JPH0419505Y2 - - Google Patents

Info

Publication number
JPH0419505Y2
JPH0419505Y2 JP1983086454U JP8645483U JPH0419505Y2 JP H0419505 Y2 JPH0419505 Y2 JP H0419505Y2 JP 1983086454 U JP1983086454 U JP 1983086454U JP 8645483 U JP8645483 U JP 8645483U JP H0419505 Y2 JPH0419505 Y2 JP H0419505Y2
Authority
JP
Japan
Prior art keywords
voltage
test
triangular wave
peak value
reverse current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983086454U
Other languages
Japanese (ja)
Other versions
JPS59191680U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP8645483U priority Critical patent/JPS59191680U/en
Publication of JPS59191680U publication Critical patent/JPS59191680U/en
Application granted granted Critical
Publication of JPH0419505Y2 publication Critical patent/JPH0419505Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)

Description

【考案の詳細な説明】 〔考案の属する技術分野〕 本考案は高電圧の半導体整流素子、半導体制御
整流素子等の保守点検を対象とした逆方向電流試
験装置に関する。
[Detailed description of the invention] [Technical field to which the invention pertains] The present invention relates to a reverse current testing device for maintenance and inspection of high-voltage semiconductor rectifiers, semiconductor-controlled rectifiers, etc.

〔従来技術とその問題点〕[Prior art and its problems]

半導体整流素子の良否は、多くの場合逆方向電
流を測定することによつて判定できる。たとえば
逆方向電流の極端に大きいもの、履歴ループの大
きいもの、特性曲線が不安定なもの等は一般に劣
化あるいは不良品と判定される。したがつて逆方
向電流の判定は電力用変換装置の保守点検におい
て半導体整流素子の特性の良否の判定方法として
も利用されている。電力用変換装置の保守点検は
非常に多数の半導体整流素子について個々に逆方
向電流を測定するために、試験装置としては扱い
方が簡便でかつ短時間で正確な特性値が得られる
ものが求められている。
In many cases, the quality of a semiconductor rectifying element can be determined by measuring the reverse current. For example, products with extremely large reverse currents, large history loops, unstable characteristic curves, etc. are generally determined to be deteriorated or defective. Therefore, the determination of reverse current is also used as a method of determining the quality of the characteristics of semiconductor rectifying elements during maintenance and inspection of power converters. Maintenance and inspection of power conversion equipment involves measuring the reverse current of a large number of semiconductor rectifying elements individually, so a testing device that is easy to use and that can obtain accurate characteristic values in a short period of time is required. It is being

第1図は従来の逆方向電流試験装置の接続図で
ある。図において、1は交流電源に接続された電
圧調整器、2は昇圧変圧器、3は補助整流器、4
は被試験半導体素子、5はブラウン管オシロスコ
ープ、6は分流器、7は抵抗分圧器である。上述
の接続図において電圧調整器1および昇圧変圧器
2によつて被試験半導体素子4に対して規定され
た試験電圧に調整された交流電圧は、補助整流器
3が導通常態にある半波電圧のみが被試験半導体
素子4に印加される。この時素子4に流れる逆方
向電流は分流器6によつて検出されてブラウン管
オシロスコープ5の縦軸入力回路に、素子4に印
加される逆方向電圧は抵抗分圧器7によつて検出
されてブラウン管オシロスコープ5の横軸入力回
路にそれぞれ入力され、ブラウン管オシロスコー
プ5の管面には被試験素子4の逆方向電流−電圧
特性が表示される。
FIG. 1 is a connection diagram of a conventional reverse current testing device. In the figure, 1 is a voltage regulator connected to an AC power supply, 2 is a step-up transformer, 3 is an auxiliary rectifier, and 4 is a voltage regulator connected to an AC power supply.
5 is a cathode ray tube oscilloscope, 6 is a current shunt, and 7 is a resistive voltage divider. In the above connection diagram, the AC voltage adjusted to the test voltage specified for the semiconductor device under test 4 by the voltage regulator 1 and step-up transformer 2 is only a half-wave voltage when the auxiliary rectifier 3 is in the conductive state. is applied to the semiconductor device under test 4. At this time, the reverse current flowing through the element 4 is detected by the shunt 6 and applied to the vertical axis input circuit of the cathode ray tube oscilloscope 5, and the reverse voltage applied to the element 4 is detected by the resistive voltage divider 7 and sent to the cathode ray tube oscilloscope. The signals are respectively input to the horizontal axis input circuit of the oscilloscope 5, and the reverse current-voltage characteristics of the device under test 4 are displayed on the tube surface of the cathode ray tube oscilloscope 5.

ところが試験される半導体素子が電力用の素子
である場合、その試験電圧波高値は数千ボルトに
なる。このため、商用周波数の電源電圧を試験電
圧にまで昇圧する昇圧変圧器2および電圧調整器
1が大形かつ重くなること、ならびにブラウン管
オシロスコープもかなり大きいため、試験装置全
体が大形かつ重くなり、工場試験等で据置き形と
して使用するにはよいが、変換装置の据着け場所
で試験装置を試験しようとする素子の近くに持ち
運んで使用するには適さない欠点がある。また素
子4の逆方向電流を求めるためには、ブラウン管
の管面の撮影、写真からのデータの読み取り、分
圧比、分流比を用いたデータの換算等の測定デー
タの解析を必要とする。このため試験結果の判定
に時間がかかり、変換装置等に内設された多数の
整流素子の良否の判定を要する保守点検において
は、変換装置の運転を長時間停止しなければなら
ない等の問題を生ずる欠点があつた。
However, when the semiconductor device to be tested is a power device, the test voltage peak value is several thousand volts. For this reason, the step-up transformer 2 and voltage regulator 1 that step up the commercial frequency power supply voltage to the test voltage are large and heavy, and the cathode ray tube oscilloscope is also quite large, making the entire test equipment large and heavy. Although it is suitable for use as a stationary type in factory tests, etc., it has a drawback that it is not suitable for carrying and using the test device near the device to be tested at the place where the converter is installed. Further, in order to obtain the reverse current of the element 4, it is necessary to photograph the surface of the cathode ray tube, read data from the photograph, and analyze measurement data such as conversion of data using a division ratio and a division ratio. For this reason, it takes time to judge the test results, and during maintenance inspections that require judgment of the acceptability of a large number of rectifying elements installed inside the converter, problems such as having to stop the operation of the converter for a long time occur. There were some shortcomings.

〔考案の目的〕[Purpose of invention]

本考案は上述の状況に鑑みてなされたもので、
小形軽量で測定結果を直読できる半導体整流素子
の逆方向電流試験装置を提供することにより、大
容量の変換装置の保守点検作業を簡便かつ迅速に
することを目的とする。
This idea was made in view of the above situation.
The present invention aims to simplify and speed up the maintenance and inspection work of large-capacity converters by providing a reverse current test device for semiconductor rectifier elements that is small and lightweight and allows direct reading of measurement results.

〔考案の要点〕[Key points of the idea]

本考案によれば、上述の目的は、従来の交流半
波試験電圧の代りに、交流半波電圧の波高値と等
しいピーク値を有する三角波試験電圧を用いるこ
ととし、制御部が試験開始信号を受けて発する1
個の低圧の三角波電圧信号を、変換部で三角波電
圧信号の2倍の振幅を有する高周波振動電圧に変
換し、高周波トランスによりこの高周波振動電圧
をピーク値が前記三角波試験電圧のピーク値と等
しくなるよう昇圧し、試験電圧発生部で昇圧され
た振動電圧を整流して三角波試験電圧を得るよう
構成したことにより試験電圧発生部を小形化し、
さらに試験電圧のピーク値とこれに対応して現れ
る逆方向電流のピーク値をそれぞれ検出し表示す
るピーク値検出部および表示部を設けて測定結果
を即座に知ることができるよう構成することによ
り達成された。
According to the present invention, the above-mentioned purpose is to use a triangular wave test voltage having a peak value equal to the peak value of the AC half-wave voltage instead of the conventional AC half-wave test voltage, and the control unit receives a test start signal. receive and send 1
A converter converts the low voltage triangular wave voltage signal into a high frequency oscillating voltage having twice the amplitude of the triangular wave voltage signal, and a high frequency transformer converts this high frequency oscillating voltage so that the peak value is equal to the peak value of the triangular wave test voltage. By configuring the test voltage generator to rectify the boosted oscillating voltage to obtain a triangular wave test voltage, the test voltage generator can be made smaller.
Furthermore, this is achieved by providing a peak value detection section and a display section that detect and display the peak value of the test voltage and the peak value of the reverse direction current that appears correspondingly, so that the measurement results can be immediately known. It was done.

〔考案の実施例〕[Example of idea]

以下本考案の一実施例を添付図面を参照しつつ
説明する。
An embodiment of the present invention will be described below with reference to the accompanying drawings.

第2図は本考案の実施例を示す試験装置の接続
図である。図において、11は制御部で、試験開
始信号入力電気接点11aに信号が入力された時
これに対応して1個の三角波電圧信号を発するよ
う形成されており、例えば可変制御整流器によつ
てコンデンサ11bを定電流充電するよう構成さ
れる。12は制御部11の出力三角波電圧信号を
受けて出力三角波電圧信号の2倍の振幅を有する
高周波振動電圧に変換する波形変換器で、例えば
矩形波インバータが用いられ、10-4〜10-3秒程度
の振動周期を有し、その包絡線が前出の三角波電
圧信号とほぼ等しく正負対称な波形を有する振動
電圧を出力する。13は高周波トランスで、変換
器12の出力振動電圧を受けて高圧の振動電圧を
出力する昇圧トランスで、振動電圧の振動周期を
短かくすることによつてトランスの鉄心が従来よ
り大幅に小形化されている。高周波トランス13
によつて昇圧された振動電圧のピーク値は、試験
される半導体整流素子の試験に必要な電圧のピー
ク値と一致するよう制御部11の三角波電圧信号
のピーク値を調整することによつて制御される。
14は三角波試験電圧発生部で、高周波トランス
13の出力振動電圧を高圧整流器によつて両波整
流するよう形成され、その出力電圧波形は制御部
11の出力三角波電圧信号とピーク値到達時間が
等しい高電圧三角波電圧となる。三角波試験電圧
は出力端子14aを介して被試験半導体素子4に
印加される。6は被試験素子4の逆方向電流を検
出するための検知器、7は三角波試験電圧を検出
するための抵抗分圧器で、検知器6および抵抗分
圧器7によつて所定のレベルに調整された逆方向
電流および三角波試験電圧はピーク値検出部8a
および8bにそれぞれ入力される。ピーク値検出
部8aおよび8bはそれぞれ逆方向電流のピーク
値iPおよび三角波試験電圧のピーク値VPを検出し
てそれぞれの値を一時保持する機能を備え、デイ
ジタルメータなどの表示器9aおよび9bに逆方
向電流のピーク値iPおよび三角波試験電圧のピー
ク値VPあるいはそれに比例した電流値および電
圧値をそれぞれ表示する。
FIG. 2 is a connection diagram of a test device showing an embodiment of the present invention. In the figure, reference numeral 11 denotes a control section, which is configured to generate one triangular wave voltage signal in response to a signal input to the test start signal input electrical contact 11a. 11b is configured to charge at a constant current. Reference numeral 12 denotes a waveform converter that receives the output triangular wave voltage signal of the control unit 11 and converts it into a high frequency oscillating voltage having twice the amplitude of the output triangular wave voltage signal. For example, a rectangular wave inverter is used, and 10 -4 to 10 -3 It outputs an oscillating voltage having an oscillating period on the order of seconds and a waveform whose envelope is substantially equal to and symmetrical in positive and negative directions with the aforementioned triangular wave voltage signal. 13 is a high-frequency transformer, which is a step-up transformer that receives the output oscillating voltage from the converter 12 and outputs a high-voltage oscillating voltage.By shortening the oscillating period of the oscillating voltage, the iron core of the transformer is significantly smaller than before. has been done. High frequency transformer 13
The peak value of the oscillating voltage boosted by be done.
Reference numeral 14 denotes a triangular wave test voltage generator, which is formed to rectify the output oscillating voltage of the high frequency transformer 13 into both waves using a high voltage rectifier, and its output voltage waveform has the same peak value arrival time as the output triangular wave voltage signal of the control unit 11. It becomes a high voltage triangular wave voltage. The triangular wave test voltage is applied to the semiconductor device under test 4 via the output terminal 14a. 6 is a detector for detecting the reverse current of the device under test 4, and 7 is a resistor voltage divider for detecting the triangular wave test voltage, which is adjusted to a predetermined level by the detector 6 and resistor voltage divider 7. The reverse current and triangular wave test voltage are detected by the peak value detection section 8a.
and 8b, respectively. The peak value detection units 8a and 8b each have a function of detecting the peak value i P of the reverse direction current and the peak value V P of the triangular wave test voltage and temporarily holding the respective values, and display devices 9a and 9b such as digital meters. The peak value i P of the reverse direction current, the peak value V P of the triangular wave test voltage, or the current value and voltage value proportional thereto are displayed respectively.

またピーク値検出部8aに検出された逆方向電
流のピーク値iPが所定のレベルを超えた時、異常
報知信号を発する判定機能を持たせるよう構成し
ておけば、大容量変換装置の保守点検において多
数の半導体整流素子の中から特性不良の素子を摘
出する作業をより効率よく実施することができて
便利である。
Furthermore, if the peak value detection unit 8a is configured to have a determination function that issues an abnormality alarm signal when the peak value i P of the reverse direction current detected exceeds a predetermined level, it is possible to maintain the large capacity converter. This is convenient because the work of picking out elements with poor characteristics from among a large number of semiconductor rectifier elements during inspection can be carried out more efficiently.

第3図は前述の実施例における各部の出力波形
の概念図である。図においてイは制御部11の出
力三角波電圧信号波形で、三角波試験電圧のピー
ク値VPのn分の1の低圧パルスで、ピークVP
nに到達するまでの立上がり時間tPは商用周波数
半波電圧の波高値到達時間を考慮して5〜10ミリ
秒程度に設定される。ロは変換器12の出力振動
電圧波形で、振動周期τは10-4〜10-3秒程度の高
周波振動パルスである。ハは高周波トランスの出
力振動電圧で、そのピーク値は三角波振動電圧の
ピーク値VPにまで昇圧される。ニは試験電圧発
生部14の出力三角波試験電圧波形、ホは被試験
半導体素子4の逆方向電流を検知器6で検出した
波形で、一般に三角波試験電圧のピーク値VP
同期して電流のピーク値iPが検出される。
FIG. 3 is a conceptual diagram of output waveforms of each part in the above-described embodiment. In the figure, A is the output triangular voltage signal waveform of the control unit 11, which is a low voltage pulse of 1/n of the peak value V P of the triangular wave test voltage, and the peak V P /
The rise time t P until reaching n is set to about 5 to 10 milliseconds in consideration of the time to reach the peak value of the commercial frequency half-wave voltage. B is the output oscillating voltage waveform of the converter 12, which is a high frequency oscillating pulse with an oscillating period τ of about 10 -4 to 10 -3 seconds. C is the output oscillating voltage of the high-frequency transformer, and its peak value is boosted to the peak value V P of the triangular wave oscillating voltage. d is the output triangular wave test voltage waveform of the test voltage generator 14, and e is the waveform detected by the detector 6 of the reverse current of the semiconductor device under test 4. In general, the current is generated in synchronization with the peak value V P of the triangular wave test voltage. A peak value i P is detected.

また第2図の実施例において、端子14aに接
続される高圧プローブおよび検出プローブを設け
被試験素子4の両端子に接触させるとともに、試
験開始信号の入力電気接点11aを延長コードを
用いて前記プローブに近接した位置に設け、試験
作業者がこの電気接点を操作するよう構成すれ
ば、試験装置を変換装置内部に持ち込まないでも
試験を実施することができて便利である。
Further, in the embodiment shown in FIG. 2, a high voltage probe and a detection probe connected to the terminal 14a are provided and brought into contact with both terminals of the device under test 4, and the input electrical contact 11a of the test start signal is connected to the probe using an extension cord. If the electrical contact is placed close to the converter and the test operator operates the electrical contact, it is convenient because the test can be carried out without bringing the test device into the converter.

〔考案の効果〕[Effect of idea]

本考案によれば、まず高周波変圧器の一次側電
圧源として、例えば可変制御整流器によつてコン
デンサを定電流充電して三角波電圧信号を発する
制御部と、この電圧を所定の周期をもつた振動電
圧に変換するインバータ等よりなる変換部とで構
成したことにより、従来装置におけるスライドト
ランス等の電圧調整器が不要になり、装置を小形
軽量化するのに貢献できた。また高周波トランス
を用いて前記高周波の振動電圧を、高圧の振動電
圧に昇圧するよう構成したことにより、商用周波
数の昇圧変圧器に比べて鉄心を大幅に小形化する
ことが可能になり、装置の小形軽量化に貢献でき
た。さらに測定値の表示器にデイジタルメータ等
の小形化された計器を用いることにより、ブラウ
ン管オシロスコープが不要になり、前述の試験電
圧発生部分の小形化と併せて試験装置全体を小形
かつ軽量に形成することができた。
According to the present invention, first, as a primary voltage source of a high-frequency transformer, a control unit that charges a capacitor with a constant current using a variable control rectifier and generates a triangular voltage signal, and a control unit that generates a triangular voltage signal by oscillating this voltage with a predetermined period. By configuring the converter with a converter consisting of an inverter or the like that converts the voltage, a voltage regulator such as a slide transformer in conventional devices is no longer necessary, contributing to making the device smaller and lighter. Furthermore, by using a high-frequency transformer to step up the high-frequency oscillating voltage to a high-voltage oscillating voltage, it is possible to significantly downsize the iron core compared to a commercial frequency step-up transformer. This contributed to making it smaller and lighter. Furthermore, by using a compact instrument such as a digital meter as a measurement value display, a cathode ray tube oscilloscope is no longer required, and in conjunction with the miniaturization of the test voltage generation section mentioned above, the entire test equipment can be made smaller and lighter. I was able to do that.

また三角波試験電圧を1回だけ発生し、被試験
素子に印加し、試験電圧および逆方向電流のピー
ク値を表示するよう構成したことにより、電圧の
印加と同時に測定結果を知ることができるので、
データの解析に要する時間が大幅に短縮され、例
えば大容量変換装置の多数の整流素子の保守点検
を効率よく実施できるようになつた。ことに変換
装置の負荷側の短絡事故等に際して個々の整流素
子に異常がないか否かをチエツクしたいような場
合、逆方向電流の測定を短時間で実施できること
により、装置の停止時間が短縮され、生産活動に
及ぼす損失を低減する効果が期待される。
In addition, by generating the triangular wave test voltage only once, applying it to the device under test, and displaying the peak value of the test voltage and reverse current, it is possible to know the measurement results at the same time as the voltage is applied.
The time required to analyze data has been significantly shortened, making it possible to efficiently perform maintenance and inspection of a large number of rectifying elements in, for example, a large-capacity converter. In particular, when it is necessary to check whether there are any abnormalities in the individual rectifying elements in the event of a short-circuit accident on the load side of the converter, the ability to measure the reverse current in a short time reduces the downtime of the equipment. , is expected to have the effect of reducing losses in production activities.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の試験装置の接続図、第2図は本
考案の実施例の試験装置の接続図、第3図は試験
装置各部の出力電圧、電流波形の概念図である。 図において、4……被試験半導体素子、6……
逆方向電流検知部、7……分圧器、11……制御
部、12……波形変換部、13……高周波変圧
器、14……試験電圧発生部、11a……試験開
始信号入力接点、14a……出力端子、8a,8
b……ピーク値検出部、9a,9b……表示部、
である。
FIG. 1 is a connection diagram of a conventional test device, FIG. 2 is a connection diagram of a test device according to an embodiment of the present invention, and FIG. 3 is a conceptual diagram of output voltage and current waveforms of various parts of the test device. In the figure, 4...semiconductor element under test, 6...
Reverse current detection unit, 7...Voltage divider, 11...Control unit, 12...Waveform conversion unit, 13...High frequency transformer, 14...Test voltage generation unit, 11a...Test start signal input contact, 14a ...Output terminal, 8a, 8
b...peak value detection section, 9a, 9b...display section,
It is.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 半導体整流素子の逆方向電流を測定する試験装
置において、試験開始信号に対応して1個の単極
性の三角波電圧信号を発する制御部と、この三角
波電圧信号を受けてこの三角波電圧信号の2倍の
振幅を有する双極性振動電圧を発する変換器と、
この振動電圧を高圧振動電圧に昇圧する高周波ト
ランスと、この高周波トランスの出力電圧を整流
して前記単極性の三角波電圧信号とピーク値到達
時間が等しい1個の高圧の単極性三角波試験電圧
を発する試験電圧発生部と、この試験電圧発生部
の出力回路に設けられ、被試験素子の前記三角波
試験電圧の印加による逆方向電流を検出する検知
器と、前記三角波試験電圧を検出する分圧器と、
前記検知器および分圧器にそれぞれ対応して設け
られた逆方向電流および三角波試験電圧のそれぞ
れのピーク値を検出し保持する機能を有したピー
ク値検出部と、前記ピーク値検出部にそれぞれ対
応して設けられた前記被試験素子の逆方向電流な
らびに試験電圧のピーク値に比例した計測値をそ
れぞれ表示する表示器とを備えたことを特徴とす
る半導体整流素子試験装置。
A test device for measuring reverse current of a semiconductor rectifying element includes a control unit that generates one unipolar triangular wave voltage signal in response to a test start signal, and a controller that receives this triangular wave voltage signal and generates a unit that is twice the triangular wave voltage signal. a transducer that emits a bipolar oscillating voltage having an amplitude of
A high-frequency transformer boosts this oscillating voltage to a high-voltage oscillating voltage, and rectifies the output voltage of this high-frequency transformer to generate a single high-voltage unipolar triangular wave test voltage whose peak value arrival time is equal to the unipolar triangular wave voltage signal. a test voltage generating section, a detector provided in an output circuit of the test voltage generating section and detecting a reverse current due to application of the triangular wave test voltage of the device under test, and a voltage divider detecting the triangular wave test voltage;
A peak value detection section having a function of detecting and holding the respective peak values of the reverse current and the triangular wave test voltage provided corresponding to the detector and the voltage divider, respectively, and a peak value detection section corresponding to the peak value detection section, respectively. 1. A semiconductor rectifying device testing device comprising: a display device that displays measured values proportional to the reverse current of the device under test and the peak value of the test voltage provided therein.
JP8645483U 1983-06-07 1983-06-07 Semiconductor rectifier test equipment Granted JPS59191680U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8645483U JPS59191680U (en) 1983-06-07 1983-06-07 Semiconductor rectifier test equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8645483U JPS59191680U (en) 1983-06-07 1983-06-07 Semiconductor rectifier test equipment

Publications (2)

Publication Number Publication Date
JPS59191680U JPS59191680U (en) 1984-12-19
JPH0419505Y2 true JPH0419505Y2 (en) 1992-05-01

Family

ID=30216383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8645483U Granted JPS59191680U (en) 1983-06-07 1983-06-07 Semiconductor rectifier test equipment

Country Status (1)

Country Link
JP (1) JPS59191680U (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5042704U (en) * 1973-08-15 1975-04-30
JPS57179766A (en) * 1981-04-30 1982-11-05 Fujitsu Ltd Evaluating device for semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5042704U (en) * 1973-08-15 1975-04-30
JPS57179766A (en) * 1981-04-30 1982-11-05 Fujitsu Ltd Evaluating device for semiconductor device

Also Published As

Publication number Publication date
JPS59191680U (en) 1984-12-19

Similar Documents

Publication Publication Date Title
US5977773A (en) Non-intrusive impedance-based cable tester
JPS5925464B2 (en) Inspection device for DC power supply equipment
JPH0419505Y2 (en)
JPS6255571A (en) Automatic insulating characteristic analyzer
US3727133A (en) Detection of commutation defects
CN112731084B (en) Transformer testing device and testing method
JPS61162755A (en) Impulse coil tester
US5164660A (en) True, power, RMS current, and RMS voltage measuring devices
JP3255817B2 (en) Ion concentration measurement device
JPS5817377A (en) Continuity testing device for flat cable
US3936730A (en) Insulation test apparatus including improved means for simultaneous display
JP3155311B2 (en) Micro ammeter and micro current measurement method
JPH01131467A (en) Discrimination device for external noise in partial discharging measurement
US3854092A (en) Apparatus for measuring dynamic characteristics of semiconductor switching elements
CN215641774U (en) Calibration test device of broadband Rogowski coil
JPH07151812A (en) Automatic insulating diagnostic apparatus
JPH0225788A (en) Measurement of beam batch
CN114047419A (en) Silicon controlled rectifier detector and silicon controlled rectifier performance detection method
JPS62106168U (en)
JP3376924B2 (en) Layer corona test circuit
SU995031A1 (en) Electrical machine winding integrity checking method
SU783723A1 (en) Apparatus for testing current transformers in transition modes
SU974296A1 (en) Device for measuring ac voltage curve shape coefficient
CN112230159A (en) High-voltage power supply detector and test method
SU1170376A1 (en) Device for measuring instability of electric contast resistance