JPS6149806A - Method of compounding mortars - Google Patents

Method of compounding mortars

Info

Publication number
JPS6149806A
JPS6149806A JP59160677A JP16067784A JPS6149806A JP S6149806 A JPS6149806 A JP S6149806A JP 59160677 A JP59160677 A JP 59160677A JP 16067784 A JP16067784 A JP 16067784A JP S6149806 A JPS6149806 A JP S6149806A
Authority
JP
Japan
Prior art keywords
cement
water
ice
mortar
granular ice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59160677A
Other languages
Japanese (ja)
Inventor
敏郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP59160677A priority Critical patent/JPS6149806A/en
Priority to AU46729/85A priority patent/AU4672985A/en
Priority to EP19850903710 priority patent/EP0191864A4/en
Priority to KR1019860700165A priority patent/KR870700224A/en
Priority to PCT/JP1985/000423 priority patent/WO1986000884A1/en
Priority to NZ212912A priority patent/NZ212912A/en
Priority to CA000487733A priority patent/CA1241028A/en
Publication of JPS6149806A publication Critical patent/JPS6149806A/en
Priority to US07/120,753 priority patent/US4762562A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/06Inhibiting the setting, e.g. mortars of the deferred action type containing water in breakable containers ; Inhibiting the action of active ingredients
    • C04B40/0683Inhibiting the setting, e.g. mortars of the deferred action type containing water in breakable containers ; Inhibiting the action of active ingredients inhibiting by freezing or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C5/00Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions
    • B28C5/003Methods for mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C5/00Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions
    • B28C5/46Arrangements for applying super- or sub-atmospheric pressure during mixing; Arrangements for cooling or heating during mixing, e.g. by introducing vapour
    • B28C5/468Cooling, e.g. using ice

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 この発明はモルタル、コンクリート等水硬性セメント質
組成物(以下モルタル類という)の調合方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a method for preparing hydraulic cementitious compositions such as mortar and concrete (hereinafter referred to as mortars).

発明の解決しようとする問題点 水セメント比説によれば水硬性セメント質組成物の硬化
後の強度はセメントと水の調合割合でき1リセメントに
対する水の量が少ないほど強度が大となる。そして最近
の説によればセメントの水和作用に必要々最低水量近傍
で凝結硬化させることにより−、きわめて強度が大きく
なり、圧縮強度だけでなく、引張強度、曲げ強度、剪断
強度も確保される。
Problems to be Solved by the Invention According to the water-cement ratio theory, the strength of a hydraulic cementitious composition after hardening is determined by the mixing ratio of cement and water, and the smaller the amount of water per cement, the greater the strength. According to a recent theory, by setting and hardening near the minimum amount of water necessary for the hydration of cement, it becomes extremely strong, ensuring not only compressive strength but also tensile strength, bending strength, and shear strength. .

ところでモルタル類の調合に際して(dワーカビリティ
が必要である。すなわち、調合、打込み、成形等硬化以
前での作業離易に関連する軟かさ、流動性、粘性、可塑
性が適当であることが必要である。このワーカビリティ
確保のためセメントの水和作用に必要な水量よりかなり
大量々水を混入するのが通例であり、また水量を減らす
ため各種の混合剤を配合している。しかし水和作用に必
要カ最低水量となると水量が極端に少々く々るためワー
カビリティの確保が困難と々る。この場゛合硬化後の強
度が水セメント比だけでなく、セメントと骨材等の混合
均質性、気泡混入度等にも大きく左右されるため、水和
反応中の攪拌、混合が重要であるがこれも実施が、困難
である。
By the way, when preparing mortar, it is necessary to have workability (that is, it is necessary to have appropriate softness, fluidity, viscosity, and plasticity related to ease of dismantling operations such as mixing, driving, and molding before hardening). In order to ensure this workability, it is customary to mix in a much larger amount of water than is required for the hydration effect of cement, and various admixtures are added to reduce the amount of water.However, the hydration effect When the required minimum amount of water is reached, the amount of water becomes extremely small, making it difficult to ensure workability. Stirring and mixing during the hydration reaction are important, but they are also difficult to carry out, since they are greatly affected by the properties, degree of air bubbles, etc.

この発明は前記従来の問題点を解消するだめ水を粒状氷
の状態で配合すべくしだものである。
This invention aims to solve the above-mentioned conventional problems by blending waste water in the form of granular ice.

問題点を解消するだめの手段 この発明の要旨とする構成はセメント、骨材に粒状氷を
攪拌混合し、次いで前記粒状氷を融解させ、それによつ
そ得られた水をセメントと水和反応させるもので、水を
粒状として攪拌混合することにより均質性を保持し、各
混合材料を低温とすることにより水和作用を遅延させ、
少量の水をセメント全体に均等に分散させ、かつ混合攪
拌の作業性を向上させたものである。なお粒状氷の融解
は自然、加熱、加圧等の手段が採用できる。
Means to Solve the Problem The gist of this invention is to stir and mix granular ice with cement and aggregate, then melt the granular ice, and cause the resulting water to undergo a hydration reaction with cement. By stirring and mixing water in granular form, homogeneity is maintained, and the hydration effect is delayed by keeping each mixed material at a low temperature.
A small amount of water is evenly dispersed throughout the cement, and the workability of mixing and stirring is improved. Note that the granular ice can be melted by natural means, heating, pressurization, or the like.

ところでセメント中に混入された粒状氷の融解時間は、
熱伝導により熱が伝達されるとすれば、次式と々る。
By the way, the melting time of granular ice mixed in cement is
If heat is transferred by thermal conduction, the following equation is obtained.

ここに、 t:氷の融解時間(′h) m:氷の比重、 920 Kf/ m2F:氷の融解熱
、80に一1/に9 λ:セメント熱伝導率、 0.2 KC,ll / m
h’C(実測値平均) Nu:平均ヌセルト数、2(粒径0.05駁〜25闘) θ0=周辺温度(°C) ro二粒状氷半径(ホ) そして粒状氷径と氷融解時間の関係は第1図に示す通り
であり、これより混合時間が適宜選択される。
Where, t: Melting time of ice ('h) m: Specific gravity of ice, 920 Kf/m2F: Heat of melting of ice, 80 to 1/9 λ: Cement thermal conductivity, 0.2 KC, ll/ m
h'C (average of actual measurements) Nu: average Nusselt number, 2 (particle size 0.05 to 25) θ0 = ambient temperature (°C) ro radius of two granular ice (e) and granular ice diameter and ice melting time The relationship is as shown in FIG. 1, and the mixing time is appropriately selected from this.

実施例 (a)材料 セメント  普通ポルトランドセメント砂     富
士月産川砂 粒径 25問以下 粒度分布 0.3闘以下  15% 0.3〜0.6  28% 0.6〜1.2  33% 12〜25 24% 絶乾比重  2.7 氷  粒径 3. Q mm以下 粒度分布 1.0問以下  37% 1.0〜2.0  41% 2.0〜3.0  .22% (b)調合 (重量比率) 上記材料を15°C室温中にて攪拌混合し、加圧養生し
た。
Example (a) Material cement Ordinary Portland cement sand Fujitsuki river sand Particle size 25 questions or less Particle size distribution 0.3 or less 15% 0.3-0.6 28% 0.6-1.2 33% 12-25 24% Absolute dry specific gravity 2.7 Ice particle size 3. Q Particle size distribution of mm or less 1.0 questions or less 37% 1.0-2.0 41% 2.0-3.0. 22% (b) Preparation (weight ratio) The above materials were stirred and mixed at room temperature at 15°C and cured under pressure.

その攪拌混合時間は、粒径と室温にて最大値を決定した
The maximum value of the stirring and mixing time was determined based on the particle size and room temperature.

以上の条件で圧縮実験をした結果は次表の通りである。The results of the compression experiment under the above conditions are shown in the table below.

また以上の結果を第2図にグラフとして示した。Moreover, the above results are shown as a graph in FIG.

また前記試験体2について曲げ試験をした結果28日2
曲げ強度は230Kp/dであった。
In addition, the results of the bending test on the test specimen 2 were as follows:
The bending strength was 230 Kp/d.

発明の効果 この発明は以上の構成からなり、セメント、骨材および
粒状氷を攪拌混合するので、それらを均質に混合攪拌す
ることができる。水和反応させる水は粒状氷を融解させ
たものであるが、均質に混合攪拌されているのできわめ
て少量のものでよい。
Effects of the Invention The present invention has the above-described structure, and since cement, aggregate, and granular ice are stirred and mixed, they can be mixed and stirred homogeneously. The water used for the hydration reaction is obtained by melting granular ice, but since it is homogeneously mixed and stirred, only a very small amount is required.

その結果実験結果に示されるように圧縮強度、引張強度
および曲げ強度が著しく向上することが明らかである。
As a result, as shown in the experimental results, it is clear that the compressive strength, tensile strength and bending strength are significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は粒状氷径と氷融解時間の関係の図表、第2図は
圧縮試験結果の図表である。 目 手続補正書 昭和59年11月160 昭和59年  特  願第160677号2、発 明 
の名称 モルタル類の調合方法 3、補正をする者 事件との関係  特許i“願人 氏名 5、補正命令の日付   自4ネ甫1 昭和   年   月   日 (発送日)6、補正に
より増加する発明の数 (1)  明細書第2頁16行と17行との間に下記を
挿入する。 「 このほか、モルタル類は水金添加し混合した後は水
和反応が進行するので、例えばコンクリートミキサープ
ラント等でつくったコンクリートスラリーは打設捷での
時間が限られていた。このためコンクリートミキサープ
ラント全各地につくる必要があった。」 (2)  同第7頁4行と5行の間に下記を挿入する。 [また、この調合方法によると粒状氷の径から氷融解時
間を調整して水の混合時間が適宜選択でき、しかも粒状
氷の存在によってモルタル類が低温に維持されるので、
水和反応を遅延せしめ、打設までの時間を長くできる。 従って、例えはコンクリートミキサープラントでつくっ
たモルタル類の時間の制限を緩和し広範な地域への供給
全可能にする。」手続補正書 昭和60年 9月17日 1、事件の表示 昭和59年特許願第160677号 2、発明の名称 モルタル類の調合方法 3、補正をする者 事件との関係 特許出願人 4、代理人 〒107 東京都港区赤坂6丁目5番21号シャ1−一赤坂5、 
自発補正 6、 補正により増加する発明の数 7、補正の対象 明細書全文および図面 8、補正の内容 明細書:別紙の通り 図 面: 「第1図、第2図」を別添図面「第1図、第
2図」に補正する。 明    細    書 1、発明の名称 モルタル類の調合方法 2、特許請求の範囲 (1)セメントあるいはセメントと骨材等に粒状氷を加
え同相で撹拌混合し、次いで粒状氷を融解させ、それに
よって得られた水をセメントと水和反応させることを特
徴とするモルタル類の調合方法。 3、発明の詳細な説明 (産業上の利用分野) この発明はモルタル、コンクリート等水硬性セメント質
組成物(以下モルタル類という)の調合方法に関するも
のである。 (発明の解決しようとする問題点) 水セメント比説によれば、水硬性セメント質組成物の硬
化後の強度はセメントと水の調合割合で、きまりセメン
トに対する水の量が少ないほど強度が大となる。そして
最近の説によればセメントの水和作用に必要な最低水量
近傍で凝結硬化させることにより、きわめて強度が大き
くなり、圧縮強度だけでなく、引張強度、曲げ強度、剪
断強度も確保される。 しかし、水和作用に必要な最低水量となると水量が極端
に少なくなるため、モルタル類の均質な混練、あるいは
密実な充填等がむずかしくなり、単に水セメント比を小
とするのみでは高強度を得ることはできなかった。 この発明は上記事情に鑑みなされたものであり、水和反
応に必要とする水を粒状氷によって供給し、極めて低い
水/セメント比であっても均質なモルタル類が調合でき
、高強度の硬化物が得られるモルタル類の調合方法を提
案するにある。 (問題点を解消するための手段) この発明の要旨とする構成はセメント、あるいはセメン
トと骨材等に粒状氷を加え同相で撹拌混合し、次いで粒
状氷を融解させ、それによって得られた水をセメントと
水和反応させることを特徴とするモルタル類の調合方法
である。 この方法では、粒状氷は、周り□にセメントあるいは細
骨材等が付着し、粉体がまぶされた粒子のごとき状態と
なり分散して、微視的には不均質であるが巨視的には均
質な混合系を形成する。従って、粒状氷の添加量が少な
くても粒状氷を均等に分散せしめ、氷が融解した後は融
解水は周囲の材料を湿潤して均質なモルタル類を形成す
る。粒状氷の代りに同等の少量の水を加えた場合は、水
はセメントあるいは骨材の一部を湿潤して団塊となり乾
声〒分と混和せず均質なモルタル類は得られない。また
、セメントあるいは骨材等がまぶされた粒状氷は外周面
が断熱層で覆れた形となって融解しがたく、均等な撹拌
混合、あるいは水和反応の遅延を図る上で好条件をもた
らす。 粒状氷の粒径は小さい程均質に分散でき、打設後に未融
解の氷が残って欠陥部を生じる恐れもなく好ましい。周
辺が低温の場合は小粒径の氷も融けにくく、セメント等
の粉体が氷粒を覆い固相状態で撹拌できるために、骨材
等の混入の手順前後の影響は少ない。しかし周辺が高温
の場合は、撹拌中の氷の融解を抑制するために若干大き
めの粒径となし、さらに氷表面にセメントあるいはセメ
ントと砂の混合物等の微細粒子が早く付着するようにし
、粗骨材等の混入はあとにするのが望ましbl。 この調合方法においては、セメントの水和反応に必要と
する水の全量を粒状氷として供給するのが好ましいが、
実際の調合に際しては、砂、その細骨材類は多少の水分
を含有するので、これら原料に同伴する水分を除いた水
量を粒状氷で供給することになる。 モルタル類中に混入した粒状氷の融解時間は、氷温度お
よび水径に大きく依存する。このために氷温および水径
を適宜選定してモルタル類の水和反応までの時間を制御
できる。 このように調合してなったモルタル類は型枠内で加圧成
形したり、遠心型枠内で遠心力で締固めたり、あるいは
バイブレータ−等の振動で締固め密実に充填して打設す
る。同時に粒状氷が融解するに伴ない、全体が均等に湿
潤されて水和反応を起し、低水セメント比であっても均
質性が優れモルタル本来の強度を硬化物において発現す
る。 (実施例) (実施例1) (a)材料。 セメント 普通ポルトランドセメント 砂    富士川原川砂 粒径 2.5mm以下 粒径分布 0.3mm以下 15% 0.3〜0.6  28% 0.6〜12  33% 1.2〜2.5  24% 絶乾比重 2.7 氷    粒径 3 、 Omm以下 粒径分布 1 、0mm以下 37% 1.0〜2.0  41% 2.0〜3.0  22% (b)調合 (重量比率) 上記材料を15℃室温中にて撹拌混合し、加圧成形した
後密封養生した。 その撹拌混合時間は、粒径と室温にて最適値を決定した
。 以上の条件で試験体をつくり、その圧縮強度を求めた。 結果は第1表の通りであった。 第1表 28日強度単位kg/cd (実施例2) 粒状氷とセメントとを同相で撹拌混合し、粒状氷の表面
にセメントを付着せしめ、これを加圧成形した後密封養
生した試験体(材令28日)をつくった。その水/セメ
ント比と圧縮強度および曲げ強度との関係は第2表のご
とくなった。 (実施例3) セメント、砂(混合比1/2)に粒状氷を加え同相で撹
拌混合してモルタルを調合し、加圧成形した後密封養生
した試験体(材令28日)をつくった。その水/セメン
ト比と圧縮強度および曲げ強度との関係は第3表のごと
くなった。 砂:富士用産砂(粒径2.5mm以下表乾)粒状氷ニア
イススライサーで破砕したもの第3表 (実施例4) 粒状氷/セメント/砕中1/砂利*2 (0,30/1.0/1.5/1.5)のコンクリート
本3を調合した。 *1:最大粒径5mm、表乾 *2:最大粒径25mm、表乾 本3:生コンクリートスランプ、Ocmこのコンクリー
トを用いて、階高275 cm、柱断面40 X 40
cm 、梁断面30 X 60c+++ 、スラブ厚1
2cm 、壁厚12cmの寸法で通常の配筋を行った実
物大鉄筋コンクリート模型をつくった。コンクリートの
打設には棒状バイブレータ−1型枠バイブレータ−の両
方を用い密実なコンクリートの充填を図った。 コンクリート打設7日後に型枠を外し、大気中に放置し
養生し、28日後に柱の下部、中間部、上部、および梁
から合計7体の試験片(10cmφ×20cmh)を切
出し、圧縮試験を行なった。圧縮強度は611〜713
kg/cn?で平均662kg/C1(であった。 (実施例5) 温度が一2°C,−26℃の2種の粒状氷を、普通ポル
トランドセメントに混合してなったセメントペーストの
経過時間と温度変化の関係を求めた。 水/セメント比 30% 混合撹拌時間  3分 得られたセメントペーストを底面が7cmX7cmの正
方形の合板(厚さ9mm)の筒体内に高さ12cm充填
し、高さ5cmの中央部分位置を温度測定点となした。 一2℃、−26℃の2種の温度の粒状氷と同時に比較例
として室温の水を用いてセメントペーストを調整し、経
過時間とその温度変化を求めその結果を第1図のグラフ
に示した。 粒状氷の温度により、セメントペーストの水和反応に伴
う温度ピークまでの経過時間が異なり、用いる材料の温
度によって硬化時間を制御することができる。 (実施例6) この調合方法により、水/セメンl−比20%、30%
、40%、60%のセメントペーストをつくり、その硬
化物の材令と収縮歪との関係を求めた。その結果は第2
図グラフの通りであった。なお、硬化物は直径5cm、
高さ10cmのシリンダーで、室温15℃、相対湿度6
0%の条件下で収縮歪を測定した。 このグラフで明らかなように、この調合方法により低水
/セメント比とすることにより極めて小さな収縮歪の硬
化物をつくることができる。 (発明の効果) この発明は以上の構成からなる。この調合方法は水の代
りに粒状氷を用い同相で撹拌混合してモルタル類をつく
る。従って、低水/セメント比であっても粒状氷は均等
に分散し、粒状水が融解した後は均質に水が湿潤したモ
ルタル類が得られる。 このモルタル類は加圧成形、遠心成形、あるいは振動締
固め等の成形手段と組合せ、特に低水/セメント比のモ
ルタル類本来の高強度を硬化物において発現する。 また、粒状氷の氷温あるいは水径によって氷の融解を調
整し、融解した水の量を制御し、同時にモルタル類を低
温に保ち、水和反応を遅延せしめ、打設までの時間を長
くできる。従って、例えばコンクリートミキサープラン
トでつくったモルタル類の時間の制限を緩和し広範な地
域への供給を可能にする。 4、図面の簡単な説明 第1図は実施例5のセメン1へペーストの経過時間と温
度との相関グラフ、第2図は実施例6のセメントペース
トの材令と乾燥収縮歪の相関グラフである。 第2図 OU声
Figure 1 is a graph of the relationship between granular ice diameter and ice melting time, and Figure 2 is a graph of compression test results. No. 160, No. 160677 2, Invention
Name of method for blending mortars 3, Relationship with the case of the person making the amendment Patent i "Applicant's name 5, Date of amendment order JP 4 Neho 1 1939 Month, day (shipment date) 6, Inventions increased by amendment Number (1) Insert the following between lines 16 and 17 on page 2 of the specification: ``In addition, since mortars undergo a hydration reaction after adding water and gold and mixing, for example, in a concrete mixer plant. The concrete slurry made by the above-mentioned methods had a limited time in the pouring machine.For this reason, it was necessary to make it at all concrete mixer plants.'' (2) Between lines 4 and 5 on page 7 of the same page, the following is written: Insert. [Also, according to this preparation method, the water mixing time can be appropriately selected by adjusting the ice melting time depending on the diameter of the granular ice, and the presence of the granular ice keeps the mortar at a low temperature.
It delays the hydration reaction and lengthens the time required for pouring. Therefore, for example, the time constraints on mortar made in a concrete mixer plant can be relaxed, making it possible to supply it to a wide range of areas. ” Procedural amendment September 17, 1985 1. Indication of the case Patent Application No. 160677 of 1988 2. Name of the invention Method for preparing mortars 3. Person making the amendment Relationship with the case Patent applicant 4. Agent Person: 1-1 Akasaka 5, 6-5-21 Akasaka, Minato-ku, Tokyo 107, Japan
Voluntary amendment 6, number of inventions increased by the amendment 7, full text of the specification subject to the amendment and drawing 8, description of the contents of the amendment: as attached Drawings: ``Figures 1 and 2'' were replaced with the attached drawing ``Figure 2''. 1 and 2”. Description 1, Name of the invention Method for preparing mortar 2, Claims (1) Granular ice is added to cement or cement and aggregate, etc. and stirred and mixed in the same phase, and then the granular ice is melted. A method for preparing mortar, which is characterized by causing a hydration reaction between water and cement. 3. Detailed Description of the Invention (Field of Industrial Application) This invention relates to a method for preparing hydraulic cementitious compositions such as mortar and concrete (hereinafter referred to as mortars). (Problem to be solved by the invention) According to the water-cement ratio theory, the strength of a hydraulic cementitious composition after hardening is determined by the mixing ratio of cement and water, and the smaller the amount of water to cement, the higher the strength. becomes. According to a recent theory, by setting and hardening cement near the minimum amount of water required for hydration, cement becomes extremely strong, ensuring not only compressive strength but also tensile strength, bending strength, and shear strength. However, when the minimum amount of water required for hydration is reached, the amount of water becomes extremely small, making it difficult to homogeneously mix mortar or densely fill the mortar. I couldn't get it. This invention was made in view of the above circumstances, and by supplying the water required for the hydration reaction with granular ice, it is possible to prepare homogeneous mortar even with an extremely low water/cement ratio, and it has a high hardening strength. The purpose of this paper is to propose a method for preparing mortars that can be used to obtain products. (Means for Solving Problems) The gist of the present invention is to add granular ice to cement or cement and aggregate, stir and mix them in the same phase, then melt the granular ice, and produce water. This is a method for preparing mortar, which is characterized by causing a hydration reaction with cement. In this method, granular ice has cement or fine aggregate attached to its surroundings, and is dispersed into particles sprinkled with powder, which is microscopically heterogeneous but macroscopically forms a homogeneous mixed system. Therefore, even if the amount of granular ice added is small, the granular ice is evenly dispersed, and after the ice melts, the melt water wets the surrounding materials to form a homogeneous mortar. If an equivalent small amount of water is added instead of granular ice, the water will wet some of the cement or aggregate and form agglomerates, and will not mix with the dry powder, making it impossible to obtain a homogeneous mortar. In addition, granular ice coated with cement or aggregate is difficult to melt because its outer surface is covered with a heat insulating layer, which is a good condition for achieving even stirring and mixing or delaying the hydration reaction. bring about. The smaller the particle size of the granular ice is, the more homogeneously it can be dispersed, and there is no fear that unmelted ice will remain after pouring and cause defects. If the surrounding temperature is low, even small-sized ice is difficult to melt, and powder such as cement covers the ice particles and can be stirred in a solid state, so there is little effect before and after the procedure of mixing aggregate etc. However, if the surrounding temperature is high, the particle size should be slightly larger to prevent the ice from melting during stirring, and fine particles such as cement or a mixture of cement and sand should adhere to the ice surface quickly. It is desirable to mix in aggregate etc. later. In this preparation method, it is preferable to supply the entire amount of water required for the hydration reaction of cement as granular ice.
In actual preparation, since sand and its fine aggregates contain some water, the amount of water excluding the water accompanying these raw materials is supplied in the form of granular ice. The melting time of granular ice mixed in mortar depends largely on the ice temperature and water diameter. For this purpose, the time required for the hydration reaction of mortar can be controlled by appropriately selecting the ice temperature and water diameter. The mortar prepared in this way is pressurized in a formwork, compacted by centrifugal force in a centrifugal formwork, or compacted by vibration from a vibrator, etc., and is densely packed and cast. . At the same time, as the granular ice melts, the entire mortar is evenly wetted, causing a hydration reaction, and even at a low water-to-cement ratio, the mortar exhibits excellent homogeneity and the original strength of the mortar. (Example) (Example 1) (a) Material. Cement Ordinary Portland cement sand Fujikawarakawa sand Particle size 2.5 mm or less Particle size distribution 0.3 mm or less 15% 0.3-0.6 28% 0.6-12 33% 1.2-2.5 24% Bone dry Specific gravity 2.7 Ice Particle size 3, Omm or less Particle size distribution 1, 0mm or less 37% 1.0-2.0 41% 2.0-3.0 22% (b) Mixture (weight ratio) The above materials are mixed into 15% The mixture was stirred and mixed at room temperature (°C), pressure molded, and then sealed and cured. The optimum stirring and mixing time was determined based on the particle size and room temperature. A test specimen was made under the above conditions, and its compressive strength was determined. The results are shown in Table 1. Table 1 28-day strength unit kg/cd (Example 2) A test specimen in which granular ice and cement were stirred and mixed in the same phase, cement was attached to the surface of the granular ice, this was pressure-formed, and then sealed and cured. 28th of the material ordinance) was created. The relationship between the water/cement ratio and the compressive strength and bending strength is shown in Table 2. (Example 3) Granular ice was added to cement and sand (mixing ratio 1/2), mixed with stirring in the same phase to prepare mortar, and a test specimen (28 days old) was prepared by pressure molding and sealing curing. . The relationship between the water/cement ratio and the compressive strength and bending strength is shown in Table 3. Sand: Sand produced for Fuji (surface dry with a grain size of 2.5 mm or less) Granular ice crushed with a ice slicer Table 3 (Example 4) Granular ice/cement/crushed 1/gravel*2 (0,30/ 1.0/1.5/1.5) concrete version 3 was mixed. *1: Maximum grain size 5mm, surface dry *2: Maximum grain size 25mm, surface dry Book 3: Fresh concrete slump, Ocm Using this concrete, floor height 275 cm, column cross section 40 x 40
cm, beam cross section 30 x 60c+++, slab thickness 1
A full-sized reinforced concrete model with dimensions of 2 cm and wall thickness of 12 cm was made with normal reinforcement. For pouring concrete, we used both a rod-shaped vibrator and a formwork vibrator to achieve dense concrete filling. Seven days after pouring the concrete, the formwork was removed and left to cure in the atmosphere. After 28 days, a total of seven test specimens (10cmφ x 20cmh) were cut from the lower, middle, upper, and beam parts of the columns and subjected to compression tests. I did this. Compressive strength is 611-713
kg/cn? The average weight was 662 kg/C1. The relationship was determined.Water/cement ratio: 30% Mixing stirring time: 3 minutes The obtained cement paste was filled to a height of 12 cm into a square plywood cylinder (thickness: 9 mm) with a bottom surface of 7 cm x 7 cm, and a 5 cm high center was filled with the cement paste. The partial position was used as the temperature measurement point. Cement paste was prepared using granular ice at two temperatures of -2℃ and -26℃ and water at room temperature as a comparative example, and the elapsed time and temperature change were determined. The results are shown in the graph of Figure 1. The elapsed time until the temperature peak due to the hydration reaction of the cement paste varies depending on the temperature of the granular ice, and the curing time can be controlled depending on the temperature of the material used. ( Example 6) By this preparation method, the water/cemen l-ratio was 20% and 30%.
, 40%, and 60% cement pastes were made, and the relationship between the material age and shrinkage strain of the cured products was determined. The result is the second
It was as shown in the graph. In addition, the cured product has a diameter of 5 cm,
A cylinder with a height of 10 cm, a room temperature of 15°C, and a relative humidity of 6.
Shrinkage strain was measured under 0% conditions. As is clear from this graph, by using this blending method and a low water/cement ratio, it is possible to produce a cured product with extremely small shrinkage strain. (Effect of the invention) This invention consists of the above configuration. This preparation method uses granular ice instead of water and stirs and mixes in the same phase to create mortar. Therefore, even at a low water/cement ratio, the granular ice is evenly dispersed, and after the granular water is melted, a homogeneously water-wet mortar is obtained. When these mortars are combined with forming means such as pressure molding, centrifugal molding, or vibration compaction, the high strength inherent to mortars with a low water/cement ratio is exhibited in the hardened product. In addition, it is possible to adjust the melting of ice by adjusting the temperature of the granular ice or the diameter of the water, controlling the amount of melted water, and at the same time keeping the mortar at a low temperature, delaying the hydration reaction, and extending the time until pouring. . Therefore, for example, the time limit for mortar made in a concrete mixer plant can be alleviated, making it possible to supply it to a wide range of areas. 4. Brief explanation of the drawings Figure 1 is a graph of the correlation between the elapsed time and temperature of the paste to cement 1 in Example 5, and Figure 2 is the graph of the correlation between the age and drying shrinkage strain of the cement paste in Example 6. be. Figure 2 OU voice

Claims (1)

【特許請求の範囲】[Claims] セメント骨材に粒状氷を攪拌混合し、次いで前記粒状氷
を融解させ、それによつて得られた水をセメントと水和
反応させることを特徴とするモルタル類の調合方法。
1. A method for preparing mortars, which comprises stirring and mixing granular ice with cement aggregate, then melting the granular ice, and causing the water obtained thereby to undergo a hydration reaction with cement.
JP59160677A 1984-07-31 1984-07-31 Method of compounding mortars Pending JPS6149806A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP59160677A JPS6149806A (en) 1984-07-31 1984-07-31 Method of compounding mortars
AU46729/85A AU4672985A (en) 1984-07-31 1985-07-26 Method of blending and molding mortars
EP19850903710 EP0191864A4 (en) 1984-07-31 1985-07-26 Method of blending and molding mortars.
KR1019860700165A KR870700224A (en) 1984-07-31 1985-07-26 Mortar Combination Method and Forming Method
PCT/JP1985/000423 WO1986000884A1 (en) 1984-07-31 1985-07-26 Method of blending and molding mortars
NZ212912A NZ212912A (en) 1984-07-31 1985-07-30 Mixing concrete using ice as water source
CA000487733A CA1241028A (en) 1984-07-31 1985-07-30 Method of preparing and molding mortar or like
US07/120,753 US4762562A (en) 1984-07-31 1987-11-09 Method of preparing and molding mortar or like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59160677A JPS6149806A (en) 1984-07-31 1984-07-31 Method of compounding mortars

Publications (1)

Publication Number Publication Date
JPS6149806A true JPS6149806A (en) 1986-03-11

Family

ID=15720080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59160677A Pending JPS6149806A (en) 1984-07-31 1984-07-31 Method of compounding mortars

Country Status (2)

Country Link
JP (1) JPS6149806A (en)
KR (1) KR870700224A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627682A (en) * 1985-07-03 1987-01-14 鈴木 敏郎 Method of blending and forming mortars
JPS6270277A (en) * 1985-09-17 1987-03-31 鈴木 敏郎 Method for preparing mortars
JPS62267104A (en) * 1986-05-15 1987-11-19 京阪コンクリート工業株式会社 Manufacture of mortar
JPS63122869A (en) * 1986-11-08 1988-05-26 清水建設株式会社 Method and apparatus for disassembling of structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS535694A (en) * 1976-07-03 1978-01-19 Kiyuugo Tanaka Platinum wire used in combustible gas concentration measurements
JPS60218100A (en) * 1984-04-13 1985-10-31 三井建設株式会社 Method of kneading cement

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS535694A (en) * 1976-07-03 1978-01-19 Kiyuugo Tanaka Platinum wire used in combustible gas concentration measurements
JPS60218100A (en) * 1984-04-13 1985-10-31 三井建設株式会社 Method of kneading cement

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627682A (en) * 1985-07-03 1987-01-14 鈴木 敏郎 Method of blending and forming mortars
JPS6270277A (en) * 1985-09-17 1987-03-31 鈴木 敏郎 Method for preparing mortars
JPS6353924B2 (en) * 1985-09-17 1988-10-26 Toshiro Suzuki
JPS62267104A (en) * 1986-05-15 1987-11-19 京阪コンクリート工業株式会社 Manufacture of mortar
JPS63122869A (en) * 1986-11-08 1988-05-26 清水建設株式会社 Method and apparatus for disassembling of structure
JPH0718262B2 (en) * 1986-11-08 1995-03-01 清水建設株式会社 Method for dismantling structure and its equipment

Also Published As

Publication number Publication date
KR870700224A (en) 1987-05-30

Similar Documents

Publication Publication Date Title
WO1987000163A1 (en) Process for producing mortar and method for applying the same
JP4500371B2 (en) Compact cement admixture unit
JP4181224B2 (en) Cement composition and concrete and concrete product manufacturing method using the same
JPS6149806A (en) Method of compounding mortars
JP2019026540A (en) Cement composition for instant demolding type, and production method of precast concrete molding article using the same
Arioz et al. Properties of slag-based geopolymer pervious concrete for ambient curing condition
JPS59102849A (en) Super high strength cement hardened body
JPS6270277A (en) Method for preparing mortars
CN110204270A (en) A kind of lightweight concrete and preparation method thereof
WO1986000884A1 (en) Method of blending and molding mortars
JPS62158181A (en) Preparation of heavy concrete
JPS62158180A (en) Manufacture of cementitious composition
JP2000282037A (en) Plastic injection material
WO2024048682A1 (en) Geopolymer composition manufacturing method
JPS6270278A (en) Method for molding mortars
Shin et al. Development of Rapid Pavement Repair Materials
JPH0196051A (en) Method for casting concrete in cold season
John et al. Optimising Compressive Strength: Investigating the Ideal Conditions for Sodium Silicate-Activated Fly Ash–GGBS-Based Binder
JPH0575709B2 (en)
SU1011590A1 (en) Method for making construction products
JP4220781B2 (en) Low density calcium silicate hydrate strength accelerator additive for cementitious products
JP2004224633A (en) Prestressed concrete pavement slab
JPH0577637B2 (en)
SU1754688A1 (en) Polymer-mineral mortar
JPS627682A (en) Method of blending and forming mortars