JPS6149380B2 - - Google Patents
Info
- Publication number
- JPS6149380B2 JPS6149380B2 JP53020299A JP2029978A JPS6149380B2 JP S6149380 B2 JPS6149380 B2 JP S6149380B2 JP 53020299 A JP53020299 A JP 53020299A JP 2029978 A JP2029978 A JP 2029978A JP S6149380 B2 JPS6149380 B2 JP S6149380B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetization
- magnetic
- steel plate
- present
- steel sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000005381 magnetic domain Effects 0.000 claims description 17
- 239000013078 crystal Substances 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 6
- 238000005096 rolling process Methods 0.000 claims description 6
- 229910000976 Electrical steel Inorganic materials 0.000 claims description 5
- 238000001953 recrystallisation Methods 0.000 claims description 4
- 230000005415 magnetization Effects 0.000 description 18
- 229910000831 Steel Inorganic materials 0.000 description 15
- 239000010959 steel Substances 0.000 description 15
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 12
- 238000010586 diagram Methods 0.000 description 8
- 229910052742 iron Inorganic materials 0.000 description 6
- 238000000418 atomic force spectrum Methods 0.000 description 5
- 238000005097 cold rolling Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 229910000565 Non-oriented electrical steel Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
Landscapes
- Soft Magnetic Materials (AREA)
Description
本発明は新規な一次再結晶による電磁鋼板に関
するものである。
従来無方向性電磁鋼板のL(圧延方向)とC
(圧延面内で圧延方向と直角方向)および圧延面
内の各方向の磁化特性は、どちらかと云えば同等
であつた。このため従来の鋼板はワンパンチタイ
プの回転機用コアとしては適しているが、L特性
を重視するEIコアやセグメントタイプの回転機
コア、変圧器コアとしては最適とは云いがたい。
本発明は、EI、セグメントタイプの回転機、
変圧器等Lの磁化特性を特に重視するコア用とし
て、Lの磁化特性の優れた鋼板を安価に提供する
ことを目的にしている。
本発明の鋼板はC0.01〜0.001%、Si2.0〜3.5
%、Mn0.1〜0.4%、Al0.01〜0.70%、S0.02%以
下、残部鉄及び不可避不純物からなり、体心立方
格子結晶の三軸即ち〔100〕、〔010〕、〔001〕中、
Lとの角度がCとの角度より小さい軸方向の磁区
(軸方向と一致および180゜磁区)が、磁区全体積
の65%〜95%を占めることを特徴とする一次再結
晶による電磁鋼板で、本発明中特に優れた鋼板
は、結晶の三軸中Lへの磁化が最も容易な軸と同
方向および180゜方向への磁区が、三軸中Cへの
磁化も最も容易な軸方向への磁区の二倍以上にな
つているものである。
ここでL方向に近い磁区の%はトルク曲線、逆
極点図、磁歪曲線図、および代表的結晶の磁区構
造説明図(第1図)とから統計的に求めるもので
ある。
磁区全体積の65〜95%と限定した理由は60%程
度までは一般の電磁鋼板においても、ありうるた
めで、ほぼ95%までとしたのは、理論上からも又
実際上からも限界であるからである。
本発明の鋼板は、Lへ磁化する際に、180゜磁
壁の移動による磁化の割合が、磁壁移動に大きな
磁化力を要する90゜磁壁の移動の割合よりはるか
に多くなる。このためLに所望の磁束密度を得る
ための磁化力が少なくてすむ利益があり、Lの鉄
損も小くなる。また本発明の最も顕著な効果の一
つは、変圧器等の騒音の原因である磁歪が、Lに
おいて極めて少さいことである。
本発明の鋼板の実施例を成分、磁化回転力曲
線、逆極点図、磁化特性で以下に示す。
実施例 1
成分: C 0.003%、Si 3.0%、Mn 0.21%
Al 0.56%、S 0.004%、
残部鉄及び不可避不純物
DH、CC、二回冷延法。
鋼板厚さ0.35mm、本発明における磁区約90%、
この鋼板の磁化回転力曲線を第2図に、逆極点図
を第3図に示す。
実施例 2
成分: C 0.0026%、Si 2.7%、Mn 0.21%
Al 0.31%、S 0.005%、
残部鉄及び不可避不純物、
DH、CC、二回冷延法。
鋼板厚さ0.35mm、本発明における磁区約80%、
この鋼板の磁化回転力曲線を第4図に、逆極点図
を第5図に示す。
実施例 3
成分: C 0.005%、Si 2.8%、Mn 0.20%
Al 0.41%、S 0.004%、
残部鉄及び下可避不純物、DH、CC、二回冷延
法。
鋼板厚さ0.50mm、本発明における磁区約80%、
この鋼板の磁化回転力曲線を第6図に示す。
比較例
成分: C 0.004%、Si 2.9%、Mn 0.20%
Al 0.45%、S 0.004%、
残部鉄及び不可避不純物、常法による。
鋼板厚さ0.35mm、本発明における磁区約55%、
この鋼板の磁化回転力曲線を第7図に示す。
次に各実施例並びに比較材の磁化特性を第1表
に示す。
The present invention relates to a novel electrical steel sheet produced by primary recrystallization. L (rolling direction) and C of conventional non-oriented electrical steel sheet
The magnetization characteristics (in the direction perpendicular to the rolling direction within the rolling plane) and in each direction within the rolling plane were rather similar. For this reason, conventional steel plates are suitable as cores for one-punch type rotating machines, but they are not optimal for EI cores, segment-type rotating machine cores, or transformer cores, where L characteristics are important. The present invention is an EI, a segment type rotating machine,
The purpose of the present invention is to provide a steel plate with excellent L magnetization characteristics at a low cost for use in cores such as transformers where the L magnetization characteristics are particularly important. The steel plate of the present invention has C0.01~0.001%, Si2.0~3.5
%, Mn 0.1-0.4%, Al 0.01-0.70%, S 0.02% or less, the balance consisting of iron and unavoidable impurities, three axes of body-centered cubic lattice crystal, namely [100], [010], [001] During,
An electrical steel sheet produced by primary recrystallization, characterized in that axial magnetic domains whose angle with L is smaller than the angle with C (coincident with the axial direction and 180° magnetic domains) occupy 65% to 95% of the total domain area. , the particularly excellent steel sheet of the present invention has a magnetic domain in the same direction and 180° direction as the axis in which magnetization in the L direction of the crystal is easiest, and in the direction of the axis in which magnetization in the C direction is easiest in the triaxial direction. The number of magnetic domains is more than twice as large as that of the magnetic domain. Here, the percentage of magnetic domains close to the L direction is statistically determined from the torque curve, the inverse pole figure, the magnetostriction curve diagram, and the explanatory diagram of the magnetic domain structure of a typical crystal (FIG. 1). The reason why we limited it to 65% to 95% of the total area of the magnetic domain is that up to about 60% can occur even in general electrical steel sheets, and the reason we set it to almost 95% is the limit both theoretically and practically. Because there is. When the steel sheet of the present invention is magnetized in the L direction, the proportion of magnetization due to the movement of the 180° domain wall is much larger than the proportion of the movement of the 90° domain wall, which requires a large magnetizing force for domain wall movement. Therefore, there is an advantage that L requires less magnetizing force to obtain the desired magnetic flux density, and the iron loss of L is also reduced. Moreover, one of the most remarkable effects of the present invention is that magnetostriction, which is a cause of noise in transformers, etc., is extremely small in L. Examples of the steel plate of the present invention are shown below in terms of components, magnetization rotational force curves, inverse pole figures, and magnetization characteristics. Example 1 Ingredients: C 0.003%, Si 3.0%, Mn 0.21% Al 0.56%, S 0.004%, balance iron and inevitable impurities DH, CC, double cold rolling method. Steel plate thickness 0.35mm, magnetic domain approximately 90% in the present invention,
The magnetization torque curve of this steel plate is shown in FIG. 2, and the inverse pole figure is shown in FIG. Example 2 Ingredients: C 0.0026%, Si 2.7%, Mn 0.21% Al 0.31%, S 0.005%, balance iron and inevitable impurities, DH, CC, double cold rolling method. Steel plate thickness 0.35mm, magnetic domain approximately 80% in the present invention,
The magnetization torque curve of this steel plate is shown in FIG. 4, and the inverse pole figure is shown in FIG. Example 3 Ingredients: C 0.005%, Si 2.8%, Mn 0.20% Al 0.41%, S 0.004%, balance iron and inevitable impurities, DH, CC, double cold rolling method. Steel plate thickness 0.50mm, magnetic domain approximately 80% in the present invention,
The magnetization torque curve of this steel plate is shown in FIG. Comparative Example Components: C 0.004%, Si 2.9%, Mn 0.20% Al 0.45%, S 0.004%, balance iron and unavoidable impurities, by conventional method. Steel plate thickness 0.35mm, magnetic domain approximately 55% in the present invention,
The magnetization torque curve of this steel plate is shown in FIG. Next, Table 1 shows the magnetization properties of each example and comparative material.
【表】
第8図は実施例1の磁歪を磁束密度0.5(T)、
1.5(T)の場合について、測定した結果を示
す。[Table] Figure 8 shows the magnetostriction of Example 1 at a magnetic flux density of 0.5 (T) and
The measurement results for the case of 1.5 (T) are shown below.
第1図イ,ロ,ハは本発明の鋼板を説明するた
めの補助図で、代表的な結晶の磁化構造説明図、
第2図、第3図は夫々実施例における磁化回転力
曲線図及び逆極点図、第4図、第5図は実施例2
における磁化回転力曲線図及び逆極点図、第6図
は実施例3における磁化回転力曲線図、第7図は
比較例における磁化回転力曲線図、第8図は実施
例1における磁歪を磁束密度0.5(T)、1.5
(T)の場合について測定した結果を示す図であ
る。
Figures 1A, 1B, and 1C are auxiliary diagrams for explaining the steel plate of the present invention, including typical crystal magnetization structure explanatory diagrams,
Figures 2 and 3 are magnetization rotational force curve diagrams and inverse pole figures in Example, respectively, and Figures 4 and 5 are Example 2.
Fig. 6 is a magnetization rotational force curve diagram and inverse pole figure in Example 3, Fig. 7 is a magnetization rotational force curve diagram in a comparative example, and Fig. 8 is a magnetization rotational force curve diagram in Example 1 as a function of magnetic flux density. 0.5(T), 1.5
It is a figure which shows the result measured in case (T).
Claims (1)
%、Mn:0.1〜0.4%、Al:0.01〜0.70%、S:
0.02%以下、残部Feおよび不可避的不純物元素
からなり、体心立方格子結晶の三軸<100>の方
向の磁区のうち、圧延方向とのなす角(三次元空
間内での角度)の最も小さいものの磁区全体積に
占める比率が65〜95%である一次再結晶による電
磁鋼板。 2 圧延方向に最も磁化し易い結晶軸方向への磁
区が、他の二軸のそれぞれの軸方向への磁区に較
べて多く、磁区全体積の40%以上になつている特
許請求の範囲1の一次再結晶による電磁鋼板。[Claims] 1% by weight, C: 0.001-0.01%, Si: 2.0-3.5
%, Mn: 0.1-0.4%, Al: 0.01-0.70%, S:
0.02% or less, the remainder consists of Fe and unavoidable impurity elements, and has the smallest angle (angle in three-dimensional space) with the rolling direction among the magnetic domains in the three-axis <100> direction of the body-centered cubic lattice crystal. An electrical steel sheet produced by primary recrystallization, in which the magnetic domain accounts for 65 to 95% of the total area. 2. The magnetic domain in the crystal axis direction that is most easily magnetized in the rolling direction is larger than the magnetic domains in the other two axis directions, and accounts for 40% or more of the total area of the magnetic domains. Electrical steel sheet produced by primary recrystallization.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2029978A JPS54112317A (en) | 1978-02-23 | 1978-02-23 | Electrical steel sheet by primary recrystallization |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2029978A JPS54112317A (en) | 1978-02-23 | 1978-02-23 | Electrical steel sheet by primary recrystallization |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS54112317A JPS54112317A (en) | 1979-09-03 |
JPS6149380B2 true JPS6149380B2 (en) | 1986-10-29 |
Family
ID=12023264
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2029978A Granted JPS54112317A (en) | 1978-02-23 | 1978-02-23 | Electrical steel sheet by primary recrystallization |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS54112317A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06214230A (en) * | 1993-01-14 | 1994-08-05 | Koito Mfg Co Ltd | Liquid crystal display device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5012372A (en) * | 1973-06-04 | 1975-02-07 | ||
JPS5112444A (en) * | 1974-07-21 | 1976-01-31 | Takahiro Tsubota |
-
1978
- 1978-02-23 JP JP2029978A patent/JPS54112317A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5012372A (en) * | 1973-06-04 | 1975-02-07 | ||
JPS5112444A (en) * | 1974-07-21 | 1976-01-31 | Takahiro Tsubota |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06214230A (en) * | 1993-01-14 | 1994-08-05 | Koito Mfg Co Ltd | Liquid crystal display device |
Also Published As
Publication number | Publication date |
---|---|
JPS54112317A (en) | 1979-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Matsumura et al. | Recent developments of non-oriented electrical steel sheets | |
EP0042525B2 (en) | Amorphous magnetic alloy | |
US4150981A (en) | Glassy alloys containing cobalt, nickel and iron having near-zero magnetostriction and high saturation induction | |
EP0086485B1 (en) | Wound iron core | |
JPS6234122B2 (en) | ||
JPH0390546A (en) | Ni-fe-cr soft magnetic alloy for magnetic shielding member | |
JPH0544165B2 (en) | ||
JPS6149380B2 (en) | ||
JPH0324251A (en) | Magnetic core steel plate obtained from hot roll steel strap containing iron, silicon and alminum | |
JPH01290744A (en) | Fe-base soft-magnetic alloy | |
JPWO2023008514A5 (en) | ||
JPS6232267B2 (en) | ||
US3158516A (en) | Method for producing alloy bodies having improved magnetic properties | |
Brailsford | A survey of electrical sheet steels for power plant and the factors affecting their magnetic properties | |
JP2941534B2 (en) | Fe-Co based soft magnetic material having good soft magnetism and soft magnetic electric component assembly | |
JPH01263218A (en) | Production of high magnetic permeability alloy of ni-fe system | |
JPS62167840A (en) | Magnetic material and its manufacture | |
JPH02260612A (en) | Laminated iron core | |
JPS61181114A (en) | Manufacture of rolled iron core | |
JPS6133892B2 (en) | ||
JPH01287251A (en) | Fe-ni-based magnetic alloy having excellent high frequency characteristics | |
JPH02260613A (en) | Laminated iron core | |
JPS58225613A (en) | Wound core | |
JPH09275021A (en) | Low noise iron core excellent in magnetic characteristic | |
JPH03277746A (en) | Soft magnetic alloy showing good magnetic property by vacuum magnetic annealing |