JPS6150264B2 - - Google Patents

Info

Publication number
JPS6150264B2
JPS6150264B2 JP9726878A JP9726878A JPS6150264B2 JP S6150264 B2 JPS6150264 B2 JP S6150264B2 JP 9726878 A JP9726878 A JP 9726878A JP 9726878 A JP9726878 A JP 9726878A JP S6150264 B2 JPS6150264 B2 JP S6150264B2
Authority
JP
Japan
Prior art keywords
voltage
waveform
predetermined
insulation
high voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9726878A
Other languages
Japanese (ja)
Other versions
JPS5524622A (en
Inventor
Eiji Koyanagi
Hisayasu Mitsui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP9726878A priority Critical patent/JPS5524622A/en
Priority to GB7928161A priority patent/GB2029587B/en
Publication of JPS5524622A publication Critical patent/JPS5524622A/en
Publication of JPS6150264B2 publication Critical patent/JPS6150264B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Testing Relating To Insulation (AREA)

Description

【発明の詳細な説明】 本発明は機器絶縁組織の機能を簡便に診断する
絶縁診断方法およびその装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an insulation diagnosis method and apparatus for easily diagnosing the function of an equipment insulation structure.

絶縁組織は、使用されている機器の長期間運転
中に生じる種々の電気的、機械的、熱的、化学的
ストレスの作用で劣化し、はなはだしい場合には
絶縁の機能を全とうし得ず、絶縁破壊に達し、重
大な事故を招くことがある。絶縁破壊事故を未然
に防止するためには種々の絶縁診断法が提案され
ている。しかし、機器が設置されている現場で非
破壊方式で信頼に足る絶縁診断を下すためには
種々の障害がある。特に比較的高電圧を印加して
検査する電気試験において交流電圧を用いる場合
には大きな電源容量が必要となり困難なことが多
い。このため直流高電圧電源が利用される。しか
し一般に直流電圧印加方式では交流電圧印加方式
に比し、得られる判断材料が不足する。すなわち
交流印加時には絶縁組織の内部欠陥を敏感に示す
部分放電の発生が容易なため、部分放電検出が可
能であるが、直流印加時には電圧の昇圧もしくは
降圧過程にしか部分放電の発生がみられない。こ
のため直流印加法では従来絶縁抵抗の測定が主体
とならざるを得なかつた。絶縁抵抗測定では絶縁
組織のはがれのような重大な欠陥であつても、吸
湿でもしていない限り検出が困難なことが多い。
The insulation structure deteriorates due to the effects of various electrical, mechanical, thermal, and chemical stresses that occur during long-term operation of the equipment in use, and in extreme cases, it may not be able to fulfill its insulating function. This may lead to dielectric breakdown and cause a serious accident. Various insulation diagnostic methods have been proposed to prevent insulation breakdown accidents. However, there are various obstacles to performing reliable insulation diagnosis in a non-destructive manner at the site where equipment is installed. In particular, when using an alternating current voltage in an electrical test in which a relatively high voltage is applied for inspection, a large power supply capacity is required, which is often difficult. For this reason, a DC high voltage power supply is used. However, in general, the DC voltage application method provides insufficient judgment material compared to the AC voltage application method. In other words, when AC is applied, it is easy to generate partial discharges that sensitively indicate internal defects in the insulating structure, making it possible to detect partial discharges, but when DC is applied, partial discharges can only be seen during voltage step-up or step-down processes. . For this reason, conventional DC application methods have had to mainly measure insulation resistance. When measuring insulation resistance, it is often difficult to detect even serious defects such as peeling of the insulation structure unless there is moisture absorption.

本発明は以上のような従来法の欠点に鑑みてな
されたもので、比較的軽量な装置を用いて直流高
電圧を直線的に上昇および下降させて印加し、こ
れによつて部分放電を発生させて、従来の交流電
圧印加法と同等以上の豊富な劣化判定データを得
る合理的な絶縁診断方法およびその装置を提供す
るものである。
The present invention was made in view of the drawbacks of the conventional method as described above, and uses a relatively lightweight device to apply a direct current high voltage in a linearly rising and falling manner, thereby generating a partial discharge. Thus, the present invention provides a rational insulation diagnosis method and apparatus for obtaining a wealth of deterioration determination data equivalent to or greater than that of the conventional AC voltage application method.

第1図は本発明の基本的構成を示すブロツク図
である。第1図において、低圧整流回路1によつ
て直流に変換された電圧は直流交流変換回路2に
よつて数kHzの高周波低電圧となる。小形小容量
の高周波昇圧変圧器3を経て高電圧となつた波形
は極性切換器14および高圧整流回路4を経て正
逆の直流高電圧となつて被試験物8に印加され
る。印加電圧波形は分圧器7によつて分割され、
比較照合器6であらかじめプログラム化された基
準電圧発生器5の出力電圧波形と比較照合され、
過不足が生じていれば低圧整流回路の出力レベル
を減増するよう制御される。被試験物を流れる電
流のうち放電に起因したパルス性電流はパルスト
ランス9によつて検出され、高周波増巾器10及
び波形整形回路11を経てパルスカウンタ13に
よつて試験時に生ずるパルス数の累積個数が表示
される。また分圧器7より供給される印加電圧波
形とともに波形整形回路11の出力波形が波形記
録計12に導かれ、放電発生時点が印加電圧波形
との関連で表示される。基準電圧発生器5は直線
昇圧、定電圧保持、直線降圧の指示を出すととも
に降圧後、極性切換器14に作用して電圧の極性
を反転させる。これによつて正逆に直線的な変化
を繰返す直流高電圧が所定プログラムに従つて発
生し、被試験物に印加される。
FIG. 1 is a block diagram showing the basic configuration of the present invention. In FIG. 1, a voltage converted into DC by a low voltage rectifier circuit 1 is converted into a high frequency low voltage of several kHz by a DC/AC converter circuit 2. The waveform that has become a high voltage through the small and small capacity high frequency step-up transformer 3 passes through the polarity switch 14 and the high voltage rectifier circuit 4 and is applied to the test object 8 as a forward/reverse direct current high voltage. The applied voltage waveform is divided by a voltage divider 7,
It is compared and verified with the output voltage waveform of the reference voltage generator 5 which has been programmed in advance by a comparison and verification device 6,
If there is an excess or deficiency, the output level of the low voltage rectifier circuit is controlled to be increased or decreased. Of the current flowing through the test object, the pulsed current caused by the discharge is detected by the pulse transformer 9, passes through the high frequency amplifier 10 and the waveform shaping circuit 11, and is counted by the pulse counter 13 to accumulate the number of pulses generated during the test. The number will be displayed. Further, the output waveform of the waveform shaping circuit 11 together with the applied voltage waveform supplied from the voltage divider 7 is led to the waveform recorder 12, and the time point at which the discharge occurs is displayed in relation to the applied voltage waveform. The reference voltage generator 5 issues instructions for linear step-up, constant voltage maintenance, and linear step-down, and after step-down, acts on the polarity switch 14 to reverse the polarity of the voltage. As a result, a DC high voltage that repeats linear changes in forward and reverse directions is generated according to a predetermined program, and is applied to the test object.

また装置の電源が交流ではなく、蓄電池等の直
流を利用することが考えられる。この場合は低圧
整流回路1の前段に直流交流変換回路を組込むこ
とで簡単に実現できる。また被試験物8と直列に
直流電流検出回路を挿入すれば従来の絶縁抵抗計
としての機能ももたせることができる。上記した
本発明の絶縁診断装置を用いると従来の診断装置
に比し、次のような利点が生ずる。すなわち従来
の印加電圧波形は第2図Aに示すように昇圧およ
び降圧波形にはほとんど関心が向けられない結
果、大部分が被試験物の静電容量と直流電源の制
限抵抗、交流側昇圧速度できまる波形となつてい
る。そのため指数関数的に上昇および下降曲線を
描く例が多い。この時生ずる放電パルス位相は第
2図Bのようになる。すなわち放電パルスは電圧
変化速度の大きな初期に集中して発生し、電圧変
化が緩やかになると放電パルスは発生し難くな
る。このため、もし測定環境に恵まれず外部雑音
の多い状態で放電計測を行なう時には、一度この
放電集中時期を妨害されて計測を失敗すると、容
易に再計測ができない。理論的には昇圧過程で失
敗しても、降圧過程で再計測ができることになる
が、実際は電極構成の非対称性のために一度たい
積した電荷は降圧過程では放電しない場合が非常
に多い。再度昇圧しても、たい積電荷の放電が不
充分のため、新たな放電検出は不可能である。こ
れが直流電圧での放電検出を困難としていた理由
である。次に第3図Aは本発明による印加電圧波
形を示す。本波形によれば以上の欠点がとり除か
れる。まず昇圧、降圧過程が意図的に直線変化す
るから、第3図Bに示すように放電発生間隔に疎
密がなくなり、検出の失敗がなくなる。さらに降
圧後極性反転によつて逆極性に等速度で昇圧する
直流電圧が印加されるため、部分放電検出からみ
た印加直流電圧は、従来の方法に比し2倍の大き
さで加えられることになり、検出能力が増大す
る。直流印加法の欠点である片極性偏充電のへい
害はこの両極性印加により解決される。もちろん
定電圧保持期間を利用すれば従来の絶縁抵抗時間
特性の測定が可能である。
Furthermore, it is conceivable that the power source of the device is not alternating current but direct current such as a storage battery. This case can be easily realized by incorporating a DC/AC converter circuit before the low voltage rectifier circuit 1. Furthermore, by inserting a DC current detection circuit in series with the test object 8, it can also function as a conventional insulation resistance meter. The use of the above-mentioned insulation diagnostic device of the present invention provides the following advantages over conventional diagnostic devices. In other words, in the conventional applied voltage waveform, as shown in Figure 2A, little attention is paid to the step-up and step-down waveforms, and as a result, most of the applied voltage waveforms are based on the capacitance of the test object, the limiting resistance of the DC power source, and the step-up speed on the AC side. The waveform is as follows. Therefore, there are many examples of exponentially rising and falling curves. The discharge pulse phase that occurs at this time is as shown in FIG. 2B. That is, discharge pulses are generated in a concentrated manner at the initial stage when the voltage change rate is large, and as the voltage change becomes gradual, discharge pulses become less likely to occur. Therefore, if a discharge measurement is performed in a poor measurement environment and there is a lot of external noise, once the discharge concentration period is interrupted and the measurement fails, re-measurement cannot be easily performed. In theory, even if the voltage step-up process fails, it would be possible to re-measure the voltage during the step-down process, but in reality, due to the asymmetry of the electrode configuration, the accumulated charge is often not discharged during the step-down process. Even if the voltage is increased again, the accumulated charge is insufficiently discharged, so new discharge detection is impossible. This is the reason why it is difficult to detect discharge using DC voltage. Next, FIG. 3A shows an applied voltage waveform according to the present invention. According to this waveform, the above drawbacks can be eliminated. First, since the voltage step-up and step-down processes are intentionally linearly changed, there is no spacing between discharge occurrences, as shown in FIG. 3B, and detection failures are eliminated. Furthermore, since a DC voltage of the opposite polarity that increases at a constant speed is applied by reversing the polarity after stepping down, the applied DC voltage from the perspective of partial discharge detection is twice as large as that of the conventional method. This increases the detection ability. This bipolar application solves the problem of unipolar polarized charging, which is a drawback of the direct current application method. Of course, the conventional insulation resistance time characteristics can be measured by using the constant voltage holding period.

波形記録計は印加直流波形に対応して放電パル
ス発生位相を第3図Bのように表示する。これに
よつて絶縁物の吸湿の程度が推定できる。すなわ
ち乾燥した絶縁物では、印加電圧波形の変化過程
でしか放電は容易には生じないが、吸湿すると定
電圧時期にも頻繁に生ずることが研究の結果わか
つた。従つてパルス発生位相表示器は絶縁診断上
極めて有効である。
The waveform recorder displays the discharge pulse generation phase as shown in FIG. 3B in accordance with the applied DC waveform. This allows the degree of moisture absorption of the insulator to be estimated. In other words, research has revealed that in dry insulators, discharges easily occur only during changes in the applied voltage waveform, but when moisture is absorbed, discharges occur frequently even during constant voltage periods. Therefore, the pulse generation phase indicator is extremely effective for insulation diagnosis.

試験中に生ずるパルス累積発生数を表示するこ
とによつて、劣化の進行状況が容易に数値化され
る。また、部分放電計測は再現性がなければ判定
を誤まることになるが、本方法では正負両極性の
直流電圧がくり返し印加できるため、容易に再現
性のチエツクができる利点を有している。
By displaying the cumulative number of pulses occurring during the test, the progress of deterioration can be easily quantified. In addition, partial discharge measurement may lead to erroneous judgments if it is not reproducible, but this method has the advantage that reproducibility can be easily checked because DC voltages of both positive and negative polarities can be applied repeatedly.

以上説明したように本発明によれば、比較的小
形な装置を用いて正逆両極性で交互に直線的な電
圧上昇下降を繰返す直流高電圧を絶縁物に印加
し、これによつて絶縁物のたい積電荷の影響を無
くし、部分放電パルスの発生を均一にし、さらに
再現性を向上して測定精度を高めると共に、発生
パルスを計数することによつて絶縁度を数値化し
て測定できる合理的な絶縁診断方法およびその装
置を得ることができる。
As explained above, according to the present invention, a relatively small device is used to apply a DC high voltage that alternately repeats linear voltage rises and falls in both forward and reverse polarities to an insulator. It is a rational method that eliminates the influence of cumulative charges, uniformizes the generation of partial discharge pulses, improves reproducibility and measurement accuracy, and allows the degree of insulation to be measured numerically by counting the generated pulses. An insulation diagnostic method and device can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による絶縁診断装置の基本的構
成を示すブロツク図、第2図A,Bは従来の絶縁
診断方法における試験電圧波形および放電パルス
の一例を示す図、第3図A,Bは本発明における
試験電圧波形と放電パルスの一例を示す図であ
る。 1……低圧整流回路、2……直流交流交換回
路、3……昇圧変圧器、4……高圧整流回路、5
……基準電圧発生器、6……比較照合器、7……
分圧器、8……被試験物、9……パルストラン
ス、10……高周波増巾器、11……波形整形回
路、12……波形記録計、13……パルスカウン
タ、14……極性切換器。
FIG. 1 is a block diagram showing the basic configuration of the insulation diagnosis device according to the present invention, FIGS. 2A and B are diagrams showing examples of test voltage waveforms and discharge pulses in the conventional insulation diagnosis method, and FIGS. 3A and B FIG. 2 is a diagram showing an example of a test voltage waveform and a discharge pulse in the present invention. 1...Low voltage rectifier circuit, 2...DC exchange circuit, 3...Step-up transformer, 4...High voltage rectifier circuit, 5
...Reference voltage generator, 6... Comparison verifier, 7...
Voltage divider, 8... Test object, 9... Pulse transformer, 10... High frequency amplifier, 11... Waveform shaping circuit, 12... Waveform recorder, 13... Pulse counter, 14... Polarity switcher .

Claims (1)

【特許請求の範囲】 1 絶縁物に印加する高電圧を所定の正逆電圧ま
で所定の傾斜で直線的に上昇および下降すると共
に、上記各所定電圧に達したとき所定時間その電
圧を保持することを繰返し、発生する部分放電を
印加電圧波形に対応して測定するようにしたこと
を特徴とする絶縁診断方法。 2 所定のプログラムに従つて直線電圧上昇、電
圧一定保持、直線電圧下降を繰返す正逆直流高電
圧発生装置と、上記高電圧が印加された絶縁物に
発生する部分放電を上記印加電圧波形に対応して
計数表示する表示装置とを備えたことを特徴とす
る絶縁診断装置。
[Claims] 1. A high voltage applied to an insulator is linearly raised and lowered at a predetermined slope up to a predetermined forward and reverse voltage, and when each of the predetermined voltages is reached, the voltage is maintained for a predetermined period of time. An insulation diagnosis method characterized in that the partial discharge that occurs is measured in response to the applied voltage waveform by repeating the above steps. 2. A forward/reverse direct current high voltage generator that repeats linear voltage rise, constant voltage maintenance, and linear voltage fall according to a predetermined program, and a partial discharge that occurs in an insulator to which the high voltage is applied, corresponding to the applied voltage waveform. An insulation diagnostic device comprising: a display device for counting and displaying the measured values.
JP9726878A 1978-08-11 1978-08-11 Insulation inspecting method and device Granted JPS5524622A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP9726878A JPS5524622A (en) 1978-08-11 1978-08-11 Insulation inspecting method and device
GB7928161A GB2029587B (en) 1978-08-11 1979-08-13 Methods and apparatus for diagnosing faults in the insulation of electrical insulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9726878A JPS5524622A (en) 1978-08-11 1978-08-11 Insulation inspecting method and device

Publications (2)

Publication Number Publication Date
JPS5524622A JPS5524622A (en) 1980-02-21
JPS6150264B2 true JPS6150264B2 (en) 1986-11-04

Family

ID=14187778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9726878A Granted JPS5524622A (en) 1978-08-11 1978-08-11 Insulation inspecting method and device

Country Status (1)

Country Link
JP (1) JPS5524622A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11815930B1 (en) * 2023-03-22 2023-11-14 GM Global Technology Operations LLC System for actuating vehicle brake and accelerator pedals by hand

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55104770A (en) * 1979-02-06 1980-08-11 Toshiba Corp Method of and device for diagnosing insulation
CN102759691B (en) * 2012-07-20 2015-02-25 云南电力试验研究院(集团)有限公司电力研究院 Positive/negative polarity direct-current high-voltage partial discharge testing system for GIS fault diagnosis

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11815930B1 (en) * 2023-03-22 2023-11-14 GM Global Technology Operations LLC System for actuating vehicle brake and accelerator pedals by hand

Also Published As

Publication number Publication date
JPS5524622A (en) 1980-02-21

Similar Documents

Publication Publication Date Title
Bodega et al. PD recurrence in cavities at different energizing methods
Bartnikas A commentary on partial discharge measurement and detection
JP2012251919A (en) Inspection equipment of lithium ion secondary battery, inspection method and secondary battery module
ATE120554T1 (en) METHOD AND APPARATUS FOR INVESTIGATION OF THE CONDITION OF AN INSULATION SYSTEM.
CN102253089A (en) Method for nondestructively detecting and evaluating mass defect level of high-voltage ceramic capacitors
Rosen et al. Double Layer Capacitance on Platinum in 1 M H 2 SO 4 from the Reversible Hydrogen Potential to the Oxygen Formation Region
JPS6150264B2 (en)
Xu et al. Loss current studies of partial discharge activity
JP2015175613A (en) Evaluation method of electric wire and evaluation device of electric wire
JP3412355B2 (en) Nickel-based battery deterioration determination method
Yoshikawa et al. Basic study on partial discharge detection with high sensitivity using ferrite core
JPS61162755A (en) Impulse coil tester
JPH11271385A (en) Method for diagnosing partial discharge state
GB2029587A (en) Testing insulation
JPH0580630B2 (en)
RU2668996C1 (en) Method for diagnosing the status of the collector electric machines commutation
JPH01131467A (en) Discrimination device for external noise in partial discharging measurement
Rux High-voltage dc tests for evaluating stator winding insulation: Uniform step, graded step, and ramped test methods
JPH0521429B2 (en)
Harrold Partial discharge. XVI. Ultrasonic sensing of PD within large capacitors
JPS5763461A (en) Device for testing watermeter
JPH0419505Y2 (en)
JPS60131476A (en) Method and device for deciding on quality of insulator of electric equipment
Dakin et al. Utilization of peak-reading voltmeters and recorders for corona measurement
JPH07151812A (en) Automatic insulating diagnostic apparatus