホウ素化合物を共存せしめることによ
つて目的とするN−アシルアミノ酸アミドが高収
率で得られることを見出し、本発明を完成した。 本発明に係わる触媒の効果としては、比較的低
温でかつ速やかに反応が進行し高収率で目的物が
得られること、副反応生成物が少なく従つて精製
が極めて容易となることおよび低温で反応するた
め原料に光学活性N−アシルアミノ酸を使用した
場合でもラセミ化が抑えられること等が挙げられ
る。更にまた触媒は水溶性であり、反応液を反応
終了ののち水または稀アルカリ水溶液で洗滌する
ことにより容易に目的物と分離できるため、精製
工程に悪影響を及ぼさない特徴を有している。 本発明に於て原料として用いられるN−アシル
アミノ酸のアミノ酸成分としては特に限定されな
いが、グリシン、アラニン、バリン、ロイシン等
の中性アミノ酸、フエニルアラニン等の有核アミ
ノ酸、セリン、スレオニン等の官能性置換基を有
する中性アミノ酸、リジン、オルニチン等の塩基
性アミノ酸およびグルタミン酸、アスパラギン酸
等の酸性アミノ酸を例示することができる。アシ
ル成分としては特に限定されないが、炭素数1〜
22の飽和または不飽和脂肪酸より誘導されるアシ
ル基、例えばホルミル、アセチルプロピオイル、
カプロイル、カプリロイル、カプリノイル、ラウ
ロイル、ミリストイル、パルミトイル、ステアロ
イル、アラキノイル、ベヘノイル、オレオイル、
リノレオイル等の単一脂肪酸アシル基、ヤシ油脂
肪酸アシル、硬化牛脂脂肪酸アシル等の天然系混
合脂肪酸アシル基の他、安息香酸アシル、桂皮酸
アシル等の芳香族カルボン酸アシル等を例示する
ことができる。 N−アシルアミノ酸と共に加熱反応させるべき
一級アミンもしくはアンモニアを一般式で表示す
れば次の通りである。 RNH2 (但し、Rは水素および炭素数1〜22のアルキル
基、アルキレン基、シクロアルキル基、またはア
リール基を示す) かかる一級アミンとしては、メチルアミン、エ
チルアミン、ブチルアミン、ヘキシルアミン、オ
クチルアミン、2−エチルヘキシルアミン、ラウ
リルアミン、セチルアミン、ステアリルアミン等
の直鎖または分岐鎖脂肪族アミン、シクロペンチ
ルアミン、シクロヘキシルアミン、4−イソプロ
ピルシクロヘキシルアミン等の脂環式アミン、お
よびアニリン、ベンジルアミン、ナフチルアミ
ン、4−イソプポピルアニリン等の芳香族アミン
等を例示することができる。 反応系に共存させる触媒として用いられる水溶
性酸性ホウ素化合物としては、ホウ酸、メタホウ
酸、酸化ホウ素、フエニルホウ素、三フツ化ホウ
素などが好適である。これらの水溶性酸性ホウ素
化合物は反応を著しく促進する硬化を有し、反応
時間を短縮させるのみならず、当該水溶性酸性ホ
ウ素化合物を反応系に共存させた場合には、熱に
不安定なN−アシルアミノ酸および一級アミンが
分解等の副反応を起すことなく目的とする脱水反
応が進行する。原料としてN−アシル酸性アミノ
酸を選んだ場合、触媒として当該水溶性酸性ホウ
素化合物を反応系に共存させない場合にはモノア
ミド化合物が主生成物であるのに比し、当該水溶
性酸性ホウ素化合物の反応系に共存させた場合に
は、ビスアミド化合物が高収率で得られる。さら
に、原料として光学活性N−アシルアミノ酸を用
いた場合、低い反応温度でも充分に実用的な反応
速度が得られるため、ラセミ化を起すことなく目
的とする光学活性N−アシルアミノ酸アミドを得
ることが可能である。 本発明を実施するにあたつては、N−アシルア
ミノ酸と一級アミンまたはアンモニアを共存せし
め、さらに水溶性酸性ホウ素化合物を少量加え、
共沸脱水媒体の存在下であるいは無媒体下に加熱
するだけでよく、操作ははなはだ簡易である。 原料のN−アシルアミノ酸と一級アミンの比率
はN−アシルアミノ酸のカルボキシル基1当量あ
たり、一級アミン1.0〜1.2当量が一般的に好まし
い。すなわち、反応に消費される一級アミンはカ
ルボキシル基1当量あたり1当量であるが、反応
進行につれて遊離アミンの濃度が低下し、反応完
結に長時間を要するのを避けるため、経済的に有
利な範囲で一級アミンをわずかに過剰に使用する
とよい。一級アミンがメチルアミン、エチルアミ
ンおよびアンモニアである場合には、原料のN−
アシルアミノ酸のカルボキシル基あたりのこれら
一級アミン当量比はより多くすることが好まし
い。すなわち、これらの一級アミンはいずれも沸
点が極めて低い物質であるために、加熱反応中に
反応系から逸散しやすい傾向を有し、反応進行中
にこれらの一級アミンをガス状にして少量ずつ補
充して、反応系内の残存カルボキシル基に対する
これらの一級アミンの当量比が1.0以上となるよ
うにする方法がよい。 触媒として用いる水溶性酸性ホウ素化合物の添
加量は特に限定されないが、N−アシルアミノ酸
に対し1〜20重量%が好ましい。すなわち、1重
量%未満の場合は触媒としての反応促進効果が充
分でなく、また20重量%を超える場合は経済的
に、また反応終了後の触媒除去操作において、不
利になりやすいからである。 反応時の加熱温度は、無媒体の場合、反応によ
つて生じた水を除くため100℃以上の温度が一般
に好ましく、加熱温度が高いほど反応が促進され
るが、副反応を抑制するために、110〜140℃が最
も好ましい。特に光学活性N−アシルアミノ酸ア
ミドを得る場合には、ラセミ化を抑制するために
110〜125℃が最も好ましい。無媒体下での反応
は、炭素数8以上の一級アミンを用いる場合には
好ましく、炭素数8未満の一級アミンまたはアン
モニアを用いる場合には撹拌等の操作性が悪くな
りやすいため、装置等の工夫が必要である。 一方、共沸脱水媒体の共存下で加熱反応を行う
場合には、反応によつて生じた水が共沸で容易に
反応系外に除かれるため、炭素数8未満の一級ア
ミンまたはアンモニアを原料として用いる場合に
も適している。共沸脱水媒体は、原料のN−アシ
ルアミノ酸あるいは一級アミン、アンモニアと反
応しないものであれば特に制限はないが、反応終
了後に水、酸またはアルカリ水溶液で分層洗滌が
容易に行えることから炭化水素化合物が最も適し
ている。共沸媒体としては、沸点98〜140℃の炭
化水素化合物が最も好ましい。すなわち、沸点が
98℃未満の場合には反応系の温度が充分な反応速
度を得るには低過ぎ、沸点が140℃を超える場合
には反応が速やかであるもののN−アシルアミノ
酸の分解、アミンの酸化などの好ましくない副反
応が進行するからである。特にラセミ化を抑制す
る必要のある場合には、沸点98〜125℃の炭化水
素化合物が最も好ましい共沸媒体であり、ヘプタ
ン、イソオクタン、メチルシクロヘキサン、シク
ロヘプタン、メチルシクロヘキセン、ジイソブチ
レン、トルエン、オクタン、オクテンおよびジメ
チルシクロヘキサン等の化合物およびこれらの混
合物、または、これらの化合物とキシレン等の高
沸点炭化水素化合物を適宜混合して沸点を125℃
以下に調整した混合物等が好適な例として挙げら
れる。 反応に要する時間は反応に供する原料、加熱温
度および触媒の種類と添加量等によつて異なる
が、大略1〜35時間で反応が完結する。 反応完結後に、目的とするN−アシルアミノ酸
アミドを単離する方法としては、無媒体下で反応
した場合、反応後酢酸エチル等の有機溶媒に加熱
溶解し、触媒等の不溶物質を過除去した後、冷
却再結晶して目的とするN−アシルアミノ酸アミ
ドを得ることができる。N−アシルアミノ酸アミ
ドの種類によつては油類のみならず酢酸エチル等
の有機溶媒をゲル化させる場合があり、このよう
な場合には冷却時に結晶化せず全体がゲル化する
ので、反応組成物を水、酸またはアルカリ水溶液
等でスラリー洗滌を繰返すことによつて触媒、未
反応原料あるいは副反応生成物を除去して目的と
するN−アシルアミノ酸アミドを得ることができ
る。 炭化水素化合物等を共沸脱水媒体として用いた
場合、反応終了後に共沸脱水媒体を蒸溜除去して
から上記のごとく酢酸エチル等の有機溶媒から再
結晶する方法も可能であるが、目的とするN−ア
シルアミノ酸アミドが水に難溶である性質を利用
して次のような方法を用いることができる。 すなわち、反応混合物に水を加え充分撹拌した
のち分層し、水層に触媒を抽出除去させる。同様
に鉱酸の稀水溶液またはアルカリ稀水溶液を用い
ることにより、未反応の一級アミン、N−アシル
アミノ酸および副反応生成物等を抽出除去させ
る。この操作を繰返すことによつて目的とするN
−アシルアミノ酸アミドを共沸脱水媒体との混合
物として精製することができる。この方法を実施
する際、共沸脱水媒体として用いた炭化水素化合
物の存在は分層分離を容易ならしめ操作が簡易と
なる特徴を有する。特に目的とするN−アシルア
ミノ酸アミドが油類をゲル化させる性質を有する
場合、共沸脱水媒体として用いられた炭化水素化
合物をゲル化させることが多く、分層分離に際
し、炭化水素化合物層は粒状のゲル状組成物とな
つて浮上するため、容易に水層を分離除去するこ
とができる。 精製が終了したのち、共沸脱水媒体とN−アシ
ルアミノ酸アミドの混合物に水を加え、撹拌しな
がら水蒸気蒸留または水との共沸蒸留を行うこと
によつて、共沸脱水媒体を留出除去させると、目
的とするN−アシルアミノ酸アミドの水性スラリ
ーが得られ、これを固液分離、乾燥して目的物が
単離される。この方法によれば、固液分離は最終
工程の一回だけでよく、反応から精製までを一つ
の反応装置の中で実施できるため、製造装置が簡
便になり、工程操作もはなはだ簡易となる。以
下、実施例により具体的に説明するが、本発明は
これに限定されるものでないことは言うまでもな
い。 実施例 1 N−ラウロイル−L−グルタミン酸329g(1
モル)、n−ブチルアミン149g(2.04モル)およ
びホウ酸30gをトルエン1に加え、H字管を取
付け加熱還流を24時間行つたところ、水36ml(2
モル)を生じた。 反応液を0.5規定硫酸水溶液2、0.5規定苛性
ソーダ水溶液2、水2で順次抽出分層して洗
滌したのち、水2を加え、撹拌下に加熱し、ト
ルエン1を水と共に留出させ、水性スラリーを
得た。これを過乾燥して目的とするN−ラウロ
イル−L−グルタミン酸酸ビスn−ブチルアミド
430g(収率98%)を得た。mp148〜150℃ 元素分析値 C(%) H(%) N(%) 計算値 68.29 11.23 9.56 実施値 68.37 11.18 9.58 また、このものの施光度は以下に示した通り標
品と一致し、何らラセミ化は伴なわなかつた。 サンプル 施光度(250nm:1%エタノール溶
液) 実施例 −305° 対照 −308° 比較例 N−ラウロイル−L−グルタミン酸329g(1
モル)およびn−ブチルアミン149g(2.04モル)
をキシレン1(比較例1とする。)またはトル
エン1(比較例2とする。)にそれぞれ加え、
比較例1においては8時間、比較例2においては
45時間の加熱反応を行つた。実施例1と同様に、
反応液を硫酸水溶液、苛性ソーダ水溶液および水
で順次、抽出分層して洗滌したのち、溶媒を共沸
除去し、過乾燥してN−ラウロイルグルタミン
酸ビスn−ブチルアミドを得た。その結果を表−
1に示す。 比較例1は表−1に示されたようにラセミ化が
著しく進行していることが明らかになつた。比較
例2は極めて低収率であつたが、これは苛性ソー
ダ水溶液による抽出分層洗滌の際に、大半の生成
物が抽出除去されたことに由来する。当該抽出液
に硫酸を加えPH2に中和して得られる固形物318
gはN−ラウロイルグルタミン酸モノn−ブチル
アミドが主成分であることが、既知の方法で得ら
れる標品との比較により確認された。
The present invention relates to an improved method for producing N-acylamino acid amides. N-acylamino acid amide is an oil-soluble nonionic surfactant with low toxicity, low skin irritation, and good biodegradability, and is used for applications such as antioxidants, cosmetic additives, antistatic agents, and antibacterial agents. Furthermore, since it has the property of coagulating oils when added to oils (Japanese Patent Publication No. 13434/1983), its industrial utility value as an oil coagulant is attracting attention. Conventionally, many N-acyl amino acid amides have been synthesized as intermediates for amino acid amide synthesis by a type of peptide synthesis method. That is, the amino group of an amino acid is protected with a formyl group, acetyl group, or benzyloxycarbonyl group, and then the carboxyl group of the amino acid is protected with an alkyl ester,
This is a method for synthesizing N-protected amino acid alkylamides, etc. by reacting activated phenol esters, acid halides, acid anhydrides, etc. with alkylamines, etc. In addition, a method is known in which an N-acylamino acid having an acyl group having 1 to 22 carbon atoms is directly heated and reacted with an alkylamine having 8 or more carbon atoms to obtain an N-acylamino acid amide (Japanese Patent Publication No. 52 −
18691), it is difficult to apply this method when the alkylamine has 7 or fewer carbon atoms or is ammonia. That is, the known method is N-
After mixing an acylamino acid and an amine having 8 or more carbon atoms, the desired N-acylamino acid amide can be obtained by directly heating the mixture to 160 to 200°C or by heating and dehydrating it under reflux in the presence of an inert solvent such as xylene. However, when applying this method to alkylamines having 7 or more carbon atoms, etc., the boiling point of the amines is low, so under the conditions of direct heating at 160 to 200 ° C or heating in the presence of xylene etc. This method has the disadvantage that the amine escapes and the reaction yield decreases. In addition, when the amino acid residue of the N-acyl amino acid is an acidic amino acid residue and has multiple carboxyl groups, one carboxyl group easily reacts, but the other tends to have low reactivity. Significant. Therefore, in order to obtain bis- or trisamide-substituted products, harsh anti-agricultural conditions such as high temperatures and long hours are required. Under such reaction conditions, in addition to the desired condensation reaction between the carboxyl group and the amine, oxidation of the amine and N-
By-products are generated due to exchange condensation reactions between acyl groups and amines, or side reactions such as nitrification.
Alternatively, when an optically active N-acylamino acid amide is used as a raw material, racemization proceeds at the same time, resulting in problems such as not being able to obtain the desired optically active N-acylamino acid amide. The present invention was developed as a result of intensive studies on industrially advantageous production methods for N-acylamino acid amides.
The purpose is to coexist with a water-soluble acidic boron compound as a catalyst when acylamino acids are heated to react with primary amines such as alkylamines, alkylene amines, cycloalkylamines, arylamines, etc. or ammonia without any activation. The present invention was completed based on the discovery that the N-acylamino acid amide can be obtained in high yield. The effects of the catalyst according to the present invention are that the reaction proceeds quickly at a relatively low temperature and the desired product can be obtained in high yield, that there are few side reaction products, and therefore purification is extremely easy. Even when an optically active N-acyl amino acid is used as a raw material for reaction, racemization can be suppressed. Furthermore, the catalyst is water-soluble and can be easily separated from the target product by washing the reaction solution with water or a dilute aqueous alkali solution after the reaction is completed, so it has the characteristic that it does not adversely affect the purification process. The amino acid components of the N-acyl amino acids used as raw materials in the present invention are not particularly limited, but include neutral amino acids such as glycine, alanine, valine, and leucine, nucleated amino acids such as phenylalanine, serine, threonine, etc. Examples include neutral amino acids having functional substituents, basic amino acids such as lysine and ornithine, and acidic amino acids such as glutamic acid and aspartic acid. The acyl component is not particularly limited, but has 1 to 1 carbon atoms.
Acyl groups derived from 22 saturated or unsaturated fatty acids, such as formyl, acetylpropioyl,
Caproyl, capryloyl, caprinoyl, lauroyl, myristoyl, palmitoyl, stearoyl, arachinoyl, behenoyl, oleoyl,
Examples include single fatty acid acyl groups such as linoleoyl, natural mixed fatty acid acyl groups such as coconut oil fatty acid acyl, hydrogenated beef tallow fatty acid acyl, and aromatic carboxylic acid acyl groups such as acyl benzoate and acyl cinnamate. . The general formula of the primary amine or ammonia to be reacted with N-acylamino acid by heating is as follows. RNH 2 (wherein R represents hydrogen and an alkyl group having 1 to 22 carbon atoms, an alkylene group, a cycloalkyl group, or an aryl group) Such primary amines include methylamine, ethylamine, butylamine, hexylamine, octylamine, Linear or branched aliphatic amines such as 2-ethylhexylamine, laurylamine, cetylamine, stearylamine, alicyclic amines such as cyclopentylamine, cyclohexylamine, 4-isopropylcyclohexylamine, and aniline, benzylamine, naphthylamine, 4 Examples include aromatic amines such as -isopropylaniline. Preferred examples of the water-soluble acidic boron compound used as a catalyst to coexist in the reaction system include boric acid, metaboric acid, boron oxide, phenylboron, and boron trifluoride. These water-soluble acidic boron compounds have curing properties that significantly accelerate the reaction, and not only shorten the reaction time, but also reduce heat-labile N2 when these water-soluble acidic boron compounds coexist in the reaction system. - The desired dehydration reaction of acylamino acids and primary amines proceeds without side reactions such as decomposition. When an N-acyl acidic amino acid is selected as a raw material, a monoamide compound is the main product when the water-soluble acidic boron compound is not coexisting in the reaction system as a catalyst, whereas the reaction of the water-soluble acidic boron compound is When coexisting in the system, bisamide compounds can be obtained in high yield. Furthermore, when an optically active N-acylamino acid amide is used as a raw material, a sufficiently practical reaction rate can be obtained even at a low reaction temperature, making it possible to obtain the desired optically active N-acylamino acid amide without causing racemization. is possible. In carrying out the present invention, N-acylamino acids and primary amines or ammonia are allowed to coexist, and a small amount of a water-soluble acidic boron compound is added.
The operation is extremely simple, as it only requires heating in the presence of an azeotropic dehydration medium or in the absence of a medium. The ratio of the raw material N-acylamino acid to the primary amine is generally preferably 1.0 to 1.2 equivalents of the primary amine per equivalent of the carboxyl group of the N-acylamino acid. That is, the primary amine consumed in the reaction is 1 equivalent per 1 equivalent of carboxyl group, but as the reaction progresses, the concentration of free amine decreases, and in order to avoid taking a long time to complete the reaction, an economically advantageous range is set. It is advisable to use a slight excess of primary amine. When the primary amine is methylamine, ethylamine and ammonia, the raw material N-
It is preferable to increase the equivalent ratio of these primary amines per carboxyl group of the acylamino acid. In other words, since these primary amines are substances with extremely low boiling points, they tend to escape from the reaction system during the heating reaction, and during the course of the reaction, these primary amines are turned into gas and are gradually released. A preferred method is to replenish the primary amine so that the equivalent ratio of these primary amines to the remaining carboxyl groups in the reaction system is 1.0 or more. The amount of the water-soluble acidic boron compound used as a catalyst is not particularly limited, but is preferably 1 to 20% by weight based on the N-acylamino acid. That is, if it is less than 1% by weight, the reaction promoting effect as a catalyst will not be sufficient, and if it exceeds 20% by weight, it will likely be disadvantageous economically and in the catalyst removal operation after the reaction is completed. The heating temperature during the reaction is generally preferably 100°C or higher in order to remove water generated by the reaction in the case of no medium.The higher the heating temperature, the faster the reaction, but in order to suppress side reactions, , 110-140°C is most preferred. Particularly when obtaining optically active N-acylamino acid amides, in order to suppress racemization,
110-125°C is most preferred. Reaction without a medium is preferable when using a primary amine with 8 or more carbon atoms, but when using a primary amine with less than 8 carbon atoms or ammonia, operability such as stirring tends to be poor, so Some effort is needed. On the other hand, when a heating reaction is carried out in the coexistence of an azeotropic dehydration medium, the water produced by the reaction is easily removed from the reaction system by azeotropy, so primary amines or ammonia with less than 8 carbon atoms are used as raw materials. It is also suitable for use as a There are no particular restrictions on the azeotropic dehydration medium as long as it does not react with the raw material N-acylamino acids, primary amines, or ammonia, but carbonization is preferred because it can be easily washed in separate layers with water, acid, or alkaline aqueous solution after the reaction is completed. Hydrogen compounds are most suitable. The most preferred azeotropic medium is a hydrocarbon compound with a boiling point of 98 to 140°C. In other words, the boiling point
If the temperature is less than 98°C, the temperature of the reaction system is too low to obtain a sufficient reaction rate, and if the boiling point exceeds 140°C, the reaction may be rapid but may cause decomposition of N-acylamino acids, oxidation of amines, etc. This is because undesirable side reactions proceed. Hydrocarbon compounds with a boiling point of 98-125°C are the most preferred azeotropic media, especially when racemization needs to be suppressed, such as heptane, isooctane, methylcyclohexane, cycloheptane, methylcyclohexene, diisobutylene, toluene, octane, etc. , compounds such as octene and dimethylcyclohexane, and mixtures thereof, or mixtures of these compounds and high-boiling hydrocarbon compounds such as xylene as appropriate to raise the boiling point to 125°C.
Suitable examples include mixtures prepared below. The time required for the reaction varies depending on the raw materials used for the reaction, the heating temperature, the type and amount of the catalyst added, etc., but the reaction is completed in about 1 to 35 hours. After the reaction is completed, the desired N-acylamino acid amide can be isolated by heating and dissolving it in an organic solvent such as ethyl acetate after the reaction, and removing insoluble substances such as the catalyst when the reaction is carried out without a medium. Thereafter, the desired N-acylamino acid amide can be obtained by cooling and recrystallizing. Depending on the type of N-acylamino acid amide, not only oils but also organic solvents such as ethyl acetate may be gelled. In such cases, the entire gelation occurs without crystallization upon cooling, so the reaction is slow. By repeatedly slurry washing the composition with water, acid or aqueous alkali solutions, the catalyst, unreacted raw materials or side reaction products can be removed to obtain the desired N-acylamino acid amide. When a hydrocarbon compound or the like is used as the azeotropic dehydration medium, it is also possible to remove the azeotropic dehydration medium by distillation after the completion of the reaction and then recrystallize it from an organic solvent such as ethyl acetate as described above. The following method can be used by utilizing the property that N-acylamino acid amide is sparingly soluble in water. That is, water is added to the reaction mixture, thoroughly stirred, and then separated into layers, and the catalyst is extracted and removed from the aqueous layer. Similarly, by using a dilute aqueous mineral acid solution or a dilute alkali aqueous solution, unreacted primary amines, N-acylamino acids, side reaction products, etc. are extracted and removed. By repeating this operation, the desired N
- Acyl amino acid amides can be purified as a mixture with an azeotropic dehydration medium. When carrying out this method, the presence of a hydrocarbon compound used as an azeotropic dehydration medium facilitates phase separation and simplifies the operation. In particular, when the target N-acylamino acid amide has the property of gelling oils, it often gels the hydrocarbon compound used as the azeotropic dehydration medium, and during phase separation, the hydrocarbon compound layer is Since it floats as a granular gel-like composition, the aqueous layer can be easily separated and removed. After the purification is completed, water is added to the mixture of the azeotropic dehydration medium and the N-acylamino acid amide, and the azeotropic dehydration medium is distilled off by steam distillation or azeotropic distillation with water while stirring. As a result, an aqueous slurry of the target N-acylamino acid amide is obtained, which is subjected to solid-liquid separation and dried to isolate the target product. According to this method, solid-liquid separation only needs to be performed once in the final step, and everything from reaction to purification can be carried out in one reaction apparatus, which simplifies the production apparatus and greatly simplifies process operations. Hereinafter, the present invention will be explained in detail with reference to Examples, but it goes without saying that the present invention is not limited thereto. Example 1 329 g of N-lauroyl-L-glutamic acid (1
149 g (2.04 mol) of n-butylamine and 30 g of boric acid were added to 1 mol of toluene, an H-tube was attached, and the mixture was heated and refluxed for 24 hours.
molar). The reaction solution was extracted and separated in sequence with 2 parts of a 0.5N sulfuric acid solution, 2 parts of a 0.5N caustic soda solution, and 2 parts of water, and then washed. Two parts of water was added and heated with stirring to distill out one part of toluene together with water to form an aqueous slurry. I got it. This is overdried to obtain the desired N-lauroyl-L-glutamic acid bis-n-butylamide.
430g (yield 98%) was obtained. mp148~150℃ Elemental analysis value C(%) H(%) N(%) Calculated value 68.29 11.23 9.56 Actual value 68.37 11.18 9.58 Also, the light intensity of this product matches that of the standard product as shown below, and there is no racemization. was not accompanied. Sample Light intensity (250 nm: 1% ethanol solution) Example -305° Control -308° Comparative example 329 g of N-lauroyl-L-glutamic acid (1
mol) and n-butylamine 149 g (2.04 mol)
were added to xylene 1 (comparative example 1) or toluene 1 (comparative example 2), respectively.
8 hours in Comparative Example 1, and 8 hours in Comparative Example 2.
A heating reaction was carried out for 45 hours. Similar to Example 1,
The reaction solution was extracted and separated into layers and washed successively with an aqueous sulfuric acid solution, an aqueous caustic soda solution, and water, and then the solvent was removed azeotropically and overdried to obtain N-lauroylglutamic acid bis-n-butylamide. Table the results.
Shown in 1. As shown in Table 1, in Comparative Example 1, racemization was found to have progressed significantly. Comparative Example 2 had an extremely low yield, but this was due to the fact that most of the product was extracted and removed during the extraction phase washing with an aqueous caustic soda solution. Solid substance obtained by adding sulfuric acid to the extract and neutralizing it to PH2 318
It was confirmed by comparison with a standard product obtained by a known method that N-lauroylglutamic acid mono-n-butylamide was the main component of g.

【表】 実施例 2 表−2に示したように、各種N−アシルグルタ
ミン酸0.5モル、各種一級アミン1.1モルをそれぞ
れ共沸脱水媒体500mlに入れ、水溶性酸性ホウ素
化合物をそれぞれ10g加えたのち、H字管を取付
け、所定温度でそれぞれ加熱還流を24時間行つた
ところ、水1モル(18ml)がそれぞれH字管の底
に溜つた。 反応液を0.5規定硫酸水溶液1、0.5規定アン
モニア水溶液1および水1で順次抽出分層洗
滌を行つた後、水1を加え、加熱蒸気を吹込
み、共沸脱水媒体500mlを水蒸気蒸留で除去して
水性スラリーを得た。これを過乾燥して、N−
アシルグルタミン酸ビスアミドを得た。得られた
ビスアミドの得量及び収率を一括して同表に示し
た。
[Table] Example 2 As shown in Table 2, 0.5 mol of various N-acyl glutamic acids and 1.1 mol of various primary amines were each placed in 500 ml of azeotropic dehydration medium, and 10 g of each water-soluble acidic boron compound was added. When an H-shaped tube was attached and each sample was heated and refluxed at a specified temperature for 24 hours, 1 mole (18 ml) of water was collected at the bottom of each H-shaped tube. After extracting and washing the reaction solution sequentially with 1 part of 0.5N sulfuric acid solution, 1 part of 0.5N ammonia solution, and 1 part of water, 1 part of water was added, heated steam was blown in, and 500 ml of azeotropic dehydration medium was removed by steam distillation. An aqueous slurry was obtained. This was overdried and N-
Acylglutamic acid bisamide was obtained. The amount and yield of the obtained bisamide are collectively shown in the same table.

【表】 * ココイル:ヤシ油脂肪酸アシル
実施例 3 N−カプロイルアスパラギン酸217g入(1モ
ル)と2−エチルヘキシルアミン266g(2.06モ
ル)をトルエン1に加え、メタホウ酸20gを加
えたのち、H字管を取付け加熱還流を20時間行つ
たところ、水が36ml(2モル)生じた。 反応液を0.5規定塩酸水溶液2、0.5規定苛性
カリ水溶液2、水2で順次抽出分層を行ない
洗滌したのち、水2を加え、撹拌しながら加熱
してトルエン1を水と共に留出させ、水性スラ
リーを得た。これを過後乾燥し、目的とするN
−カプロイルアルパラギン酸ビス2−エチルヘキ
シルアミド439g(収率97%)を得た。mp.137〜
140℃ 元素分析値 C(%) H(%) N(%) 計算値 68.83 11.33 9.26 実施値 68.74 11.38 9.20 実施例 4 N−カプリロイルグルタミン酸273g(1モ
ル)、ラウリルアミン400g(2.16モル)およびメ
タホウ酸20gを撹拌機、窒素吸込み管および脱水
器を取付けた反応容器に入れ、120℃に加熱し、
窒素ガスを毎分1の速さで通じながら撹拌し、
6時間、反応を行つた。脱水器の底には水18mlが
留出した。 冷却後、反応器内容物を酢酸エチル3に加熱
溶解した。不溶性のメタホウ酸を過除去したの
ち、冷却してN−カプリロイルグルタミン酸ビス
ラウリルアミドを析出せしめ、白色結晶577g
(収率95%)を得た。mp.128〜130℃ 元素分析値 C(%) H(%) N(%) 計算値 73.09 12.10 6.91 実施値 73.18 12.15 6.85 実施例 5 表−3に示したように、各種N−アシルアミノ
酸0.5モルと各種一級アミン0.6モルをトルエン
500mlに加え、メタホウ酸10gをそれぞれ加えた
のち、H字管を取付け、加熱還流を24時間行つた
ところ、水9ml(0.5モル)がそれぞれH字管底
部に溜つた。 反応液を0.5規定塩酸、0.5規定水酸化カリウム
水溶液および水それぞれ500mlで順次抽出分層洗
滌を行つたのち、水1を加え、水蒸気蒸留によ
つてトルエン500mlを留出除去して、水性スラリ
ーを得た。これを過乾燥してN−アシルアミノ
酸アミドを得た。得られたN−アシルアミノ酸の
得量及び収率を同表に一括して示した。
[Table] * Cocoyl: Coconut oil fatty acid acyl Example 3 217 g (1 mol) of N-caproyl aspartic acid and 266 g (2.06 mol) of 2-ethylhexylamine were added to 1 toluene, 20 g of metaboric acid was added, and H When a tube was attached and the mixture was heated and refluxed for 20 hours, 36 ml (2 moles) of water was produced. The reaction solution was washed with 2 parts of 0.5N hydrochloric acid solution, 2 parts of 0.5N caustic potassium solution, and 2 parts of water, and then 2 parts of water was added and heated with stirring to distill 1 part of toluene together with water to form an aqueous slurry. I got it. This is then dried and the desired N
-439 g (yield 97%) of caproylalpartic acid bis-2-ethylhexylamide was obtained. mp.137~
140℃ Elemental analysis value C(%) H(%) N(%) Calculated value 68.83 11.33 9.26 Actual value 68.74 11.38 9.20 Example 4 273g (1 mol) of N-capryloylglutamic acid, 400g (2.16 mol) of laurylamine, and metabolous 20g of acid was placed in a reaction vessel equipped with a stirrer, nitrogen suction pipe and dehydrator, heated to 120℃,
Stir while passing nitrogen gas at a rate of 1 min.
The reaction was carried out for 6 hours. 18 ml of water was distilled out at the bottom of the dehydrator. After cooling, the contents of the reactor were heated and dissolved in 3 ml of ethyl acetate. After excessively removing insoluble metaboric acid, it was cooled to precipitate N-capryloylglutamic acid bislaurylamide, yielding 577 g of white crystals.
(yield 95%). mp.128-130℃ Elemental analysis value C(%) H(%) N(%) Calculated value 73.09 12.10 6.91 Actual value 73.18 12.15 6.85 Example 5 As shown in Table-3, 0.5 mol of various N-acyl amino acids and 0.6 mol of various primary amines in toluene.
After adding 500 ml and 10 g of metaboric acid to each, an H-shaped tube was attached and heating and reflux was performed for 24 hours, resulting in 9 ml (0.5 mol) of water collecting at the bottom of each H-shaped tube. After extracting and washing the reaction solution with 500 ml each of 0.5N hydrochloric acid, 0.5N potassium hydroxide aqueous solution, and water in sequence, 1 portion of water was added, and 500 ml of toluene was removed by steam distillation to form an aqueous slurry. Obtained. This was overdried to obtain N-acylamino acid amide. The amount and yield of the obtained N-acyl amino acids are shown in the same table.

【表】 実施例 6 NN′−ジカプリノイルリジン229g及びメタホ
ウ酸20gをトルエン500mlに加え、H字管を取付
けた後、撹拌下に加熱還流を行ないながら、乾燥
したアンモニアガスが15を毎分500mlずつ反応
容器底より吹込んだ。さらに、毎分50mlずつの速
度で乾燥したアンモニアガスを反応容器底より吹
込みつつ加熱還流を5時間続けたところ、H字管
底に水9mlが溜つた。 反応液を0.5規定塩酸、0.5規定水酸化ナトリウ
ムおよび水それぞれ500mlで順次抽出分層洗滌を
行つたのち、水500mlを加え、水蒸気を吹込みつ
つトルエン500mlを留出除去して、水性スラリー
900mlを得た。これを過し、固型物を乾燥して
NN′−ジカプリノイルリジンアミド224g(収率
98%)を得た。
[Table] Example 6 229 g of NN'-dicaprinoyllysine and 20 g of metaboric acid were added to 500 ml of toluene, an H-tube was attached, and while heating and refluxing with stirring, dry ammonia gas was added at 15 ml per minute. 500ml each was injected from the bottom of the reaction vessel. Furthermore, when heating and refluxing was continued for 5 hours while blowing dry ammonia gas from the bottom of the reaction vessel at a rate of 50 ml per minute, 9 ml of water accumulated at the bottom of the H-shaped tube. After sequentially extracting and washing the reaction solution with 500 ml each of 0.5N hydrochloric acid, 0.5N sodium hydroxide, and water, 500 ml of water was added, and 500 ml of toluene was distilled off while blowing in steam to form an aqueous slurry.
Obtained 900ml. After this, dry the solid matter.
224 g of NN'-dicaprinoyllysinamide (yield
98%).

Claims (1)

【特許請求の範囲】 1 N−アシルアミノ酸と一級アミンもしくはア
ンモニアとを加熱せしめてN−アシルアミノ酸ア
ミドを製造する際に、水溶性酸性ホウ素化合物を
反応系に共存させることを特徴とするN−アシル
アミノ酸アミドの製造方法。 2 共沸脱水媒体として、沸点98〜125℃の炭化
水素化合物または炭化水素混合物を用いる特許請
求の範囲第1項記載のN−アシルアミノ酸アミド
の製造方法。
[Claims] 1. An N- acyl amino acid, characterized in that a water-soluble acidic boron compound is allowed to coexist in the reaction system when producing an N-acyl amino acid amide by heating the N-acyl amino acid and a primary amine or ammonia. A method for producing acylamino acid amide. 2. The method for producing an N-acylamino acid amide according to claim 1, in which a hydrocarbon compound or hydrocarbon mixture having a boiling point of 98 to 125°C is used as the azeotropic dehydration medium.
JP2916084A 1984-02-17 1984-02-17 Production of n-acylaminoacid amide Granted JPS6150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2916084A JPS6150A (en) 1984-02-17 1984-02-17 Production of n-acylaminoacid amide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2916084A JPS6150A (en) 1984-02-17 1984-02-17 Production of n-acylaminoacid amide

Publications (2)

Publication Number Publication Date
JPS6150A JPS6150A (en) 1986-01-06
JPH0353297B2 true JPH0353297B2 (en) 1991-08-14

Family

ID=12268506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2916084A Granted JPS6150A (en) 1984-02-17 1984-02-17 Production of n-acylaminoacid amide

Country Status (1)

Country Link
JP (1) JPS6150A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19610323C2 (en) * 1996-03-15 1998-04-16 Hoechst Ag Process for the preparation of N-lauroyl-L-glutamic acid di-n-butylamide
JP2001131145A (en) * 1999-08-20 2001-05-15 Toray Ind Inc Method for producing optically active 3-aminopyrrolidine derivative
US6335468B1 (en) 1999-10-20 2002-01-01 Ajinomoto Co., Inc. Process for production N-acyl amino acid amide
JP4277438B2 (en) * 1999-10-20 2009-06-10 味の素株式会社 Method for producing N-acylamino acid amide
EP1867630B1 (en) * 2005-04-07 2010-10-20 New Japan Chemical Co., Ltd. Process for producing tricarboxylic acid tris(alkyl-substituted cyclohexylamide)
CN104114530B (en) 2012-02-17 2016-12-07 国立大学法人名古屋大学 The preparation method of hydroxy carboxylic acid amide compound and novel arylboronic acid compound
CN107382972A (en) * 2016-05-16 2017-11-24 江苏同禾药业有限公司 A kind of synthetic method of Rupatadine fumarate intermediate

Also Published As

Publication number Publication date
JPS6150A (en) 1986-01-06

Similar Documents

Publication Publication Date Title
JPH0353297B2 (en)
JPH06508368A (en) How to make fatty ketones
EP1094059B1 (en) Process for production of N-acyl amino acid amide
US6335468B1 (en) Process for production N-acyl amino acid amide
EP0062161A1 (en) Synthesis of amides using carbamic-acid salts
GB2220000A (en) Preparation of iodoalkynyl carbamates
CN109970609A (en) A kind of composition and its application
US5792880A (en) Process for the preparation of N-lauroyl-L-glutamic acid di-n-butylamide
JPH0615514B2 (en) Method for N, ω trifluoroacetylation of saturated aliphatic α, ω-diaminomonocarboxylic acid
CA2088124A1 (en) Process for preparing fatty peroxyacid precursors having amide moieties in the fatty chain
CN112409237B (en) Preparation method of N-benzylphthalimide
CA2421550C (en) Process for the preparation of midodrine, pharmaceutically-acceptable salts thereof and intermediates
SU178759A1 (en)
JP4370641B2 (en) Process for producing N-substituted aspartic acid or a salt thereof
WO2004037772A1 (en) Convenient and scalable synthesis of ethyl n-[(2-boc-amino) ethyl] glycinate and its hydrochloride salt
Southwick et al. Nitro enol ether 4-nitro-1-cyclohexyl-3-ethoxy-2-oxo-3-pyrroline. Synthesis and use as a reagent for amino group protection
WO1998008806A1 (en) Method for purifying n-acylamino acid amides
US3668232A (en) N-substituted 2-aminomethyl-2{40 -biphenylcarboxylic acid and derivatives
JP3486922B2 (en) Method for producing acid amide
JPS6147828B2 (en)
JPS61129159A (en) Purification of protected amino acid amide compound
US5220041A (en) Sulfonate ester
CA1318459C (en) Imides, a process for their production thereof and a process for the production of dipeptides by using them
EP0946500B1 (en) Process for the preparation of n-(alkanoyl)aminoalkanoyloxy benzenesulfonates
JPH04224585A (en) Production of lithium borohydride

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees