JPS6150716B2 - - Google Patents

Info

Publication number
JPS6150716B2
JPS6150716B2 JP15690980A JP15690980A JPS6150716B2 JP S6150716 B2 JPS6150716 B2 JP S6150716B2 JP 15690980 A JP15690980 A JP 15690980A JP 15690980 A JP15690980 A JP 15690980A JP S6150716 B2 JPS6150716 B2 JP S6150716B2
Authority
JP
Japan
Prior art keywords
flux
welding
content
wire
welding wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15690980A
Other languages
Japanese (ja)
Other versions
JPS5781994A (en
Inventor
Noboru Sugyama
Yutaka Nishikawa
Tatsuhiko Shigematsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP15690980A priority Critical patent/JPS5781994A/en
Publication of JPS5781994A publication Critical patent/JPS5781994A/en
Publication of JPS6150716B2 publication Critical patent/JPS6150716B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3033Ni as the principal constituent
    • B23K35/304Ni as the principal constituent with Cr as the next major constituent

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は低温用鋼の潜弧溶接方法に関し、詳細
には、使用する溶接ワイヤ及びフラツクスを特定
することによつて、溶接金属の機械的性質及びX
線透過能並びに溶接作業性等の要求をすべて満足
し得る様にした低温用鋼の潜弧溶接方法に関する
ものである。 液化プロパンガスや液化天然ガス等の低温液体
を運搬或は貯蔵する為の容器用材料としては、主
に5.5%Ni鋼や9%Ni鋼等のフエライト系低温用
Ni合金鋼が使用されている。このうち9%Ni鋼
はASTM規格でA−353(NNT材)とA−553
(QT材)に分類されており、引張り強さは何れ
も70.3〜84.4Kg/mm2、0.2%耐力はNNT材で52.7Kg/
mm2以上、QT材で59.8Kg/mm2以上、更に−196℃に
おける衝撃値は何れも3.5Kg/mm2以上、という様に
極めて高い性能が要求されている。また当然なが
らこれらの材料を用いて溶接建造を行なう場合の
溶接部に対する要求性質は母材に匹敵するもので
なければならない。これらの要求を満たす為の具
体的な手段としては、適正な成分組成の溶接ワイ
ヤを使用すると共に溶接後適切な熱処理を行なう
のが普通である。しかし液化天然ガスタンクの様
な巨大構造物では溶接後の熱処理が不可能である
から、溶接のままでも優れた低温靭性等が得られ
る様Ni基合金系の溶接材料を使用するのが通常
である。たとえば9%Ni鋼の溶接には、被覆ア
ーク溶接棒による手溶接やTIG溶接が採用されて
おり、手溶接材料としてはAWS−A5.11−
ENiCrFe1〜4が、またTIG溶接材料してはAWS
−A5.14−ERNiCr−3、ERNiCrFe−6或はMo
量を15〜20%まで高めたERNiCrMo−4等に相当
する材料が用いられている。 他方潜弧溶接に関しては、溶接能率は優れてい
るものの、溶接入熱が大きくまた溶接金属の母材
による希釈が著しい為に十分な耐割れ性や機械的
性質が得られず、上記の様な大型構造物の溶接に
はこれまで殆んど実用化されていない。しかし前
記したERNiCrMo−4の様にMo含有量の多い溶
接材料を使用し、且つ適切な成分組成のフラツク
スを使用すれば耐割れ性が改善されるという事実
が確認されるに及び、この種の溶接材料を用いた
潜弧溶接法も一部で実用化されはじめている。 ところがMoを多量含有する溶接材料を使用す
ると、溶接金属のX線透過性能が極端に乏しく
なつて溶接欠陥の検査が困難になる、溶接ビー
ドが垂れ易くなつて作業性及びビード形状が悪化
する、溶接金属の機械強度が低い、等の問題が
生じると共に、溶接ワイヤの生産性が低く、また
高価なMoを多量使用する為にワイヤ価格が高騰
する等の問題も指摘されており、実用に適した方
法とは言い難い。しかし溶接能率の点では潜弧溶
接は他の溶接法に比べて優れたものであるから、
上記欠点を克服して潜弧溶接の実用性を高めるこ
とは極めて有意義なことである。 本発明者等は前述の様な事情に着目し、上記潜
弧溶接法の難点を克服する為には、Mo併用に伴
なう障害を解消する必要があると考え、Moを添
加しなくとも高い耐割れ性を確保し得る様な方法
の開発を期して、溶接ワイヤ及びフラツクスの成
分組成を主体にして鋭意研究を進めてきた。 本発明はかかる研究の結果なされたものであつ
て、その構成とは、 Ni≧60%、10%≦Cr≦30%、C≦1%、Si≦
2%、Fe≦15%、N:0.001〜0.05%の他、Nb≦
4%、Mn≦10%、Al≦1%、Ti≦1%、Mo≦5
%及びW≦5%よりなる群から選択される1種以
上の元素とからなる溶接ワイヤと、 MgO:5〜40%、金属炭酸塩:5〜40%、金
属弗化物:5〜50%、SiO2≦20%を含有する
他、Nb≦30%、Mn≦50%、Al≦8%、Ti≦8
%、Si≦5%、C≦3%、Ni≦30%、Cr≦10
%、Mo≦10%、W≦10%よりなる群から選択さ
れる少なくとも1種以上の合金成分を含有すると
共に、粒度を100メツシユ以下とし、合金成分総
量のフラツクス全体に占める割合が60%以下であ
る焼結型フラツクスを用い、 さらにワイヤ及び/又はフラツクスに含まれる
Nb及びMnの量を下式を満足する様に調整する点
に第1発明の要旨が存在し、また上記フラツクス
に替えて、上記フラツクスにTiO2≦15%を必須
的に添加してなるフラツクスを用いる他は第1発
明と同じ構成をとる点に第2発明の要旨が存在す
る。 2WNb+FNb=8.2〜30% 5WMo+FMo=22.5〜50% 但し 〔WNb:溶接ワイヤ中のNb含有率 FNb:フラツクス中のNb含有率 WMo:溶接ワイヤ中のMn含有率 FMo:フラツクス中のMn含有率〕 即ち本発明では、使用する溶接ワイヤ及びフラ
ツクスの成分組成、特にNbとMnの含有量を特定
すると共に、ガス成分であるN量を限定し、溶接
金属の耐割れ性その他の諸特性を改善することに
より、Moの減量又は省略を可能にすることがで
きた。 以下溶接ワイヤ及びフラツクスの成分組成を特
定した根拠を主体にして本発明の構成及び作用効
果を説明するが、下記は本発明を限定する性質の
ものではなく、前・後記の趣旨に適合し得る範囲
で適当に変更して実施することはすべて本発明の
範囲に含まれる。 まず本発明において最も重要なNbとMnについ
て説明する。これらは相剰効果によつて溶接金属
の引張り強さ及び耐割れ性等を高めると共に、ス
ラグ剥離性等の溶接作業性を高める作用がある。
即ちNbを単独で使用した場合、含有量を高める
に従つて溶接金属の0.2%耐力は向上するが、引
張り強さ及び低温靭性は著しく低下しまたスラグ
剥離性も悪化する。一方Mnには単独で引張り強
さや低温靭性を高める作用は認められない。とこ
ろがNbとMnを同時に溶接金属中に存在せしめる
と、Nbによる引張り強さ及び低温靭性の低下傾
向並びにスラグ剥離性の低下傾向が共存Mnによ
つて緩和乃至解消される。これらの相剰効果は溶
接金属中にNbを4.1〜15%、Mnを4.5〜10%存在
せしめることによつて有効に発揮され、前記下限
未満では相剰効果が認められない。またNb量が
多すぎると引張り強さ及び低温靭性の低下が著し
くなり、またMn量が多すぎると伸び、絞り及び
溶接作業性が劣化する。 ところでNb及びMnは溶接ワイヤ及びフラツク
ス中の合金成分として供給され、何れから供給し
ても本質的な差異は認められない。しかるにNb
及びMnをフラツクスから供給する場合、これら
の溶接金属中への歩留りはNbで1/2、Mnで1/5で
あり、一方溶接ワイヤから供給する場合の歩留り
はほぼ100%である。従つてこれらを溶接ワイヤ
及び/又はフラツクスから供給するに当たつて
は、次式を満足する様に溶接ワイヤ中のNb量
(WNb)、Mn量(WMo)及びフラツクス中のNb量
(FNb)、Mn量(FMo)を定めればよい。 2WNb+FNb=8.2〜30(%) 5WMo+FMo=22.5〜50(%) これら合金元素のうちNbについては、これを
溶接ワイヤから供給する場合、ワイヤ中のNb量
が4%超になるとワイヤ製造時の歩留りが極端に
低下するので、ワイヤ中のNb量は4%以下に止
め、不足分はフラツクスから供給すべきである。 次に溶接ワイヤ中に含まれる他の成分について
説明する。 Niは溶接のままで優れた低温靭性を得る為の
不可欠の成分であり、60%未満では十分な性能を
有する溶接金属が得られない。上限は特に存在し
ないが、他の必須合金成分との兼ね合いを考慮す
れば80%程度が上限と思われる。CrはNi中に固
溶してマトリツクスを強化し、引張り強さ及び低
温靭性を高める作用があり、これらの効果を有効
に発揮させる為にはワイヤ中に10%以上含有させ
る必要がある。またワイヤ中に30%を超えて含有
させると溶接金属の引張り強さが高くなりすぎ延
性不足が生ずる。Cは少量で引張り強さを高める
効果があり、Nbの一部をCで代替してもよい。
しかし多すぎると低温靭性及び耐割れ性を阻害す
るので1%以下に止めねばならない。Siは脱酸剤
として作用すると共に引張り強さを高める作用が
あるが、2%を越えると低温靭性及び耐割れ性が
低下する。Feはわずかに引張り強さを高めるも
のの低温靭性を低下させる傾向がある。しかし15
%以下の量であれば実害はない。 またNは一般に有害元素とされており、0.05%
を越えると、特に本発明の成分組成においては低
温靭性及び耐割れ性が劣下するのでこれ以下に抑
えねばならない。しかし本発明では微量で溶着金
属の引張強さを高める作用が著しく、0.001%以
上含有させることを必須とする。 更に溶接ワイヤ中には上記合金成分の他必要に
応じてAl、Ti、W、Mo等の1種又は2種以上を
含有させることができる。即ちAl及びTiは少量
の添加で耐プローホール性を改善すると共に、引
張り強さ及び溶接作業性を高める作用がある。し
かしAl、Ti共1%を越えると低温靭性、性割れ
性及び溶接作業性を悪影響を及ぼすので注意すべ
きである。Moは引張り強さを高め低温靭性及び
耐割れ性を改善する作用があるが、10%を越える
と溶接作業性が著しく低下し、また溶接金属のX
線透過能が乏しくなると共にワイヤ生産性も低下
する。またWは引張り強さを高める作用があるも
のの、融点が高い為に多すぎると溶接金属中で偏
析して機械的性質を低下させ、またワイヤ生産性
も低下するので10%以下に止めるべきである。 次にフラツクス中の他の成分について述べる。
まずMgOはスラグの塩基度を高めると共に流動
性及び剥離性を改善するのに不可欠の成分であ
り、少なくとも5%以上含有させねばならない。
しかし40%を越えるとスラグの剥離性がかえつて
低下するのでこれ以下にすべきである。金属炭酸
塩は、スラグの塩基度を高めると共に、分解生成
するCO2ガスによつて溶接部近傍雰囲気中の水素
分圧を下げ溶接金属の機械的性質を高める作用が
あり、5%以上の配合を必須とする。しかし40%
を越えるとスラグの流動性が悪くなつてビード形
状及びスラグの剥離性が劣化する。尚金属炭酸塩
としてはBaCO3、CaCO3、Li2CO3、MgCO3等の
アルカリ金属又はアルカリ土類金属の炭酸塩或は
MnCO3等が例示され、これらは単独で或は2種
以上を組み合せて使用できる。 金属フツ化物は、スラグの流動性を改善してビ
ード形状を良好にする作用があり、5%以上の添
加を必要とする。しかし50%を越えるとアークの
安定性及びスラグの剥離性が低下するので好まし
くない。尚金属フツ化物の具体例としては
AlF3、BaF2、CaF2、MgF2、Na3AlF6等が挙げら
れ、これらは単独で或は2種以上を併用すること
ができる。 SiO2はスラグに適度の粘性を与え溶接作業性
を良くする作用があるが、20%超配合するとスラ
グの塩基度が低下して溶接金属の耐割れ性が悪く
なる。またTiO2は、多すぎるとSiO2の場合と同
様スラグの塩基性が低下して耐割れ性が劣化し、
更にはスラグの焼付が著しくなるが、15%以下で
あればこれらの実害は殆んど表われない。 このほか本発明で使用するフラツクス中には、
先に述べたNbやMnと同様溶接金属の成分を調整
する目的で、他の種々の合金成分たとえばAl、
Ti、Si、C、Ni、Cr、Mo、W等を配合すること
もできる。これらの合金成分の添加効果は、溶接
ワイヤの項で説明した効果と実質的に同じであ
り、Al、Ti、Siは脱酸剤としての作用を示し、
溶接金属の耐ブローホール性及び引張り強さ等を
高める。またNi、Cr、Mo、W、Cは引張り強
さ、低温靭性、耐割れ性等の向上に寄与する。こ
れら合金成分の配合率は、溶接金属に対する歩留
りを考慮して、Al≦8%、Ti≦8%、Si≦5
%、C≦3%、Ni≦30%、Cr≦10%、Mo≦10
%、W≦10%に夫々定めた。尚これらの合金成分
をフラツクスに配合する場合、これらの総配合率
は前記Nb及びMnを含めて60%以下にしなければ
ならない。しかして60%を越えると、焼成工程で
合金成分が酸化燃焼し、溶接作業性が低下すると
共に溶接金属の機械的性質が劣化するからであ
る。また本発明で使用するフラツクスは焼結型に
限定されるが、その理由は、溶融型では溶製段階
で合金成分が酸化もしくは変質し、合金成分に期
待されるべき前述の効果が有効に発揮されないか
らである。尚焼結型フラツクスの具体的な製法は
特に限定されないが、最も一般的なのは、所定量
の原料粉末を水及び粘結剤(珪酸ソーダ、珪酸カ
リウム等)と共に混練し、原料粉末の融点以下の
温度(通常は300〜600℃程度)で乾燥・焼成した
後粒度調整する方法である。この場合、フラツク
ス中に配合される合金成分の粒度は100メツシユ
以下にしなければならない。その理由は、配合原
料中の合金成分の粒度が粗いとフラツクス製造時
にこれらが均一に分布せず、溶接金属中に合金元
素が偏析して機械的性質が劣化するからであり、
合金成分が100メツシユ以下の微粒子であればこ
れらの問題は起こらない。 ところで、本発明に類似した技術として、本出
願人自身の提案に係る特開昭51−83032号及び特
公昭51−14975号が知られている。しかしながら
前者の技術は、あくまでも従来から実用化されて
いる75Ni−15Cr系被覆アーク溶接棒の高強度化
を目的としたものであり、従来不可能とされてい
た75Ni−15Cr系の潜弧溶接を可能にした本発明
とは厳に区別されるべきである。一方後者の技術
はインコネル系の溶接ワイヤに関するもので、フ
ラツクス成分との相関々係等についてはまつたく
言及されておらず、しかもこの溶接ワイヤは手溶
接用としては有効であるものの、自動溶接に適用
すると耐割れ性や強度面で不十分であり満足な効
果が得られない。これらに対し本発明の潜弧溶接
法は、前述の様な知識・経験をふまえた上で、溶
接ワイヤ及びフラツクスの夫々の成分組成を特定
すると共に、合金成分特にNb及びMnについては
両者の相関々係を考慮して各含有量を設定し、更
には溶接ワイヤ中のN量の限定フラツクス中の合
金元素の粒度限定等とも相俟つて、手溶接及び自
動溶接の如何を問わず溶接のままでも優れた低温
靭性、耐割れ性等の機械的性質を有する溶接部を
提供し得ることになつたもので、これらの構成及
び作用効果については、前記公報の発明から想到
し得るものではない。 本発明は概略以上の様に構成されており、9%
Ni鋼をはじめとして8.5%Ni鋼、5%Ni鋼等の含
Ni低温用鋼を母材とする溶接建造に幅広く活用
できる。 次に本発明の実施例を示す。 実施例 1 第1表に示す成分組成の溶接ワイヤと第2表に
示すフラツクスを組合せ、下記の条件で潜弧溶接
を行ない、溶接作業性及び得られた溶接金属の機
械的性質を調べた。結果を第3表に一括して示
す。 〔潜弧溶接条件〕 試験方法:NV20−2 ワイヤ径:1.6mmφ 電流極性:DC 溶接電流:300A 溶接電圧:30〜32V 溶接速度:30cm/分 母材の予熱:なし パス間温度:150℃以下 フラツクス:250℃で1時間乾燥して使用 但し第1表において符号A〜Eは本発明の要件
を充足する溶接ワイヤ、符号Fは本発明の要件を
欠く(Si、N及びFe量が多すぎNi及びCr量が不
足する)溶接ワイヤを示す。また第2表において
符号A、B、D、E、F、G、H、J、L及びM
は本発明の要件を満たすフラツクス、その他は要
件を欠くフラツクス(符号C:SiO2量過多で
MgO量不足、符号I:TiO2量過多で金属炭酸塩
不足、符号K:金属フツ化物不足)を示す。
The present invention relates to a method for submerged arc welding of low-temperature steel, and in particular, by specifying the welding wire and flux used, the mechanical properties of the weld metal and the
The present invention relates to a method for submerged arc welding of low-temperature steel that satisfies all requirements such as radiation penetration ability and welding workability. Ferrite-based low-temperature materials such as 5.5% Ni steel and 9% Ni steel are mainly used as materials for containers for transporting or storing low-temperature liquids such as liquefied propane gas and liquefied natural gas.
Ni alloy steel is used. Of these, 9% Ni steel is A-353 (NNT material) and A-553 according to ASTM standards.
(QT material), the tensile strength is 70.3 to 84.4Kg/ mm2 , and the 0.2% proof stress is 52.7Kg/mm2 for NNT material.
mm 2 or more, QT material has an extremely high performance of 59.8 Kg/mm 2 or more, and the impact value at -196°C is 3.5 Kg/mm 2 or more. Naturally, when performing welded construction using these materials, the required properties of the welded part must be comparable to those of the base metal. As a specific means to meet these requirements, it is common to use a welding wire with an appropriate composition and to perform appropriate heat treatment after welding. However, for large structures such as liquefied natural gas tanks, heat treatment after welding is not possible, so it is common to use Ni-based alloy welding materials to obtain excellent low-temperature toughness even when welded. . For example, manual welding using a covered arc welding rod or TIG welding is used to weld 9% Ni steel, and the manual welding material used is AWS-A5.11-
ENiCrFe1~4 is also used as TIG welding material by AWS
-A5.14-ERNiCr-3, ERNiCrFe-6 or Mo
A material equivalent to ERNiCrMo-4, etc., whose content has been increased to 15-20%, is used. On the other hand, although submerged arc welding has excellent welding efficiency, the welding heat input is large and the weld metal is significantly diluted by the base metal, making it difficult to obtain sufficient crack resistance and mechanical properties. Until now, it has hardly been put into practical use for welding large structures. However, it has been confirmed that cracking resistance can be improved by using a welding material with a high Mo content, such as the ERNiCrMo-4 mentioned above, and by using a flux with an appropriate composition. Submerged arc welding methods using welding materials are also beginning to be put into practical use in some areas. However, when a welding material containing a large amount of Mo is used, the X-ray transmission performance of the weld metal becomes extremely poor, making it difficult to inspect weld defects, and the weld bead tends to sag, resulting in poor workability and bead shape. It has been pointed out that problems such as low mechanical strength of weld metal occur, low productivity of welding wire, and high wire prices due to the use of large amounts of expensive Mo, making it unsuitable for practical use. It is hard to say that this is the best method. However, submerged arc welding is superior to other welding methods in terms of welding efficiency.
It would be extremely meaningful to overcome the above drawbacks and improve the practicality of submerged arc welding. The present inventors focused on the above-mentioned circumstances and believed that in order to overcome the difficulties of the submerged arc welding method described above, it is necessary to eliminate the obstacles associated with the combined use of Mo. With the aim of developing a method that can ensure high cracking resistance, we have been conducting intensive research focusing on the composition of welding wire and flux. The present invention was made as a result of such research, and its composition is as follows: Ni≧60%, 10%≦Cr≦30%, C≦1%, Si≦
2%, Fe≦15%, N: 0.001-0.05%, Nb≦
4%, Mn≦10%, Al≦1%, Ti≦1%, Mo≦5
% and one or more elements selected from the group consisting of W≦5%, MgO: 5 to 40%, metal carbonate: 5 to 40%, metal fluoride: 5 to 50%, In addition to containing SiO 2 ≦20%, Nb≦30%, Mn≦50%, Al≦8%, Ti≦8
%, Si≦5%, C≦3%, Ni≦30%, Cr≦10
%, Mo≦10%, W≦10%, the grain size is 100 mesh or less, and the ratio of the total amount of alloy components to the entire flux is 60% or less. A sintered flux is used, and the flux contained in the wire and/or flux is
The gist of the first invention lies in adjusting the amounts of Nb and Mn so as to satisfy the following formula, and in place of the above flux, a flux obtained by essentially adding TiO 2 ≦15% to the above flux. The gist of the second invention resides in that the second invention has the same configuration as the first invention except for using. 2W Nb +F Nb = 8.2 to 30% 5W Mo +F Mo = 22.5 to 50% [W Nb : Nb content in welding wire F Nb : Nb content in flux W Mo : Mn content in welding wire F Mo : Mn content in flux] That is, in the present invention, the composition of the welding wire and flux to be used, in particular the content of Nb and Mn, is specified, and the amount of N, which is a gas component, is limited to improve the resistance of the weld metal. By improving crackability and other properties, it was possible to reduce or omit Mo. The structure and effects of the present invention will be explained below based on the basis for specifying the composition of the welding wire and flux, but the following does not limit the present invention and may be adapted to the spirit of the above and below. All suitable modifications and implementations within the scope are within the scope of the present invention. First, Nb and Mn, which are most important in the present invention, will be explained. These have the effect of increasing the tensile strength, cracking resistance, etc. of the weld metal through a mutual effect, and also enhance welding workability such as slag removability.
That is, when Nb is used alone, as the content increases, the 0.2% yield strength of the weld metal improves, but the tensile strength and low-temperature toughness significantly decrease, and the slag releasability also deteriorates. On the other hand, Mn alone has no effect on increasing tensile strength or low-temperature toughness. However, when Nb and Mn are simultaneously present in the weld metal, the tendency of Nb to lower the tensile strength and low-temperature toughness, as well as the tendency to lower slag removability, is alleviated or eliminated by the coexisting Mn. These additive effects are effectively exhibited by making the weld metal contain 4.1 to 15% Nb and 4.5 to 10% Mn, and no additive effects are observed below the lower limits. Furthermore, if the amount of Nb is too large, the tensile strength and low temperature toughness will be significantly reduced, and if the amount of Mn is too large, elongation, drawing and welding workability will deteriorate. By the way, Nb and Mn are supplied as alloy components in the welding wire and flux, and there is no essential difference in supplying them from either source. However, Nb
When Nb and Mn are supplied from flux, the yield in the weld metal is 1/2 for Nb and 1/5 for Mn, whereas when supplied from welding wire, the yield is almost 100%. Therefore, when supplying these from welding wire and/or flux, the amount of Nb (W Nb ), the amount of Mn (W Mo ) in the welding wire, and the amount of Nb ( F Nb ) and the amount of Mn (F Mo ) may be determined. 2W Nb +F Nb = 8.2 to 30 (%) 5W Mo + F Mo = 22.5 to 50 (%) Among these alloying elements, when Nb is supplied from a welding wire, the amount of Nb in the wire exceeds 4%. If this happens, the yield during wire manufacturing will be extremely low, so the amount of Nb in the wire should be kept at 4% or less, and the shortage should be supplied from flux. Next, other components contained in the welding wire will be explained. Ni is an essential component for obtaining excellent low-temperature toughness as welded, and if it is less than 60%, a weld metal with sufficient performance cannot be obtained. There is no particular upper limit, but considering the balance with other essential alloy components, the upper limit is thought to be around 80%. Cr forms a solid solution in Ni and has the effect of strengthening the matrix and increasing tensile strength and low-temperature toughness, and in order to effectively exhibit these effects, it is necessary to contain 10% or more in the wire. Moreover, if the content exceeds 30% in the wire, the tensile strength of the weld metal becomes too high, resulting in insufficient ductility. A small amount of C has the effect of increasing tensile strength, and a portion of Nb may be replaced with C.
However, if it is too large, low temperature toughness and cracking resistance will be impaired, so it must be kept at 1% or less. Si acts as a deoxidizing agent and increases tensile strength, but if it exceeds 2%, low temperature toughness and cracking resistance decrease. Although Fe slightly increases tensile strength, it tends to decrease low temperature toughness. But 15
There is no actual harm if the amount is less than %. In addition, N is generally considered to be a harmful element, and 0.05%
If it exceeds this range, the low temperature toughness and cracking resistance will deteriorate, especially in the component composition of the present invention, so it must be kept below this range. However, in the present invention, even a small amount has a significant effect of increasing the tensile strength of the weld metal, so it is essential to contain it in an amount of 0.001% or more. Furthermore, in addition to the above-mentioned alloy components, the welding wire may contain one or more of Al, Ti, W, Mo, etc., if necessary. That is, when added in small amounts, Al and Ti have the effect of improving blowhole resistance, as well as increasing tensile strength and welding workability. However, care should be taken because if both Al and Ti exceed 1%, low-temperature toughness, cracking resistance, and welding workability will be adversely affected. Mo has the effect of increasing tensile strength and improving low-temperature toughness and cracking resistance, but if it exceeds 10%, welding workability will decrease significantly, and
As the wire penetration ability becomes poor, the wire productivity also decreases. Furthermore, although W has the effect of increasing tensile strength, it should be kept at less than 10%, as its high melting point causes it to segregate in the weld metal, reducing mechanical properties and reducing wire productivity. be. Next, we will discuss other components in the flux.
First, MgO is an essential component for increasing the basicity of the slag and improving its fluidity and peelability, and must be contained in an amount of at least 5%.
However, if it exceeds 40%, the slag releasability will deteriorate, so it should be kept below this. Metal carbonates have the effect of increasing the basicity of slag, lowering the hydrogen partial pressure in the atmosphere near the welding area by decomposing and producing CO 2 gas, and improving the mechanical properties of the weld metal. is required. But 40%
If it exceeds this, the fluidity of the slag deteriorates, resulting in deterioration in the bead shape and the removability of the slag. The metal carbonates include carbonates of alkali metals or alkaline earth metals such as BaCO 3 , CaCO 3 , Li 2 CO 3 , MgCO 3 , etc.
Examples include MnCO 3 and the like, and these can be used alone or in combination of two or more. The metal fluoride has the effect of improving the fluidity of the slag and improving the bead shape, and needs to be added in an amount of 5% or more. However, if it exceeds 50%, arc stability and slag releasability deteriorate, which is not preferable. Specific examples of metal fluorides include
Examples include AlF 3 , BaF 2 , CaF 2 , MgF 2 , Na 3 AlF 6 and the like, and these can be used alone or in combination of two or more. SiO 2 has the effect of imparting appropriate viscosity to the slag and improving welding workability, but if it is added in an amount exceeding 20%, the basicity of the slag decreases and the cracking resistance of the weld metal deteriorates. Furthermore, if too much TiO 2 is added, the basicity of the slag will decrease and the cracking resistance will deteriorate, similar to the case with SiO 2 .
Furthermore, slag seizure becomes significant, but as long as it is less than 15%, these actual damages are hardly noticeable. In addition, the flux used in the present invention includes:
Similar to Nb and Mn mentioned above, various other alloy components such as Al,
Ti, Si, C, Ni, Cr, Mo, W, etc. can also be blended. The effects of adding these alloy components are essentially the same as those explained in the section on welding wires, with Al, Ti, and Si acting as deoxidizing agents;
Improves the blowhole resistance and tensile strength of weld metal. Further, Ni, Cr, Mo, W, and C contribute to improving tensile strength, low-temperature toughness, cracking resistance, etc. The blending ratios of these alloy components are Al≦8%, Ti≦8%, Si≦5, considering the yield of weld metal.
%, C≦3%, Ni≦30%, Cr≦10%, Mo≦10
% and W≦10%. In addition, when these alloy components are mixed into the flux, the total blending ratio thereof, including the above-mentioned Nb and Mn, must be 60% or less. However, if it exceeds 60%, the alloy components will oxidize and burn during the firing process, reducing welding workability and deteriorating the mechanical properties of the weld metal. Furthermore, the flux used in the present invention is limited to the sintered type, because in the molten type, the alloy components are oxidized or altered during the melting stage, and the above-mentioned effects that should be expected from the alloy components are effectively exerted. This is because it is not done. The specific manufacturing method for sintered flux is not particularly limited, but the most common method is to knead a predetermined amount of raw material powder with water and a binder (sodium silicate, potassium silicate, etc.), and then This method involves adjusting the particle size after drying and firing at a temperature (usually around 300 to 600°C). In this case, the particle size of the alloying components mixed in the flux must be 100 mesh or less. The reason for this is that if the grain size of the alloy components in the blended raw materials is coarse, they will not be distributed uniformly during flux production, and the alloy elements will segregate in the weld metal, resulting in deterioration of mechanical properties.
These problems do not occur if the alloy components are fine particles of 100 mesh or less. By the way, as a technique similar to the present invention, Japanese Patent Laid-Open No. 51-83032 and Japanese Patent Publication No. 51-14975, which were proposed by the applicant of the present invention, are known. However, the former technology is aimed at increasing the strength of 75Ni-15Cr coated arc welding rods, which have been in practical use for some time, and it is not possible to perform submerged arc welding of 75Ni-15Cr, which was previously considered impossible. This should be strictly distinguished from the present invention, which made this possible. On the other hand, the latter technology concerns Inconel-based welding wire, and does not mention the correlation with flux components, and although this welding wire is effective for manual welding, it is not suitable for automatic welding. When applied, the cracking resistance and strength are insufficient and a satisfactory effect cannot be obtained. In contrast, in the submerged arc welding method of the present invention, based on the knowledge and experience described above, the compositions of the welding wire and flux are specified, and the correlation between the alloy components, especially Nb and Mn, is determined. By setting each content in consideration of various factors, and in combination with limiting the amount of N in the welding wire and limiting the particle size of alloying elements in the flux, welding can be carried out as welded regardless of whether it is manual welding or automatic welding. However, it has become possible to provide a welded part having excellent mechanical properties such as low-temperature toughness and cracking resistance, but these structures and effects cannot be imagined from the invention of the above-mentioned publication. The present invention is configured as outlined above, and has a 9%
Contains Ni steel, 8.5% Ni steel, 5% Ni steel, etc.
It can be widely used in welded construction using Ni low-temperature steel as the base material. Next, examples of the present invention will be shown. Example 1 A welding wire having the composition shown in Table 1 and a flux shown in Table 2 were combined, and submerged arc welding was performed under the following conditions, and welding workability and mechanical properties of the obtained weld metal were investigated. The results are summarized in Table 3. [Submerged arc welding conditions] Test method: NV20-2 Wire diameter: 1.6mmφ Current polarity: DC Welding current: 300A Welding voltage: 30 to 32V Welding speed: 30cm/Preheating of denominator material: None Interpass temperature: 150℃ or less Flux : Used after drying at 250℃ for 1 hour. However, in Table 1, codes A to E are welding wires that satisfy the requirements of the present invention, and code F is a welding wire that lacks the requirements of the present invention (the amount of Si, N, and Fe is too high. (and insufficient Cr content) shows welding wire. Also, in Table 2, the symbols A, B, D, E, F, G, H, J, L and M
The fluxes that meet the requirements of the present invention are fluxes that do not meet the requirements (symbol C: excessive amount of SiO2 ).
Insufficient amount of MgO, code I: Excessive amount of TiO 2 indicates insufficient metal carbonate, code K: insufficient amount of metal fluoride).

【表】【table】

【表】【table】

【表】【table】

【表】 第1〜3表より次の様に考察することができ
る。 (1) 溶接ワイヤが適正であつても、フラツクスの
合金成分以外の成分組成が本発明の要件を外れ
ると、特に溶接作業性が悪化し実用に耐えない
(実験番号3、6及び12)。 (2) 溶接ワイヤ及びフラツクスが夫々単独として
は一応本発明の合金成分以外の要件に合致して
いても、両者に含まれるNb(2WNb+FNb)量
及びMn(5WMo+FMo)量が本発明の要件を外
れると、溶接金属の機械的性質特に低温靭性
(衝撃試験値)が乏しくなる(実験番号5、9
及び13)。 (3) (2WNb+FNb)量及び(5WMo+FMo)量が
偶々本発明の要件に合致しても、ワイヤ及びフ
ラツクスの成分組成が夫々本発明の要件を欠く
場合は、溶接作業性及び溶接金属の機械的性質
共に不十分になり、本発明の目的は到底達成で
きない(実験番号16)。 (4) これらに対し、本発明の要件を全て満足する
実施例(実験番号1、2、4、7、8、10、
11、14及び15)は、作業性及び機械的性質共に
極めて優れている。 実施例 2 第1表に示した符号Cの溶接ワイヤと、第2表
に示した符号Hのフラツクスを使用し、下記の溶
接条件で9%Ni鋼の突合せ溶接を行なつた。 〔溶接条件〕 溶接ワイヤ径:1.6mmφ 電流特性:DC 溶接電流:200〜300A 溶接電圧:26〜32V 溶接速度:25〜60cm/分 母材の予熱:なし パス間温度:150℃以下 フラツクス:250℃で1時間乾燥して使用 溶接姿勢:横向 開先形状及び積層法:第1図の通り 得られた継手の機械的性質を第4表に示す。但
し引張り試験はJIS Z 3121、衝撃試験はJIS Z
3112 4号(3回試験した平均値)、縦曲げ試験
はASME Sec FigQ−7.3に準じて行なつた。
[Table] From Tables 1 to 3, the following considerations can be made. (1) Even if the welding wire is appropriate, if the composition of the flux other than the alloy components deviates from the requirements of the present invention, welding workability deteriorates and is not practical (Experiment Nos. 3, 6, and 12). (2) Even if the welding wire and flux individually meet the requirements other than the alloy components of the present invention, the amount of Nb (2W Nb + F Nb ) and Mn (5W Mo + F Mo ) contained in both If the requirements of the present invention are not met, the mechanical properties of the weld metal, especially the low-temperature toughness (impact test value), will be poor (Experiment Nos. 5 and 9).
and 13). (3) Even if the (2W Nb + F Nb ) and (5W Mo + F Mo ) amounts happen to meet the requirements of the present invention, if the component compositions of the wire and flux each lack the requirements of the present invention, welding workability may be affected. Both the mechanical properties of the weld metal and the weld metal became insufficient, and the object of the present invention could not be achieved at all (Experiment No. 16). (4) In contrast to these, examples (experiment numbers 1, 2, 4, 7, 8, 10,
11, 14 and 15) are extremely excellent in both workability and mechanical properties. Example 2 Using welding wire C shown in Table 1 and flux H shown in Table 2, butt welding of 9% Ni steel was carried out under the following welding conditions. [Welding conditions] Welding wire diameter: 1.6mmφ Current characteristics: DC Welding current: 200~300A Welding voltage: 26~32V Welding speed: 25~60cm/Preheating of denominator material: None Interpass temperature: 150℃ or less Flux: 250℃ After drying for 1 hour, welding position: horizontal groove shape and lamination method: as shown in Figure 1. Table 4 shows the mechanical properties of the joints obtained. However, the tensile test is based on JIS Z 3121, and the impact test is based on JIS Z.
3112 No. 4 (average value of 3 tests), vertical bending test was conducted according to ASME Sec FigQ-7.3.

【表】 第4表からも明らかな様に、本発明の潜弧溶接
法によつて得た溶接継手は、引張り強さ、低温靭
性及び曲げ性能のすべてにおいて極めて優れてい
る。
[Table] As is clear from Table 4, the welded joints obtained by the submerged arc welding method of the present invention are extremely excellent in all aspects of tensile strength, low-temperature toughness, and bending performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例で採用した溶接実験の開先形状
及び累層法を示す説明図である。
FIG. 1 is an explanatory diagram showing the groove shape and layered method of welding experiments employed in Examples.

Claims (1)

【特許請求の範囲】 1 Ni≧60%、10%≦Cr≦30%、C≦1%、Si
≦2%、Fe≦15%、N:0.001〜0.05%の他、Nb
≦4%、Mn≦10%、Al≦1%、Ti≦1%、Mo≦
5%及びW≦5%よりなる群から選択される1種
以上の元素とからなる溶接ワイヤと、 MgO:5〜40%、金属炭酸塩:5〜40%、金
属弗化物:5〜50%、SiO2≦20%を含有する
他、Nb≦30%、Mn≦50%、Al≦8%、Ti≦8
%、Si≦5%、C≦3%、Ni≦30%、Cr≦10
%、Mo≦10%、W≦10%よりなる群から選択さ
れる少なくとも1種以上の合金成分を含有すると
共に、粒度を100メツシユ以下とし、合金成分総
量のフラツクス全体に占める割合が60%以下であ
る焼結型フラツクスを用い、 さらにワイヤ及び/又はフラツクスに含まれる
Nb及びMnの量を下式を満足する様に調整するこ
とを特徴とする低温用鋼の潜弧溶接方法。 2WNb+FNb=8.2〜30% 5WMo+FMo=22.5〜50% 但し WNb:溶接ワイヤ中のNb含有率 FNb:フラツクス中のNb含有率 WMo:溶接ワイヤ中のMn含有率 FMo:フラツクス中のMn含有率 2 Ni≧60%、10%≦Cr≦30%、C≦1%、Si
≦2%、Fe≦15%、N:0.001〜0.05%の他、Nb
≦4%、Mn≦10%、Al≦1%、Ti≦1%、Mo≦
5%及びW≦5%よりなる群から選択される1種
以上の元素とからなる溶接ワイヤと、 MgO:5〜40%、金属炭酸塩:5〜40%、金
属弗化物:5〜50%、SiO2≦20%、TiO2≦15%
を含有する他、Nb≦30%、Mn≦50%、Al≦8
%、Ti≦8%、Si≦5%、C≦3%、Ni≦30%、
Cr≦10%、Mo≦10%、W≦10%よりなる群から
選択される少なくとも1種以上の合金成分を含有
すると共に、粒度を100メツシユ以下とし、合金
成分総量のフラツクス全体に占める割合が60%以
下である焼結型フラツクスを用い、 さらにワイヤ及び/又はフラツクスに含まれる
Nb及びMnの量を下式を満足する様に調整するこ
とを特徴とする低温用鋼の潜弧溶接方法。 2WNb+FNb=8.2〜30% 5WMo+FMo=22.5〜50% 但し WNb:溶接ワイヤ中のNb含有率 FNb:フラツクス中のNb含有率 WMo:溶接ワイヤ中のMn含有率 FMo:フラツクス中のMn含有率
[Claims] 1 Ni≧60%, 10%≦Cr≦30%, C≦1%, Si
≦2%, Fe≦15%, N: 0.001-0.05%, Nb
≦4%, Mn≦10%, Al≦1%, Ti≦1%, Mo≦
5% and one or more elements selected from the group consisting of W≦5%, MgO: 5-40%, metal carbonate: 5-40%, metal fluoride: 5-50% , SiO 2 ≦20%, Nb≦30%, Mn≦50%, Al≦8%, Ti≦8
%, Si≦5%, C≦3%, Ni≦30%, Cr≦10
%, Mo≦10%, W≦10%, the grain size is 100 mesh or less, and the ratio of the total amount of alloy components to the entire flux is 60% or less. A sintered flux is used, and the flux contained in the wire and/or flux is
A method for latent arc welding of low-temperature steel, characterized by adjusting the amounts of Nb and Mn so as to satisfy the following formula. 2W Nb +F Nb =8.2~30% 5W Mo +F Mo =22.5~50% However, W Nb : Nb content in welding wire F Nb : Nb content in flux W Mo : Mn content in welding wire F Mo : Mn content in flux 2 Ni≧60%, 10%≦Cr≦30%, C≦1%, Si
≦2%, Fe≦15%, N: 0.001-0.05%, Nb
≦4%, Mn≦10%, Al≦1%, Ti≦1%, Mo≦
5% and one or more elements selected from the group consisting of W≦5%, MgO: 5-40%, metal carbonate: 5-40%, metal fluoride: 5-50% , SiO2 ≦20%, TiO2 ≦15%
In addition, Nb≦30%, Mn≦50%, Al≦8
%, Ti≦8%, Si≦5%, C≦3%, Ni≦30%,
Contains at least one alloy component selected from the group consisting of Cr≦10%, Mo≦10%, and W≦10%, has a grain size of 100 mesh or less, and has a ratio of the total amount of alloy components to the entire flux. Use a sintered flux with a content of 60% or less, and
A method for latent arc welding of low-temperature steel, characterized by adjusting the amounts of Nb and Mn so as to satisfy the following formula. 2W Nb +F Nb =8.2~30% 5W Mo +F Mo =22.5~50% However, W Nb : Nb content in welding wire F Nb : Nb content in flux W Mo : Mn content in welding wire F Mo :Mn content in flux
JP15690980A 1980-11-06 1980-11-06 Submerged arc welding method for low temperature steel Granted JPS5781994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15690980A JPS5781994A (en) 1980-11-06 1980-11-06 Submerged arc welding method for low temperature steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15690980A JPS5781994A (en) 1980-11-06 1980-11-06 Submerged arc welding method for low temperature steel

Publications (2)

Publication Number Publication Date
JPS5781994A JPS5781994A (en) 1982-05-22
JPS6150716B2 true JPS6150716B2 (en) 1986-11-05

Family

ID=15638031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15690980A Granted JPS5781994A (en) 1980-11-06 1980-11-06 Submerged arc welding method for low temperature steel

Country Status (1)

Country Link
JP (1) JPS5781994A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0280606A (en) * 1988-09-19 1990-03-20 Sumitomo Chem Co Ltd Moisture-permeable glove

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111790999A (en) * 2020-06-28 2020-10-20 昆山京群焊材科技有限公司 Flux combination of metal powder core submerged arc welding wire for 25Mn austenitic steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0280606A (en) * 1988-09-19 1990-03-20 Sumitomo Chem Co Ltd Moisture-permeable glove

Also Published As

Publication number Publication date
JPS5781994A (en) 1982-05-22

Similar Documents

Publication Publication Date Title
KR102244428B1 (en) Flux cored wire, manufacturing method of welded joint, and welded joint
JP4566899B2 (en) High strength stainless steel welding flux cored wire
CN109789519B (en) Welding wire for electroslag welding, flux for electroslag welding, and welded joint
JP6901868B2 (en) Electroslag welding wire, electroslag welding flux and welded joints
JP6418365B1 (en) Ni-base alloy wire for submerged arc welding, and method for manufacturing welded joint
US3424626A (en) Low silica welding composition
JP2019025524A (en) Flux-cored wire for gas-shielded arc welding, and manufacturing method of welded joint
JP2008119748A (en) Flux-cored wire for gas-shielded arc welding for creep-resisting steel
JP6891630B2 (en) Flux-cored wire for gas shielded arc welding and welding joint manufacturing method
WO2022130759A1 (en) Submerged arc welding wire, and method for manufacturing weld joint using same
CN112621016B (en) Welding material, weld metal, and electroslag welding method
JPH09277087A (en) Flux cored wire for arc welding
JP2687006B2 (en) Flux-cored wire for gas shielded arc welding for refractory steel
JPWO2019186686A1 (en) Ni-based alloy core wire for coated arc welding rod, coated arc welding rod, and method for manufacturing coated arc welding rod
JP2019025525A (en) Flux-cored wire for gas-shielded arc welding, and manufacturing method of welded joint
JP3860437B2 (en) Iron-based consumable welding materials and welded joints with excellent fatigue strength at welded joints
JPH06285672A (en) Flux cored wire of titania base for gas-shielded arc welding
JP2005279768A (en) Flux cored wire for welding and weld joint for steel structure
JPS5922633B2 (en) Low hydrogen coated arc welding rod
JPS6150716B2 (en)
JP2007054878A (en) Coated arc welding rod for steel for fire-resisting construction
JP7252051B2 (en) Solid wire and weld joints for electroslag welding
JPH0152118B2 (en)
JPH09277088A (en) Flux cored wire for gas shielded metal-arc welding
JPH09262693A (en) Flux cored wire for arc welding